JPH0334828B2 - - Google Patents

Info

Publication number
JPH0334828B2
JPH0334828B2 JP60019733A JP1973385A JPH0334828B2 JP H0334828 B2 JPH0334828 B2 JP H0334828B2 JP 60019733 A JP60019733 A JP 60019733A JP 1973385 A JP1973385 A JP 1973385A JP H0334828 B2 JPH0334828 B2 JP H0334828B2
Authority
JP
Japan
Prior art keywords
vibrating
column
acceleration
weight
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019733A
Other languages
Japanese (ja)
Other versions
JPS61178666A (en
Inventor
Kinji Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60019733A priority Critical patent/JPS61178666A/en
Publication of JPS61178666A publication Critical patent/JPS61178666A/en
Publication of JPH0334828B2 publication Critical patent/JPH0334828B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、移動体の加速度を検出する手段に関
し、3軸方向について測定することのできる振動
式加速度計に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to means for detecting acceleration of a moving body, and more particularly to a vibratory accelerometer capable of measuring in three axial directions.

(従来の技術) 移動体の加速度を検出するものとしては、従
来、次のようなものが知られている。
(Prior Art) The following devices are conventionally known as devices for detecting the acceleration of a moving body.

(1) サーボ形 第3図に示すように、弾性体dにより支持さ
れた質量Mを有するフオースコイルaを、磁石
bとコアcからなる磁気回路の途中に配置し、
加速度αによつて生じる力Mαと、フオースコ
イルによつて生じる力を平衡させ、フオースコ
イルに流れる電流から加速度αを求めるもの。
(1) Servo type As shown in Figure 3, a force coil a having a mass M supported by an elastic body d is placed in the middle of a magnetic circuit consisting of a magnet b and a core c,
The force Mα generated by acceleration α is balanced with the force generated by the force coil, and the acceleration α is determined from the current flowing through the force coil.

(2) ビーム形 第4図に示すように、ベースeに固定した薄
肉部iを有する支柱fの先端に所定の質量を有
する重りgを固定し、支柱fに歪みゲージh、
h′を貼付して、加速度による支柱fの撓みによ
つて生じる抵抗変化により加速度を求めるも
の。
(2) Beam shape As shown in Figure 4, a weight g having a predetermined mass is fixed to the tip of a column f having a thin wall portion i fixed to a base e, and a strain gauge h,
By attaching h', the acceleration is determined by the change in resistance caused by the deflection of the support column f due to acceleration.

(3) 振動形 第5図に示すように、振動分離体mを介して
振動弦w1、w2を対向するように張設し、振動
分離体mが受ける力の方向によつて変化する振
動弦の振動周波数f1、f2の変化から加速度を求
めるもの。
(3) Vibration type As shown in Figure 5, vibrating strings w 1 and w 2 are stretched across a vibration isolator m so as to face each other, and the vibration changes depending on the direction of the force received by the vibration isolator m. This method calculates acceleration from changes in the vibration frequencies f 1 and f 2 of a vibrating string.

(発明が解決しようとする問題点) 上記従来例において、第3図に示すサーボ形は
精密形として広く用いられているが、構造が複雑
で、電流信号から高い分解能の出力信号を得よう
とすると信号処理が難しいという欠点がある。
(Problems to be Solved by the Invention) In the above conventional example, the servo type shown in Fig. 3 is widely used as a precision type, but it has a complicated structure and is difficult to obtain a high resolution output signal from a current signal. This has the disadvantage that signal processing is difficult.

また、第4図に示すビーム形は支柱fに重りg
を固定し、歪みゲージを貼付しただけなので構造
は簡単であるが、ゲージ率が低く出力信号も小さ
いため信号処理が難しいという欠点がある。
In addition, the beam shape shown in Fig. 4 has a weight g on the support f.
The structure is simple because it is simply fixed and a strain gauge is attached, but the disadvantage is that signal processing is difficult because the gauge factor is low and the output signal is small.

そして、第5図に示す振動形は信号が周波数で
出力され、ゲージ率が大きく信号処理もやり易い
が、振動弦の張力の調整や振動分離体mの取付け
が難しいという欠点がある。
The vibrating type shown in FIG. 5 outputs a signal at a frequency, has a large gauge factor, and is easy to process, but has the disadvantage that it is difficult to adjust the tension of the vibrating string and to attach the vibration separator m.

これら従来例による加速度の測定方向はいずれ
も一方向のみなので、XYZ方向の加速度を測定
する場合においては3個の加速度計が必要とな
る。
Since acceleration is measured in only one direction in these conventional examples, three accelerometers are required to measure acceleration in the XYZ directions.

(問題点を解決するための手段) 本発明は上記問題点に鑑みてなされたもので、
構成が簡単で、かつ、ゲージ率が高く、精度のよ
い3軸加速度計を提供することを目的とするもの
で、その構成上の特徴は、一端がベースに固定さ
れた支柱と、この支柱の自由端側に固定された所
定の質量を有する重りと、前記ベースと前記重り
に両端を固定され、前記支柱に平行に、かつ、支
柱の周りに等間隔に設けられた少なくとも3本の
振動梁と、これらの振動梁を振動させる励振手段
と、前記振動梁の固有振動数を検出する振動検出
手段と、前記振動検出手段で検出した各振動梁の
固有振動数を演算する演算手段とを具備したもの
である。
(Means for solving the problems) The present invention has been made in view of the above problems, and
The purpose of this is to provide a highly accurate 3-axis accelerometer with a simple configuration and a high gauge factor. a weight having a predetermined mass fixed to a free end side; and at least three vibrating beams having both ends fixed to the base and the weight, parallel to the column, and equally spaced around the column. and excitation means for vibrating these vibrating beams, vibration detection means for detecting the natural frequency of the vibrating beam, and calculation means for calculating the natural frequency of each vibrating beam detected by the vibration detecting means. This is what I did.

(作用) 振動梁を励振しておき、重りにZ方向の加速度
を加えると支柱と振動梁に同時に歪みが発生し、
振動梁の固有振動数が変化する。また重りにXお
よびY方向の加速度を加えるとその進行方向の前
方の振動梁には引張り歪みが、後方の振動梁には
圧縮歪みが発生し、振動梁の固有振動数が差動的
に変化する。この振動周波数の変化を振動検出手
段により検出し、演算手段により演算を行ない加
えられた3軸方向の加速度を分離して検出する。
(Function) When the vibrating beam is excited and acceleration is applied to the weight in the Z direction, distortion occurs in the support and the vibrating beam at the same time.
The natural frequency of the vibrating beam changes. Furthermore, when acceleration is applied to the weight in the X and Y directions, tensile strain is generated in the vibrating beam in front of the weight in the direction of movement, and compressive strain is generated in the vibrating beam in the rear, resulting in a differential change in the natural frequency of the vibrating beam. do. This change in vibration frequency is detected by the vibration detection means, and the calculation means performs calculation to separate and detect the applied acceleration in the three axial directions.

(実施例) 第1図は本発明の一実施例を示すもので、全体
構成を示す斜視図である。図において、1は大小
の径を有する断面凸状のベースであり、小径部の
中央には円柱状と支柱2がベース1に垂直に固定
され、この支柱2の自由端側には円筒状の重り3
が固定されている。ベースの小径部および重り3
の外周には等間隔(図では3等分)に、かつ、対
向して矩形状の切り込み4,4a,5,5a,
6,6a(6,6aは図示せず)が設けられ、こ
れらの切り込みに板状の振動梁7a,7b,7c
が支柱2と平行に、かつ、等間隔に両端を固定さ
れている。振動梁7a,7b,7cにはその中央
部付近に長孔8a,8b,8c(8cは図示せず)
が設けられ、複合音叉振動子を構成している。こ
の長孔8a,8b,8cの近傍に振動梁の励振用
と検出用の圧電素子(図示せず)が貼付され、検
出用圧電素子で検出した電圧信号を増幅後、励振
用素子に正帰還することにより振動梁の自動振が
行なわれる。9はカバーで、重り3、振動梁7
a,7b,7cを覆つてベース1の大径部に気密
に固着され、真空またはヘリウムガス等が封入さ
れており、振動梁のQを高く保ち外部気圧の影響
や汚れから保護するためのものである。10a,
10b,10c(10cは図示せず)は振動梁7
a,7b,7cに貼付された圧電素子を励振し振
動梁の固有振動数を検出するための端子で、各端
子の一端はベース1を貫通してカバー9の外部に
露出している。
(Embodiment) FIG. 1 shows an embodiment of the present invention, and is a perspective view showing the overall configuration. In the figure, 1 is a base with a convex cross section having large and small diameters, and in the center of the small diameter part, a cylindrical column and a column 2 are fixed perpendicularly to the base 1, and on the free end side of this column 2 there is a cylindrical column. weight 3
is fixed. Base small diameter part and weight 3
There are rectangular incisions 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 4a, 5, 5a, 4, 5a, 5a, 5a, 5a, 5b, 4a, 4a, 4a, 5a, 5a, 4b, 4a, 5b, 5a, 4a, 5a, 4a, 5a, 4a, 5a, 5a, 5a, 4a, 4a, 5a, 5a, 4a, 4a, 5a, 5a, 4a
6, 6a (6, 6a are not shown) are provided, and plate-shaped vibration beams 7a, 7b, 7c are provided in these notches.
are fixed at both ends parallel to the pillar 2 and at equal intervals. The vibrating beams 7a, 7b, 7c have elongated holes 8a, 8b, 8c (8c is not shown) near their centers.
is provided to constitute a composite tuning fork vibrator. Piezoelectric elements (not shown) for excitation and detection of the vibrating beam are pasted near the long holes 8a, 8b, and 8c, and after amplifying the voltage signal detected by the detection piezoelectric element, positive feedback is returned to the excitation element. By doing so, automatic vibration of the vibrating beam is performed. 9 is a cover, weight 3, vibration beam 7
a, 7b, and 7c, and is airtightly fixed to the large diameter part of the base 1, and is filled with vacuum or helium gas, etc., to maintain a high Q of the vibrating beam and protect it from the influence of external pressure and dirt. It is. 10a,
10b and 10c (10c not shown) are vibration beams 7
These are terminals for exciting the piezoelectric elements attached to a, 7b, and 7c and detecting the natural frequency of the vibrating beam, and one end of each terminal passes through the base 1 and is exposed to the outside of the cover 9.

上記構成において、振動梁7a,7b,7cに
貼付した圧電素子に端子10a,10b,10c
を介して励振用増幅器に接続し、振動梁を固有の
振動数で励振しておき、Z方向に加速度α1を加え
ると、支柱2は重り3からMα1の力を受けて伸縮
し、支柱2に平行に固定された振動梁は圧縮また
は引張りの力を受ける。その結果、振動梁7a,
7b,7cの固有振動数はその加速度に応じて変
化する。次にXまたはY方向の加速度α2、α3が加
わると支柱2は重り3によりMα2、Mα3の力を受
けて撓み、この支柱に平行にかつ、等間隔に固定
された3本の振動梁7a,7b,7cはその加速
度が加えられた方向に応じて圧縮、または引張り
の力を受け、振動梁の固有振動数はその加速度の
方向および大きさに応じて差動的に変化する。
In the above configuration, the piezoelectric elements attached to the vibrating beams 7a, 7b, 7c are connected to the terminals 10a, 10b, 10c.
is connected to the excitation amplifier via the oscillator, the vibrating beam is excited at a specific frequency, and when an acceleration α 1 is applied in the Z direction, the strut 2 expands and contracts under the force Mα 1 from the weight 3, and the strut A vibrating beam fixed parallel to 2 is subjected to compressive or tensile forces. As a result, the vibrating beam 7a,
The natural frequencies of 7b and 7c change according to their acceleration. Next, when accelerations α 2 and α 3 in the X or Y direction are applied, the column 2 is deflected by the forces Mα 2 and Mα 3 due to the weight 3, and the three pillars fixed parallel to this column and at equal intervals are bent. The vibrating beams 7a, 7b, and 7c receive compressive or tensile force depending on the direction in which the acceleration is applied, and the natural frequency of the vibrating beam differentially changes depending on the direction and magnitude of the acceleration. .

第2図は加速度により変化した振動梁の周波数
信号を演算する電気回路の一例を示すブロツク図
である。図において、7a,7b,7cは第1図
における振動梁を示し、11a,11b,11c
は対応する振動梁7a,7b,7cを励振させる
ための発振用回路である。12は演算手段で、加
速度に応じて変化したそれぞれの振動梁の周波数
f1、f2、f3は演算手段12に入力される。
FIG. 2 is a block diagram showing an example of an electric circuit that calculates a frequency signal of a vibrating beam that changes due to acceleration. In the figure, 7a, 7b, 7c indicate the vibration beams in FIG. 1, and 11a, 11b, 11c
is an oscillation circuit for exciting the corresponding vibrating beams 7a, 7b, 7c. 12 is a calculation means, which calculates the frequency of each vibrating beam that changes according to acceleration.
f 1 , f 2 , and f 3 are input to calculation means 12 .

これら3個の振動梁の歪みと固有振動数の関係
を予め求めておけば、f1、f2、f3の3軸方向の加
速度が演算によつて求められる。
If the relationship between the distortion and natural frequency of these three vibrating beams is determined in advance, the accelerations in the three axial directions of f 1 , f 2 , and f 3 can be determined by calculation.

これらの出力は周波数出力であるため、高ビツ
トのデジタル信号への変換が簡単で、例えばマイ
クロプロセツサ等で演算するための信号処理が容
易であり、抵抗歪みゲージ等に比較してセンサと
してのゲージ率が高いので精度がよい。また、支
柱2に重り3を固定してこの支柱2に対向して振
動梁7a,7b,7cを設けただけなので、構造
も簡単である。
Since these outputs are frequency outputs, they can be easily converted to high-bit digital signals, and signal processing for calculations with a microprocessor, for example, is easy. High accuracy due to high gauge factor. Further, since the weight 3 is fixed to the support 2 and the vibrating beams 7a, 7b, and 7c are provided opposite to the support 2, the structure is simple.

なお、本実施例においては、振動梁の形状を板
状のものとし、振動梁に長孔を設けたものを示し
たが、本例に限ることなく振動梁はワイヤであつ
てもよい。また、振動梁の数は3本に限ることな
く更に多数設けてもよい。
In this embodiment, the shape of the vibrating beam is plate-like, and the vibrating beam is provided with elongated holes, but the vibrating beam is not limited to this example, and the vibrating beam may be a wire. Further, the number of vibrating beams is not limited to three, and a larger number may be provided.

また、支柱2,振動梁7a,7b,7cは同一
の材質で、かつ、熱弾性係数の小さなものが温度
変化による影響を受けにくく、例えば商品名Ni
−Span−C等が望ましい。
In addition, the strut 2 and the vibrating beams 7a, 7b, and 7c are made of the same material and have a small thermoelastic coefficient, making them less susceptible to temperature changes.
-Span-C etc. are desirable.

(発明の効果) 以上説明したように、本発明によれば、構造が
簡単でゲージ率が高く、3軸を同時に測定するこ
とのできる加速度計を実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize an accelerometer that has a simple structure, a high gauge factor, and can measure three axes simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体構成を示す斜視図、第2
図は電気回路の一例を示すブロツク図、第3図〜
第5図は従来例を示す説明図である。 1……ベース、2……支柱、3……重り、7
a,7b,7c……振動梁、11a,11b,1
1c……励振手段、12……演算器。
Fig. 1 is a perspective view showing the overall configuration of the present invention;
The figure is a block diagram showing an example of an electric circuit.
FIG. 5 is an explanatory diagram showing a conventional example. 1... Base, 2... Support, 3... Weight, 7
a, 7b, 7c... Vibration beam, 11a, 11b, 1
1c...Excitation means, 12...Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 一端がベースに固定された支柱と、この支柱
の自由端側に固定された所定の質量を有する重り
と、前記ベースと前記重りに両端を固定され、前
記支柱に平行に、かつ、支柱の周りに等間隔に設
けられた少なくとも3本の振動梁と、これらの振
動梁を振動させる励振手段と、前記振動梁の固有
振動数を検出する振動検出手段と、前記振動検出
手段で検出した各振動梁の固有振動数を演算する
演算手段とを具備したことを特徴とする振動式加
速度計。
1 A column whose one end is fixed to a base, a weight having a predetermined mass fixed to the free end side of the column, and a column whose both ends are fixed to the base and the weight, parallel to the column, and of the column. at least three vibrating beams provided at equal intervals around the vibrating beams, an excitation means for vibrating these vibrating beams, a vibration detecting means for detecting the natural frequency of the vibrating beams, and each vibrating beam detected by the vibration detecting means. A vibrating accelerometer characterized by comprising a calculating means for calculating the natural frequency of a vibrating beam.
JP60019733A 1985-02-04 1985-02-04 Vibration type accelerometer Granted JPS61178666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019733A JPS61178666A (en) 1985-02-04 1985-02-04 Vibration type accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019733A JPS61178666A (en) 1985-02-04 1985-02-04 Vibration type accelerometer

Publications (2)

Publication Number Publication Date
JPS61178666A JPS61178666A (en) 1986-08-11
JPH0334828B2 true JPH0334828B2 (en) 1991-05-24

Family

ID=12007517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019733A Granted JPS61178666A (en) 1985-02-04 1985-02-04 Vibration type accelerometer

Country Status (1)

Country Link
JP (1) JPS61178666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203228A (en) * 2010-03-26 2011-10-13 Toshiba Corp Acceleration sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136582A (en) * 1987-11-24 1989-05-29 Hitachi Ltd Speed controller
US4858080A (en) * 1988-03-09 1989-08-15 Yazaki Corporation Headlight moving apparatus for automotive vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203228A (en) * 2010-03-26 2011-10-13 Toshiba Corp Acceleration sensor

Also Published As

Publication number Publication date
JPS61178666A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
US3238789A (en) Vibrating bar transducer
US4479385A (en) Double resonator cantilever accelerometer
JP3151927B2 (en) Acceleration sensor
USRE42916E1 (en) Single bar type vibrating element angular rate sensor system
US4939935A (en) Pendular non-servoed tuning beam accelerometer
US4654663A (en) Angular rate sensor system
JP3240390B2 (en) Displacement detection sensor
US3486383A (en) Vibrating beam transducer
JP2000206141A (en) Momentum sensor
US4587853A (en) Vibration type force detector
US3505866A (en) Single tine digital force transducer
JP4004129B2 (en) Motion sensor
US7104128B2 (en) Multiaxial micromachined differential accelerometer
JPH0520693B2 (en)
JP2003042768A (en) Motion sensor
US3440888A (en) Bifurcate resonance column
JPH0334829B2 (en)
JP2000512019A (en) Small box type vibration gyroscope
US3413859A (en) Digital rate gyro
JPH0334828B2 (en)
US4802364A (en) Angular rate sensor
JPH1151965A (en) Small-sized accelerometer of type using gravitational effect compensating spring and manufacture thereof
Usuda et al. Theoretical and experimental investigation of transverse sensitivity of accelerometers under multiaxial excitation
Sim et al. Six-beam piezoresistive accelerometer with self-cancelling cross-axis sensitivity
JP3355739B2 (en) Accelerometer