JPH0334197A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0334197A
JPH0334197A JP1167805A JP16780589A JPH0334197A JP H0334197 A JPH0334197 A JP H0334197A JP 1167805 A JP1167805 A JP 1167805A JP 16780589 A JP16780589 A JP 16780589A JP H0334197 A JPH0334197 A JP H0334197A
Authority
JP
Japan
Prior art keywords
output
mosfet
mosfets
signal
output buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1167805A
Other languages
Japanese (ja)
Inventor
Tatsunori Koshiyou
古庄 辰記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1167805A priority Critical patent/JPH0334197A/en
Publication of JPH0334197A publication Critical patent/JPH0334197A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a switching noise at an output buffer circuit by forming the output buffer circuit by arranging two-divided MOSFETs between an output terminal and power supply and between the output terminal and grounding respectively. CONSTITUTION:A first and a second MOSFETs 1,2 are installed between the output terminal and the power supply Vcc, and are driven by AND gates 5,6 respectively. Besides, a third and a fourth MOSFETs 3,4 are installed between the output terminal and the grounding, and are driven by NOR gates 7,8 respectively. At time T after the change of an address signal at the time of usual read-out, the MOSFETs 6,8 become non-conductive always, and the MOSFET 1 becomes conductive, and the MOSFET 3 becomes non-conductive. When an internal data signal is 'L', the MOSFET 1 becomes non-condutive, and the MOSFET 3 becomes conductive. Accordingly, since the operation of a circuit by invalid data at time T is limited by the MOSFETs 1,3, the generation of the noise is reduced by half.

Description

【発明の詳細な説明】[Detailed description of the invention]

(*業上の利用分野」 この発明は参導体集積回路、t装置の出力バッファ回路
に関するものである。 〔従来の技術] 第4図は従来の半導体集積回路装置の出力バッファ回路
の回路図で、図において、(1)は出力端子と電!+1
1 (Vcc)に接続されたPチャネ/I/MOSFE
T、(3)は出力端子と接地(GND)間に接続された
NチャネルMO8FET 、 (5)はPチャネルMO
8FET11)を駆動するNANDゲー) 、 +7)
はNチャネルMO8FET13)を駆動するNORゲー
トである。 次に動作についてEPROMを用いて脱明する。 EFROMは通常の読み出しはVcc=5Vで出力制御
信号であるoe及びoe倍信号それぞれ’H’ 、 ’
L’とすると、内部データ信号が甘の時NANDゲート
(5)の出力は4L#になり、NORゲート(7)の出
力も4L#となるのでPチャネルMO8FET11)は
導通し、NチャネルMO8FET13)は非導通となり
出力端子には唄砂が現われる。また、内部データ信号が
41L#の時NANDゲート(5)の出力は市になり、
NORゲート(7)の出力も1WとなるのでPチャネル
MO8FET 11)は非導通となり、NチャネルMO
3FET+31は導通となり出力端子には%L#が現わ
れる。そして、出力制御信号であるoe及びoeがそれ
ぞれ4L#♂Wの時には内部データ信号が’H# 、 
’L’のいずれでもNANDゲート(5)の出力は唄’
、NORゲート(7)の出力は4L#となるので、Pチ
ャネルMO8FETII)とNチャネルMO8FET1
31は共に非導通になり、出力端子はフローティング状
態、即ち高インピーダンス状態になる。EPROMは上
記の出力バッファ回路が8個または16個あり、通常の
Vcc=5V動作時には全ての出力バッファ回路が安定
に高速動作する必要がある。 また、内部data信号はセンスアンプによって判定さ
れた’L’、”F(’の信号であるが、アドレスが変化
したセンスアンプにおいて玉しいデータをセンスし出力
するまでの期間に無効データを出力することがあり、こ
れが出力パフ71回路でのノイズ源となった。センスア
ンプは高速−動作を実現するために電位の微小変動を検
出するように構Ff1.されているので、ノイズによっ
て誤動作する恐れがある。 しかも出力バッファ回路は出力信号により別デバイスを
ドライブさせなければならないためトランジスタサイズ
も大きくなり、このため出力バッファ回路動作時の出力
充放電電流、貢通電流などにより大きなスイッチングノ
イズが発生する。 〔発明が解決しようとする課題] 従来のEPROMの出力バッファ回路は以上のように構
成されていたので、アドレス変化後の正しいデータをセ
ンスするまでの期間に無効データが出力され、これが出
力バッファ回路でのスイッチングノイズとなり、センス
アンプの安定動作をさまたげ、ざらにはアクセスタイム
を遅らせてるという問題点を有していた。 この発明は上記のような問題点を解消するためになされ
たもので、アドレス変化後の出力バツフア四路でのスイ
ッチングノイズを砿少させ、安定した動作のaI能なE
PROMの出力バッファ回路を得ることを目的とする。 〔課題を解決するための手段] この発明に係るE P ROMの出力バッファ回路は出
力端子と電源間のMOSFETを2分割して第1及び第
2のMOSFETとし、出力端子と接地間のMOSFE
Tも2沖割して第3及び第4のMOSFETとし、アド
レス変化後のセンスアンプ動作期間は分割された1方の
MOSFETのみを動作させ、センスアンプによるデー
タ判定後は分割5れた両方のMOSFETを動作させる
ようにしたものである。
(*Field of industrial application) This invention relates to an output buffer circuit for a semiconductor integrated circuit and a T device. [Prior art] Fig. 4 is a circuit diagram of an output buffer circuit for a conventional semiconductor integrated circuit device. , In the figure, (1) is the output terminal and the voltage !+1
P channel/I/MOSFE connected to 1 (Vcc)
T, (3) is an N-channel MO8FET connected between the output terminal and ground (GND), (5) is a P-channel MO
NAND game that drives 8FET11)), +7)
is a NOR gate that drives the N-channel MO8FET 13). Next, the operation will be explained using an EPROM. For normal reading of EFROM, Vcc = 5V and the output control signals oe and oe double signals are 'H' and 'H', respectively.
When the internal data signal is low, the output of the NAND gate (5) becomes 4L#, and the output of the NOR gate (7) also becomes 4L#, so the P-channel MO8FET11) becomes conductive and the N-channel MO8FET13) becomes non-conductive and sand appears at the output terminal. Also, when the internal data signal is 41L#, the output of the NAND gate (5) becomes city,
Since the output of the NOR gate (7) also becomes 1W, the P-channel MO8FET 11) becomes non-conductive, and the N-channel MO8FET 11) becomes non-conductive.
3FET+31 becomes conductive and %L# appears at the output terminal. When the output control signals oe and oe are respectively 4L#♂W, the internal data signal is 'H#,
In either 'L', the output of the NAND gate (5) is 'Uta'
, the output of NOR gate (7) is 4L#, so P channel MO8FET II) and N channel MO8FET1
31 are both non-conductive, and the output terminal is in a floating state, that is, a high impedance state. The EPROM has 8 or 16 of the above-mentioned output buffer circuits, and all output buffer circuits must operate stably and at high speed during normal Vcc=5V operation. Also, the internal data signal is a signal of 'L' and 'F(' determined by the sense amplifier, but invalid data is output during the period until the sense amplifier senses and outputs the correct data when the address changes. This became a noise source in the output puff 71 circuit.Since the sense amplifier is configured to detect minute fluctuations in potential in order to achieve high-speed operation, there is a risk of malfunction due to noise. Moreover, since the output buffer circuit has to drive another device with the output signal, the transistor size becomes large, and this causes large switching noise due to the output charging/discharging current, contribution current, etc. when the output buffer circuit is operating. [Problems to be Solved by the Invention] Since the output buffer circuit of a conventional EPROM is configured as described above, invalid data is output during the period after an address change until correct data is sensed, and this is output to the output buffer. This has the problem of causing switching noise in the circuit, interfering with the stable operation of the sense amplifier, and generally delaying the access time.This invention was made to solve the above problems. , reduces switching noise in the output buffer 4-way after address change, and provides stable operation.
The purpose is to obtain an output buffer circuit for PROM. [Means for Solving the Problems] The output buffer circuit of the EP ROM according to the present invention divides the MOSFET between the output terminal and the power supply into two to form a first and second MOSFET, and divides the MOSFET between the output terminal and the ground into two.
T is also divided by 2 to make the third and fourth MOSFETs, and during the sense amplifier operation period after the address change, only one of the divided MOSFETs is operated, and after data judgment by the sense amplifier, both of the divided 5 MOSFETs are operated. It is designed to operate a MOSFET.

【作用】[Effect]

この発明における出力バッファ回路は、アドレス変化後
のセンスアンプ動作期間時には出力バッファのサイズを
手分にすることによって能力を参減させ、出力バッファ
におけるスイッチングノイズを軽減する。 〔実施例1 以ド、この発明の一実施例を図について説明する。第1
図において、11)及び(2)は出力端子と電源(Vc
c)間に接続された第1及び第2のMOSFET、+3
:及び+4)は出力端子と接地(GND)間に接続され
た第3及び第4のMOSFET、15) 、 16)は
それぞれMO8FET11)および(2)を駆動するN
ANDゲート、17) 、 +81はそれぞれMO3F
ET131 、143を@劫するNORゲートで路の出
力である。また、第2図は第1図におけるATDT路と
アドレスバッファ部の一実施例を示す回路図で、図中、
Aiは外部アドレス信号、ce はチップイネーブル信
号、at、aiは内部アドレス信号、ATDT路は内部
アドレス信号atを入力信号とし、atd 、 atd
を出力信号としている。 次に動作について説明する。 第2図に示すATDT路は外部アドレス信号Aiの入力
により、第3図に示す様なatd 、 atd信号を出
力する。すなわち、外部アドレス信号Aiの変化後at
d信号は時tvUTだけ市を出力し、atd信号は時間
Tだけ1L#を出力する。ここで時間Tはセンスアンプ
の動作期間である。 以上より第1図において通常の読み出し時、すなわらo
e 、 oe倍信号それぞれ’)F 、 ’L’の時、
71’レス信号変化後の時間Tのllj atd信号は
M?、atd信号は1L#となるので、NANDゲート
(6)は内部データ信号が市、 ’L”のいずれでも出
力は一〇となり、第2のMOSFETは常に非導通とな
る。同様に、NORゲート(8)は内部データ信号が°
’H’ 、 ’L”のいずれでも出力はwL、#となり
、第4のMOSFETは常に非導通となる。一方、at
d 、 atd信号が入力していないNANDゲート(
5)、NORゲート(7)はそれぞれ′″L#を出力し
、第1のMOSFETIIIは導通し、第3のMOS 
F ET(3)は非導4となり、内部da ta信号が
4L′の時は、NANDゲート(5)、NORゲート(
7)はそれぞれ■′を出力し、@1のMOSFETII
)は非導通、第3のMOSFET(3)は導通となる。 このため時間Tの間に壌効データによる出力バッファ回
路の動作は第1及び第3のMOSFETでしか行なわれ
ずこのため出力バッファ回路におけるスイッチングノイ
ズの発生は従来の$沖となる。 また1時間T以後はatd信号は’L’、atd信号は
jFとなるので、NANDゲート+6)はNANDゲー
ト(5)と同一信号を出力し、NORゲート(8)はN
ORゲート(7)と同一信号を出力する。すなわち、内
部data信号が″)Pの時は第1及び第2のMOSF
ETIII 、 t2+が共に導通となり、第3及び第
4のMOSFET13) 、 +41が共に非導通とな
り出力端子には■tが現われる。内部data信号が4
L#の時は第1及び第2のMOSFETIII 、 1
21が共に非導1勇となり、第3及び第4のMo5pE
Tt3+ 。 14)が共に導通となり出力端子には4L夕が現れる。 以上の様に、センスアンプの動作開開である時+4 T
の間はMOSFETが手分しか動作していないので、出
力バッファ回路によるスイッチングノイズが軽減でき、
センスアンプの動作が安定化されアクセスタイムの遅れ
も防止できる。 なお、上記実施例ではEDROMの出力バッファ回路の
スイッチングノイズの場合について述べたが、この発明
は池のか導体楽壇回路装置においても同様の効果を奏す
る。 〔発明の効果) 以上のようにこの発明によれは、アドレス変化後のセン
スアンプ動作期間の出力バッファ回路の能力を手分にし
て行うようにしたので、出力バッファ回路でのスイッチ
ングノイズを軽減でき、安定した読み出し動作が可能な
EDROMが得られる効果がある。
The output buffer circuit according to the present invention reduces the capacity by adjusting the size of the output buffer during the sense amplifier operation period after an address change, thereby reducing switching noise in the output buffer. [Embodiment 1] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1st
In the figure, 11) and (2) are the output terminal and the power supply (Vc
c) first and second MOSFETs connected between +3
: and +4) are the third and fourth MOSFETs connected between the output terminal and ground (GND), 15) and 16) are the N MOSFETs that drive MO8FETs 11) and (2), respectively.
AND gate, 17) and +81 are each MO3F
This is the output of the NOR gate that connects ET131 and ET143. FIG. 2 is a circuit diagram showing an embodiment of the ATDT path and address buffer section in FIG.
Ai is an external address signal, ce is a chip enable signal, at, ai are internal address signals, the ATDT path uses the internal address signal at as an input signal, atd, atd
is used as the output signal. Next, the operation will be explained. The ATDT path shown in FIG. 2 outputs atd and atd signals as shown in FIG. 3 in response to input of an external address signal Ai. That is, after the external address signal Ai changes at
The d signal outputs the signal for the time tvUT, and the atd signal outputs 1L# for the time T. Here, time T is the operating period of the sense amplifier. From the above, in Figure 1, during normal readout, that is, o
When the e and oe double signals are ')F and 'L', respectively,
Is the llj atd signal at time T after the change in the 71' response signal M? , atd signal is 1L#, so the output of the NAND gate (6) is 10 whether the internal data signal is low or low, and the second MOSFET is always non-conductive. (8) is the internal data signal
In either 'H' or 'L', the output becomes wL, #, and the fourth MOSFET is always non-conducting.On the other hand, at
d, NAND gate to which atd signal is not input (
5), the NOR gates (7) each output '''L#, the first MOSFET III is conductive, and the third MOSFET
FET (3) becomes non-conductive 4, and when the internal data signal is 4L', NAND gate (5) and NOR gate (
7) outputs ■′ respectively, @1 MOSFET II
) is non-conductive, and the third MOSFET (3) is conductive. Therefore, during the time T, the operation of the output buffer circuit based on the output data is performed only in the first and third MOSFETs, and therefore, the generation of switching noise in the output buffer circuit is different from that in the conventional case. Also, after 1 hour T, the atd signal becomes 'L' and the atd signal becomes jF, so the NAND gate +6) outputs the same signal as the NAND gate (5), and the NOR gate (8) outputs the same signal as the NAND gate (5).
Outputs the same signal as OR gate (7). That is, when the internal data signal is ")P", the first and second MOSFs
Both ETIII and t2+ become conductive, and both the third and fourth MOSFETs 13) and +41 become non-conductive, and ■t appears at the output terminal. Internal data signal is 4
When L#, the first and second MOSFET III, 1
21 are both non-conducting 1 hero, 3rd and 4th Mo5pE
Tt3+. 14) are both conductive, and 4L appears at the output terminal. As mentioned above, when the sense amplifier is open/open, +4 T
During this period, the MOSFET is only active, so the switching noise caused by the output buffer circuit can be reduced.
The operation of the sense amplifier is stabilized and delays in access time can be prevented. In the above embodiment, the case of switching noise of an output buffer circuit of an EDROM has been described, but the present invention has similar effects in a conductive musical instrument circuit device. [Effects of the Invention] As described above, according to the present invention, switching noise in the output buffer circuit can be reduced because the capacity of the output buffer circuit is used during the sense amplifier operation period after an address change. This has the effect of providing an EDROM capable of stable read operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すや導体楽壇回路f!
冑の出力バッファ回路の回路図、第2図は第1図におけ
るATDT号を発生する回路ブロック図、第3図は第2
図の外部アドレス信号とatd 。 atd信号、データ出力の波形図、第4図は従来の半導
体集積回路装置の出力バッファ回路の回路図である。 図において、(1)は第1のMOSFET、 (2)は
第2のMOSFET、13)は第3 (7) MOSF
ET、14)は第4のMOSFET、 +5)と16)
はNANDゲー)+71と(8)はNORゲートを示す
。 なお、図中、同一符号は同一 Xは相当部分を示す。
FIG. 1 shows an embodiment of the present invention.A conductive musical instrument circuit f!
A circuit diagram of the output buffer circuit of the helmet, Figure 2 is a circuit block diagram that generates the ATDT signal in Figure 1, and Figure 3 is a circuit diagram of the circuit that generates the ATDT signal in Figure 1.
The external address signal and atd in the figure. A waveform diagram of the atd signal and data output. FIG. 4 is a circuit diagram of an output buffer circuit of a conventional semiconductor integrated circuit device. In the figure, (1) is the first MOSFET, (2) is the second MOSFET, and (13) is the third (7) MOSFET.
ET, 14) is the fourth MOSFET, +5) and 16)
is a NAND gate) +71 and (8) are a NOR gate. In addition, in the figures, the same reference numerals are the same, and X indicates corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] アドレス入力の変化を検出して所定の時間パルスを発生
するATD回路を有し、出力端子と電源間に接続された
第1及び第2のMOSFETからなる第1の出力バッフ
ァと、出力端子と電源間に接続された第3及び第4のM
OSFETからなる第2の出力バッファにおいて、上記
ATD回路はアドレス遷移(変化)検出後センスアンプ
におけるデータの判定時間だけ制御信号を出力し第2の
出力バッファを無効(非活性化)とし、前記制御信号の
出力後は第1及び第2の出力バッファを有効(活性化)
とすることを特徴とする半導体集積回路装置。
A first output buffer has an ATD circuit that detects a change in address input and generates a pulse for a predetermined time, and is made up of first and second MOSFETs connected between an output terminal and a power supply; the third and fourth M connected between
In the second output buffer made of an OSFET, the ATD circuit outputs a control signal for the data judgment time in the sense amplifier after detecting an address transition (change), invalidates (inactivates) the second output buffer, and After outputting the signal, enable (activate) the first and second output buffers.
A semiconductor integrated circuit device characterized by:
JP1167805A 1989-06-28 1989-06-28 Semiconductor integrated circuit device Pending JPH0334197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167805A JPH0334197A (en) 1989-06-28 1989-06-28 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167805A JPH0334197A (en) 1989-06-28 1989-06-28 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0334197A true JPH0334197A (en) 1991-02-14

Family

ID=15856437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167805A Pending JPH0334197A (en) 1989-06-28 1989-06-28 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0334197A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259997A (en) * 1991-02-15 1992-09-16 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JPH0554681A (en) * 1991-08-29 1993-03-05 Nec Ic Microcomput Syst Ltd Semiconductor memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259997A (en) * 1991-02-15 1992-09-16 Nec Ic Microcomput Syst Ltd Semiconductor integrated circuit
JPH0554681A (en) * 1991-08-29 1993-03-05 Nec Ic Microcomput Syst Ltd Semiconductor memory device

Similar Documents

Publication Publication Date Title
US4930067A (en) Microcomputer having a high-speed operation mode and a low-speed operation mode with intermittent disabling of sense amplifiers
KR950007449B1 (en) Output buffer circuit of memory
JPH06111575A (en) Semiconductor memory
JP2862744B2 (en) Data output buffer of semiconductor memory device
US4827454A (en) Semiconductor memory device
US20010043095A1 (en) Output circuit
JPH1174776A (en) Programmable impedance circuit
JP2001028192A (en) Flash memory device
KR0172345B1 (en) Data output control circuit of hyper page mode
US6339343B1 (en) Data I/O buffer control circuit
KR100400710B1 (en) Buffer circuit
JPH0334197A (en) Semiconductor integrated circuit device
EP1018745B1 (en) Improved driver circuit
JPH0766675B2 (en) Programmable ROM
EP0855719A1 (en) Semiconductor device
JPS6240800B2 (en)
JP3630847B2 (en) Latch circuit
KR960008138B1 (en) Output buffer circuit
KR940010673B1 (en) Low power data output buffer
JPS6242359B2 (en)
KR100431525B1 (en) Input Buffer Circuit in Semiconductor Memory Device
KR940008137B1 (en) Data output buffer
JPS62195780A (en) Semiconductor storage device
US7535774B2 (en) Circuit for generating an internal enabling signal for an output buffer of a memory
KR100370959B1 (en) Sense amplifier control circuit for eeprom