JPH0335249B2 - - Google Patents

Info

Publication number
JPH0335249B2
JPH0335249B2 JP58015625A JP1562583A JPH0335249B2 JP H0335249 B2 JPH0335249 B2 JP H0335249B2 JP 58015625 A JP58015625 A JP 58015625A JP 1562583 A JP1562583 A JP 1562583A JP H0335249 B2 JPH0335249 B2 JP H0335249B2
Authority
JP
Japan
Prior art keywords
pbtio
pyroelectric
thin film
sensitivity
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58015625A
Other languages
Japanese (ja)
Other versions
JPS59141427A (en
Inventor
Ichiro Ueda
Kenji Iijima
Shunichiro Kawashima
Hiroshi Oochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58015625A priority Critical patent/JPS59141427A/en
Publication of JPS59141427A publication Critical patent/JPS59141427A/en
Publication of JPH0335249B2 publication Critical patent/JPH0335249B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、強誘電体薄膜、たとえば赤外線検出
器に有用な強誘電体薄膜に関するものである。 従来例の構成とその問題点 赤外線検出素子は、量子形と熱形とに分けられ
る。量子形赤外線検出素子は感度が高く、応答が
速いが、冷却を必要とし、また、感度の波長依存
性が大きいという欠点を持つている。一方、熱形
赤外線検出素子は、室内で動作し、波長依存性が
ないという大きい長所をもつている。なかでも、
強誘電体を用いた焦電形素子は感度、応答速度な
どの点で、他の熱形素子に比べてすぐれている。 すでに実用化されている焦電素子12は、セラミ
ツクスや単結晶が用いられている。焦電素子は、
薄くすればそれだけ熱容量が下がり、感度が増加
するが、単結晶やセラミツクスでは、加工性に問
題があつて、あまり薄くすることはできない。そ
のため、感度にも限界があつた。また単一素子
で、2次元の熱像を得ようとすると、機械走査が
必要で、大形で高価な装置になる。2次元の熱像
は、パイロビジコンでも得られるが感度、分解能
ともによくない。高感度の焦電形2次元アレイが
できれば、室温動作で高性能の安価な熱像装置を
つくることができる。 このように、高感度の焦電素子、とくに2次元
アレイを得ようとすると、セラミツクスや単結晶
では不十分で、良質の強誘電体薄膜の作製が不可
欠の条件になる。 焦電形赤外線検出素子は、キユリー点よりも低
い温度でないと使用することができないので、感
度の温度特性や安定性を考えると、キユリー点は
高い方がよい。焦電係数dqr/dTが大きいほど、
温度Tの変化に対して、分極Prの変化が大きい。
性能指数(dPr/dT)(1/ε)は、発生電圧の
大小をきめるので、大きい方がよい。誘電率εは
小さい方がよい。比検出能D*は、雑音に逆比例
し、D*が大きい方が検出素子の性能がよい。焦
電形では雑音の主原因がtanδにあつて、tanδをで
きるだけ小さくすることも課題になる。PbTiO3
は、キユリー点も高く(約500℃)、εもかなり小
さく(約200)、焦電材料としてすぐれていて、す
でにセラミツクスを用いた赤外検出素子が実用化
されている。しかし、PbTiO3薄膜については、
セラミツクスと同等あるいはそれ以上の特性のも
のがこれまでのところ報告がない。 発明の目的 本発明は、焦電形赤外検出素子としての性能指
数がPbTiO3セラミツクスと同等かそれ以上で、
tanδの小さいPbTiO3薄膜を得ることを目的とす
る。 発明の構成 本発明は、高周波スパツタ法で薄膜を形成する
に際して、ターゲツトに少量のMnO2の添加され
たPbTiO3粉末を用いることをもつとも特徴と
し、これによつて、無添加のPbTiO3粉末の場合
に比べて、焦電形検出素子の性能指数が大きく、
tanδの小さいPbTiO3薄膜焦電材料が得られる。 実施例の説明 本発明のPbTiO3薄膜は、高周波スパツタリン
グで作製した。ターゲットの組成は、〔(1−x)
PbO+(1−x)TiO2〕+xMnO2、または〔(1
−x)PbTiO3+x・MnO2〕である。ただし、
x=0.002〜0.05である。 原料のPbO,TiO2とMnO2、あるいはPbTiO3
とMnO2を十分湿式混合して、ターゲツトとし
た。これら2種類のターゲツトで得た薄膜は、同
じ特性を示した。 基板には、アルミナセラミツクを用いた。基板
の片面に、電極として白金をスパツタリング法で
形成した。基板をヒータ上に固定し、基板を575
℃に加熱した。雰囲気ガスは、アルゴンと酸素の
混合気体で、混合比は、アルゴンが90%で、酸素
が10%である。ガス圧は5Paであつた。高周波マ
グネトロンスパツタリングにより基板の電極上
に、厚さ1〜2μmのPbTiO3薄膜を形成した。 分極と測定ために、PbTiO3薄膜上に、直径約
1mmの白金電極をスパツタリング法で形成した。
試料の厚み方向に、80kv/cmの直流電場を200℃
で、10分間印加して、分極を行なつた。分極後、
焦電係数dPr/dTと誘電率εと誘電損失tanδを
測定した。各組成の薄膜の性能指数(dPr/dT)
(1/ε)とtanδを下表に示す。表には、従来の
PbTiO3磁器の値も示してある。
FIELD OF THE INVENTION The present invention relates to ferroelectric thin films, such as those useful in infrared detectors. Structure of conventional example and its problems Infrared detecting elements are divided into quantum type and thermal type. Quantum infrared detection elements have high sensitivity and quick response, but they require cooling and have the disadvantage that their sensitivity is highly dependent on wavelength. On the other hand, thermal infrared detection elements have the great advantage of being able to operate indoors and having no wavelength dependence. Among them,
Pyroelectric elements using ferroelectric materials are superior to other thermal elements in terms of sensitivity and response speed. The pyroelectric element 12 that has already been put into practical use uses ceramics or single crystal. The pyroelectric element is
The thinner the material, the lower the heat capacity and the higher the sensitivity, but single crystals and ceramics cannot be made very thin due to problems with workability. Therefore, there was a limit to the sensitivity. Furthermore, when attempting to obtain a two-dimensional thermal image using a single element, mechanical scanning is required, resulting in a large and expensive device. Two-dimensional thermal images can be obtained using pyrobidicon, but both sensitivity and resolution are poor. If a highly sensitive pyroelectric two-dimensional array can be created, it will be possible to create a high-performance, inexpensive thermal imaging device that operates at room temperature. In this way, when trying to obtain a highly sensitive pyroelectric element, especially a two-dimensional array, ceramics or single crystals are insufficient, and the production of a high-quality ferroelectric thin film is an essential condition. A pyroelectric infrared detection element cannot be used unless the temperature is lower than the Curie point, so when considering temperature characteristics and stability of sensitivity, the higher the Curie point is, the better. The larger the pyroelectric coefficient dqr/dT, the
The change in polarization Pr is large with respect to the change in temperature T.
The figure of merit (dPr/dT) (1/ε) determines the magnitude of the generated voltage, so the larger the value, the better. The smaller the dielectric constant ε, the better. The specific detectability D * is inversely proportional to the noise, and the larger D * is, the better the performance of the detection element is. In the pyroelectric type, the main cause of noise is tan δ, and the challenge is to make tan δ as small as possible. PbTiO3
It has a high Curie point (approximately 500°C) and a fairly small ε (approximately 200), making it an excellent pyroelectric material, and infrared detection elements using ceramics have already been put into practical use. However, for PbTiO3 thin film,
So far, there have been no reports of properties that are equivalent to or better than those of ceramics. Purpose of the invention The present invention has a figure of merit as a pyroelectric infrared detection element that is equal to or higher than that of PbTiO 3 ceramics.
The aim is to obtain a PbTiO 3 thin film with small tanδ. Structure of the Invention The present invention is characterized by using PbTiO 3 powder to which a small amount of MnO 2 is added as a target when forming a thin film by high frequency sputtering method, thereby making it possible to use PbTiO 3 powder with no additives. The figure of merit of the pyroelectric detection element is larger than that in the case of
A PbTiO 3 thin film pyroelectric material with a small tanδ can be obtained. Description of Examples The PbTiO 3 thin film of the present invention was produced by high frequency sputtering. The composition of the target is [(1-x)
PbO+(1-x)TiO 2 ]+xMnO 2 or [(1
−x)PbTiO 3 +x·MnO 2 ]. however,
x=0.002 to 0.05. Raw materials PbO, TiO 2 and MnO 2 or PbTiO 3
and MnO 2 were sufficiently wet mixed to form a target. Thin films obtained with these two types of targets showed the same properties. Alumina ceramic was used for the substrate. Platinum was formed as an electrode on one side of the substrate by sputtering. Fix the board on the heater and set the board at 575
heated to ℃. The atmospheric gas is a mixture of argon and oxygen, with a mixing ratio of 90% argon and 10% oxygen. The gas pressure was 5Pa. A PbTiO 3 thin film with a thickness of 1 to 2 μm was formed on the electrode of the substrate by high-frequency magnetron sputtering. For polarization and measurement, a platinum electrode with a diameter of approximately 1 mm was formed on the PbTiO 3 thin film by sputtering.
A DC electric field of 80kv/cm is applied at 200℃ in the thickness direction of the sample.
The voltage was applied for 10 minutes to perform polarization. After polarization,
The pyroelectric coefficient dPr/dT, permittivity ε, and dielectric loss tanδ were measured. Figure of merit of thin film of each composition (dPr/dT)
(1/ε) and tanδ are shown in the table below. The table shows the conventional
Values for PbTiO 3 porcelain are also shown.

【表】 MnO2の添加量xが0〜0.001、および、0.10で
は、従来の磁器の値に比べて、性能指数が小さ
く、tanδが大きい。一方、適当な量のMnO2、す
なわち、x=0.002〜0.05では、従来の磁器に比
べて、性能指数は大きくなり、その上、tanδが同
等または小さくなる。 発明の効果 以上のように本発明の方法では、ターゲツトに
使用するPbTiO3を適量のMnO2を添加している
ので、従来の磁器に比べて、大きい性能指数をも
ち、その上、tanδが従来の磁器に比べて、同等か
小さい薄膜焦電体を得ることができる。これを用
い、高感度、低雑音の赤外線検出器を構成でき
る。
[Table] When the amount x of MnO 2 added is 0 to 0.001 and 0.10, the figure of merit is small and tan δ is large compared to the values of conventional porcelain. On the other hand, with an appropriate amount of MnO 2 , ie, x=0.002 to 0.05, the figure of merit becomes larger and tan δ becomes equal to or smaller than that of conventional porcelain. Effects of the Invention As described above, in the method of the present invention, since an appropriate amount of MnO 2 is added to PbTiO 3 used for the target, it has a larger figure of merit than conventional porcelain, and furthermore, tan δ is lower than that of conventional porcelain. It is possible to obtain a thin film pyroelectric material that is equivalent or smaller than that of porcelain. Using this, a high-sensitivity, low-noise infrared detector can be constructed.

Claims (1)

【特許請求の範囲】 1 組成〔(1−x)PbTiO3+x・MnO2〕(x
=0.002〜0.05)を有する強誘電体薄膜。
[Claims] 1. Composition [(1-x)PbTiO 3 +x・MnO 2 ] (x
= 0.002 to 0.05).
JP58015625A 1983-02-01 1983-02-01 Thin film of ferroelectric material Granted JPS59141427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58015625A JPS59141427A (en) 1983-02-01 1983-02-01 Thin film of ferroelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58015625A JPS59141427A (en) 1983-02-01 1983-02-01 Thin film of ferroelectric material

Publications (2)

Publication Number Publication Date
JPS59141427A JPS59141427A (en) 1984-08-14
JPH0335249B2 true JPH0335249B2 (en) 1991-05-27

Family

ID=11893889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58015625A Granted JPS59141427A (en) 1983-02-01 1983-02-01 Thin film of ferroelectric material

Country Status (1)

Country Link
JP (1) JPS59141427A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610926B2 (en) * 1985-05-23 1994-02-09 松下電器産業株式会社 Dielectric film manufacturing method
JPS61285609A (en) * 1985-06-13 1986-12-16 日本曹達株式会社 Lead titanate ferrodielectric thin film and manufacture thereof
KR0147245B1 (en) * 1993-12-01 1998-09-15 모리시타 요이찌 Fero electric thin film and manufacture thereof
CN107365152A (en) * 2017-09-04 2017-11-21 苏州云舒新材料科技有限公司 A kind of preparation method of the sub- ceramic membrane material of pyroelectricity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159400A (en) * 1974-11-21 1976-05-24 Nippon Electric Co Jirukon chitansannamariofukumu taseibunatsudenseijikyoketsushokabifunmatsuno seizohoho
JPS57191232A (en) * 1981-05-19 1982-11-25 Mizusawa Ind Chem Ltd Preparation of lead-containing perowskite-type composite oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159400A (en) * 1974-11-21 1976-05-24 Nippon Electric Co Jirukon chitansannamariofukumu taseibunatsudenseijikyoketsushokabifunmatsuno seizohoho
JPS57191232A (en) * 1981-05-19 1982-11-25 Mizusawa Ind Chem Ltd Preparation of lead-containing perowskite-type composite oxide

Also Published As

Publication number Publication date
JPS59141427A (en) 1984-08-14

Similar Documents

Publication Publication Date Title
Whatmore et al. Ferroelectric materials for thermal IR sensors state-of-the-art and perspectives
Guggilla et al. Pyroelectric ceramics for infrared detection applications
Kang et al. Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics
Deb Pyroelectric characteristics of (Pb0. 9Sm0. 1) TiO3 ceramics
Jia et al. Simultaneous large pyroelectric response and high depolarization temperature in sodium bismuth titanate-based perovskites
US3775142A (en) Improved ceramic compositions for high stability capacitors
JPH0335249B2 (en)
Chatterjee et al. A miniature PTC thermistor based sensor element fabricated by tape casting technique
Deb Investigation of pyroelectric characteristics of modified PbTiO3 ceramics for improved IR detector performance
JP2000319065A (en) Ferroelectric ceramic, pyroelectric and pyroelectric infrared ray detector
JPS59138004A (en) Ferrodielectric thin film
US3775843A (en) Method of making temperature responsive apparatus
Yu et al. Fabrication, property and application of novel pyroelectric single crystals—PMN–PT
Bunting et al. Properties of beryllium-barium titanate dielectrics
US3528918A (en) Piezoelectric ceramic compositions
Shi et al. Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films
Dorey et al. Pyroelectric PZT/PMNZTU composite thick films
Deb Pyroelectric characteristics of a hot-pressed lanthanum-doped PZT (PLZT (8/40/60))
Chauhan et al. A study on SBN-POP composites for pyroelectric sensing applications
RU2529682C1 (en) Nanocomposite material with ferroelectric characteristics
JPH053427B2 (en)
JPH0862038A (en) Infrared detection element and production thereof
Kuwabara et al. Instability of the Characteristics of the Positive Temperature Coefficient of Resistivity in High‐Curie‐Point Barium‐Lead Titanate Ceramics and Their Grain Structures
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
KR100295992B1 (en) Volimeter-type infrared sensor composition