JPH0334127B2 - - Google Patents

Info

Publication number
JPH0334127B2
JPH0334127B2 JP58220540A JP22054083A JPH0334127B2 JP H0334127 B2 JPH0334127 B2 JP H0334127B2 JP 58220540 A JP58220540 A JP 58220540A JP 22054083 A JP22054083 A JP 22054083A JP H0334127 B2 JPH0334127 B2 JP H0334127B2
Authority
JP
Japan
Prior art keywords
film
magnetic recording
support
perpendicular magnetic
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58220540A
Other languages
Japanese (ja)
Other versions
JPS60113319A (en
Inventor
Masato Sugyama
Takashi Tomie
Yoshio Itakura
Hiroshi Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP22054083A priority Critical patent/JPS60113319A/en
Publication of JPS60113319A publication Critical patent/JPS60113319A/en
Publication of JPH0334127B2 publication Critical patent/JPH0334127B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 [利用分野] 本発明は、支持体の両面に垂直磁気記録層を設
けた薄膜型の垂直磁気記録媒体に関し、更に詳し
くは垂直磁気記録層を設けるに際し生産上のトラ
ブルが少い構成を有し、両面の特性がそろつたフ
レキシブルデイスクとして好適な垂直磁気記録媒
体に関する。 [従来技術及び問題点] 近年高密度磁気記録用媒体として、バインダー
を用いず、磁気記録層として金属薄膜を真空蒸着
やスパタリングの如く真空沈着法、又はメツキ法
によつて高分子フイルム上に形成して、この強磁
性金属薄膜を磁気記録層としたものが提案されれ
ている。例えばCoの蒸着テープ(特開昭54−
147010号公報)、Co−Cr合金からなる垂直磁化膜
(特公昭58−91号公報、特公昭58−10764号公報)
等が開示されている。このような蒸着、スパツタ
リング又はイオンプレーテイング等の薄膜形成手
段によつて形成される金属薄膜は、厚みが1.5μm
以下で、磁性層の厚みが3μm以上である従来の塗
布型記録媒体以上の性能が得られる。しかしなが
ら形成される金属薄膜厚さが薄い場合には非磁性
支持体の表面状態(表面凹凸)がそのまま磁性膜
の凹凸として発現し、スペーシングロスやドロツ
プアウトの原因となる欠点を有するとされてい
た。すなわち、再生出力値やエラー特性の観点よ
りは基板の表面状態ができるだけ平坦であること
が好ましい。 しかしながら安価なポリエステルフイルムを支
持体として用いたのでは、フイルムの表面粗さの
為に媒体とヘツドとのスペーシングロスが生じ再
生出力が大巾に低下することが判明した。フイル
ムの表面粗さの小さいフイルムを使用すればこの
ような問題は解決されるが、かかるフイルムは高
価であり又表面が平滑なために摩擦係数が大きい
のが普通である。そして、巻取り、移送等のハン
ドリング性、走行性の観点からは、磁気記録媒体
の非磁性支持体の表面は粗であることが要求さ
れ、磁気記録媒体は相反する問題を有していた。
すなわちフイルムの表面が平滑であるとフイルム
とフイルム相互の滑り性がわるくブロツキング現
象が生じる。またフイルムとロールとの滑り性が
悪いことから連続的にフイルムを巻き取りながら
磁気膜を形成しようとすると、磁気膜形成時にシ
ワ、キズ等の欠陥が生じる原因となることがわか
つた。したがつてこのようなフイルムを用いる場
合には枚葉で磁気膜を形成せざるを得ず生産性の
点で問題があつた。 以上述べたようにフイルムのハンドリングの観
点からフイルムの表面が適度に粗であることが要
求され、又電磁変換特性の観点からはできるだけ
表面がなめらかなフイルムを必要とした。本発明
者の1人は先にかかる問題を解決するものとし
て、特開昭57−113418号公報において、磁気記録
媒体の非磁性支持体として表面粗さ(CLA)と
表面の突起物の個数が特定の範囲ある非磁性支持
体を用いることを提案した。そして、この提案の
磁気記録媒体により、上述の問題は解決されたも
のの、場合により高密度記録時のS/N比が低下
したり、走行性が悪化し、実用化のためにより一
層の性能向上が必要な状況にあつた。これらの観
点より、両者の二律相反する要求を同時に満足す
る支持体として、ポリエステルフイルムに易滑コ
ーテイングしたフイルムが提案されている(特開
昭58−124620号公報)。かかるフイルムはとくに
磁気テープ用ベースフイルムとして用いられてい
る。すなわち支持ベースフイルムの片面のみに易
滑コーテイングを施し、この面を走行面とするこ
とによりフイルムハンドリング時の問題点は生じ
ず又平滑面に磁気記録層を設けることにより電磁
変換特性のすぐれた磁気テープとなしうる。 しかしながらかかるフイルムを用いてフレキシ
ブルデイスク用磁気記録媒体となす場合には表裏
の表面性が異るために両面に磁気記録層を設ける
と表裏で電磁変換特性とくに表裏の出力が異なる
という欠陥が生じ同一の記録再生装置を用いるた
めには種々の困難が生じていた。すなわちこのよ
うに表裏の特性の異るフレキシブルデイスクを用
いて記録再生を行うためには媒体とヘツドのイン
ターフエイスを同じにするためにヘツド、入出イ
ンピータンスをそれぞれの面にあわせて設計する
必要があり、装置が複雑かつ高価になるなどの問
題が生じ、実用的には問題があつた。したがつて
ポリエステルフイルムの片面のみに易滑コーテイ
ングしたフイルムを用いることは両面使用のフレ
キシブルデイスク用磁気記録媒体としては実際的
ではなかつた。 さらにかかるフイルムを用いて、両面に垂直磁
気記録層を設ける際には別の生産上の問題が生じ
ていた。通常垂直磁気記録層はスパツリング、蒸
着、イオンプレーテイングなど真空を用いた物理
的堆積法で同一真空槽内でポリエステルフイルム
の両面に連続的に形成される。かかる方法では、
フイルムは巻出し軸から巻取軸に移送される途中
において冷却ドラムあるいは冷却板に接して冷却
ドラムの回転とともに移動するか、あるいは冷却
板上をすべりつつ移動し、その間に物理的堆積法
によつて形成された粒子が真空中を飛来し、フイ
ルム上に堆積する。堆積中はスパタリング源、蒸
発源からの輻射熱あるいはプラズマからの熱を防
止するために冷却ドラム又は冷却板によりフイル
ムを冷却する。堆積される垂直磁気記録層の厚さ
は通常0.1〜1.5μ程度でありこのような厚さの薄
膜を形成するためにはフイルムは必然的にかなり
の熱を受ける。すなわちスパツタリングの場合に
は膜形成速度は通常0.01〜1μ/min程度であるた
め、粒子が飛来するプラズマ空間にフイルムが滞
留する時間は数10秒以上、通常1分以上必要であ
る。又蒸着、イオンプレーテイングの場合には膜
形成速度は0.1μ/min以上、通常は1μ/min以上
とスパタリングに比べて早いが、蒸発源からの輻
射熱が大きく、フイルムの受ける熱量はスパタリ
ングよりも大きい。このためフイルムは熱収縮、
熱膨張等の熱変形が生じる。熱変形は冷却ドラム
あるいは冷却板との相対移動をひきおこしシワ、
キズ等の原因となる。又ときには冷却ドラムある
いは冷却板との接触不良によるフイルムの溶断な
ど製膜上の問題を引き起すことがわかつた。この
ような問題は、フイルムの表面が粗で冷却ドラム
や冷却板とのすべり性がよい場合には、シワ等の
変形は冷却ドラムあるいは冷却板上をフイルムが
スムーズにすべる事により解消し、又キズ、スク
ラツチ等の問題も生じる事は少ない。 両面に垂直磁気記録層を設ける場合には必然的
にフイルムのいずれかの面が冷却ドラムに接する
ことになるため、フイルムの熱変形によるかかる
欠陥は片面のみを易滑塗工したフイルムを用いた
場合は避けることはできなかつた。 さらに両面のすべり性が異るフイルムを用いる
ことは、各ドラムあるいは冷却板の観点からも表
裏の特性が異るフイルムを支持体とする両面フレ
キシブルデイスク用垂直磁気記録媒体とはなしえ
なかつた。 [本発明の目的] 本発明はかかる現状に鑑みなされたもので、磁
気記録層製造時の支持体の走行性が表裏共に優
れ、且つ再生出力値の大きい表裏の特性の揃つた
両面フレキシブルデイスク用の磁気記録媒体を提
供することを目的とするものである。 [本発明の構成及び作用効果] 上述の目的は以下の本発明により達成される。
すなわち、本発明は、非磁性支持体の表裏両面に
磁性金属薄膜よりなる記録層を有する垂直磁気記
録媒体において、高分子フイルムの両面に滑剤を
分散せしめた塗膜を形成してなる支持体の両面に
それぞれ1.5μ以下の厚みの磁性体金属薄膜よりな
る垂直磁気記録層を形成したことを特徴とする垂
直磁気記録媒体であつて、好ましくは当該支持体
の両面の表面粗さ[CLA(単位μm)]が0.008μm
以上0.02μm以下の範囲にあり、さらに好ましく
は表面の突起物の突起高さh(単位μm)とその個
数N(単位ケ/mm2)が、0.27<h≦0.54のものが
N10,0.54<hのものがN0.2を満足するこ
とを特徴とするフレキシブルデイスクとして好適
な垂直磁気記録媒体である。 上述の本発明は以下のようにしてなされたもの
である。すなわち、垂直磁気記録媒体では膜面に
垂直方向に磁化記録されることから支持体の表面
粗さがその再生出力に大きく影響を与え、且つ磁
性体金属薄膜では前述の通り、支持体の表面特性
がそのまま記録層の表面の凹凸として発現し再生
出力に大きく影響を与える。ところが、種々検討
したところ、平滑な高分子フイルムに滑剤を分散
せしめた塗膜を形成した支持体では再生出力の低
下はそれ程大きくなく十分実用レベルにあること
が見出された。本発明はかかる知見に基づきなさ
れたものである。 両面共滑剤を分散せしめた塗膜を形成した高分
子フイルムを支持体としているので、フイルム自
体の表面は非常に平滑でも前述したフイルムの移
送、巻取り等の取扱い上の問題は全くなく、且つ
両面に設けた垂直磁気記録層の特性にも差がなく
その出力レベルも十分な垂直磁気記録媒体が得ら
れる。なお、垂直磁気記録層従つてそれを形成す
る磁性体金属薄膜の厚さは、前述したところより
1.5μm以下とする。その厚さが1.5μmを越えると
その表面特性が支持体の表面特性と相違してくる
場合があり、所望の再生特性が得られない場合が
ある。 ところで、支持体の表面粗さCLAが0.008μmよ
り小さくなると走行性が低下し、磁性体金属薄膜
の連続生産が困難となる一方、CLAが0.020μm以
上になると電磁変換特性が低下する。特に高密度
記録時に低下が大きい。従つて、表面のCLAは
0.008〜0.020μmの範囲にある必要があり、より好
ましくは、0.008〜0.015μmの範囲である。 また媒体表面の突起物は、再生出力の平均値
(エンベロープ)とは直接関係しないが、実用上
重要なドロツプアウト(D/O)と関係し、フレ
キシブルデイスク等のトラツク巾等で影響が異な
る。薄膜型でトラツク密度も高密度化するため、
基板の突起物は突起高さh(単位:μm)とその個
数N(個/m2)が下式 0.27<h0.54がN10 0.54<h がN0.2 を満足する必要がある。また、下式 0.27h<0.54がN5 0.54<h がN=0 を満足することが好ましい。なお、h<0.27以下
の微小突起はD/Oとは関係なく、CLAに含め
て評価してある。 また上述の本発明の支持体となる高分子フイル
ムには、ポリエチレン、ポリプロピレン等のポリ
オレフイン、ナイロン6等のポリアミド、ポリエ
チレンテレフタレート、ポリエチレン−2,6−
ナフタレート等のポリエステルその他の熱可塑性
樹脂フイルムが適用できる。中でも、ポリエチレ
ンテレフタレート、ポリエチレン−2,6−ナフ
タレートは、低コストで、寸法安定性、表面性、
耐熱性、機械的特性等に優れている点で好まし
い。 そして、本発明では上述の高分子フイルムに滑
り性を付与し、かつ表面粗さを調節して前述の支
持体を得るには、高分子フイルムの両面に水又は
溶剤に滑剤を分散せしめた溶液を塗布して行なわ
れる。溶液を塗布して、滑り性を付与する方法
は、従来公知のすべての方法が用いられる。例え
ば(滑剤+高分子系バインダー+界面活性剤)の
水系或いは溶剤系溶液をフイルム製膜時に塗布す
る等の方法が用いられる。 滑剤としてソルビタン等の有機滑剤、ポリテト
ラフルオロエチレン、ポリエチレン等の有機高分
子滑剤、アルミナ、カオリン、シリカ、硫化モリ
ブデン等の無機滑剤が挙げられる。 用いられる滑剤の平均粒径は滑り性付与の為に
は大きなものが必要であり、電磁変換特性の観点
よりは小さいものである必要があり、両者の兼合
いで決定される。通常は50〜5000Å程度のものが
使用され得るが、より好ましくは100〜1500Å程
度が良い。添加量は塗液に対して0.02〜2wt%の
範囲で用いるのが良い。 高分子系バインダーとしては共重合ポリウレタ
ン、ナイロン、メラミン等が挙げられる。特に、
例えばTi(CH2=CHCOO)4等の金属塩と水溶性
シリコン樹脂やポリビニルアルコール等の水溶性
又は水膨油性又は水分散性のフイルム形成高分子
化合物、その単量体又はこれらの混合物とを水溶
液又は水分散液としたものが好ましい。さらにフ
イルムとの濡れ性や塗液の分散性をよくする目的
で界面活性剤が好んで添加される。又、紫外線吸
収剤や帯電防止剤等を添加しても差しつかえな
い。 (滑剤+高分子バインダー+界面活性剤)を水
又は溶剤に分散した塗液をフイルム製膜時或いは
フイルム製膜後塗布し、乾燥して滑り性を付与し
た支持体を得ることができるが、塗布工程は、例
えば二軸配向ポリエチレンテレフタレートフイル
ムに塗布する時は溶融ポリエチレンテレフタレー
ト樹脂をエクストルーダーによりスリツトから押
出し未延伸フイルムとし、次いで一軸延伸そして
さらに二軸延伸する一連の連続したフイルム製造
工程の内にフイルムの流れを何ら乱すことなく行
うインラインコーテイング方法が工業上有利であ
る。特に好ましくは二軸延伸の直前に走行してい
るフイルムの両面に行うのが、得られる塗膜の形
態が多数の微小突起の集合体となり滑り性付与の
目的によい。そして、塗液に滑剤を含有せしめる
ことにより上述の塗膜の形態をより好ましい姿に
することができる。 なお、本発明の垂直磁気記録層としては、垂直
磁気記録ができる厚さ1.5μm以下の磁性金属連続
薄膜からなるものであれば良く多層膜構成であつ
ても良く、層間に接着層などの中間層を有するも
のであつても良い。また保護層を設けたものでも
良い。かかる目的に使用され塗膜(磁気記録層)
としては例えば特公昭58−91号公報等で公知の垂
直磁化膜があるが、中でも膜面に垂直方向に磁化
容易軸を発現されたCo−Crの合金膜と低保磁力
層との二層膜構成のものが再生面等から両面記録
媒体として好ましい。 なお、上述の記録層の金属薄膜の形成手段とし
ては、従来より公知の真空蒸着法、イオンプレー
テイング法、スパツタ法等の物理蒸着法、無電解
メツキ法が適用できる。中でもポリエステルを基
板とし、前述の垂直磁気記録層を形成して垂直磁
気記録媒体を得るには、低温膜形成が可能で、且
つ垂直異方性膜形成が安定にできるという点から
マグネトロン式スパツタ法あるいは特開昭57−
158380号公報等に開示の対向ターゲツト式スパツ
タ法が好ましい。 以下に表面性の測定法を示す。 1 CLA[センター・ライン・アベレツジ
(Center Line Average・中心線平均粗さ)]
JIS B 0601に準じ求めた。すなわち市販の触
針式表面粗さ計(例えば東京精密(株)社製
SURFCOM 30B)を用い、針径2μm針荷重
0.07g、カツトオフ0.25mm、測定長約2mmで
CLAを求めた。 2 表面突起物の突起高さ及び個数 媒体表面を可視単色光多重干渉顕微鏡[例え
ば、Carl Zeiss JENA社製タリウムランプ
(入=535nm)使用。]を用い100〜200倍程度で
写真撮影観察し、干渉稿より突起高さと個数を
求めた。通常は任意の10ケ所を撮り、1mm2当り
に換算した。 実施例、及び比較例1,2 ジメチルテレフタレート100重量部及びエチレ
ングリコール70重量部に触媒として酢酸亜鉛
0.023重量部(0.020モル%対ジメチルテレフタレ
ート)を加え、150〜240℃で4時間メタノールを
留去しつつエステル交換反応金行い、次いで安定
剤(燐化合物のグリコール溶液)を一旦常温まで
冷却後、トリメチルホスフエート換算で0.014重
量部添加する。次に、重縮合触媒として0.04重量
部の三酸化アンチモンを添加し、1mmHg以下の
高真空で4時間重縮合反応を行い[η]=0.65(O
−クロロフエノール溶液、25℃測定)のポリエチ
レンテレフタレートを得た。さらにこのポリエチ
レンテレフタレートを押し出しして厚さ650μmの
未延伸フイルムを作製し、縦方向に90℃で3.5倍、
横方向に100℃で4.0倍、逐次二軸延伸を行い、更
に205℃で30秒間熱固定を行い厚さ50μmの二軸延
伸フイルムを作成した。 なお、フイルムに、横延伸工程前に以下の組成
の塗液を、実施例では両面に、比較例1では片面
に塗布した。比較例2としては塗工しないフイル
ム(支持体)を用いた。塗液用組成物の組成は以
下の通りである。 ●アクリル酸アルミ(浅田化学K.K.商品名P−
3)30wt% …60重量部 ●ポリエチレングリコール(日本油脂製分子量
20000商品名PEG 200) …20重量部 ●ポリエチレングリコールジグリシジルエーテル
(長瀬産業製商品名 NEROIO) …10重量部 ●二硫化モリブデン …5重量部 ●非イオン性界面活性剤(NS 208.5)
…5重量部 以上の塗液用組成物を全固型分濃度が2重量%
となる様に水で希釈し塗液とした。塗布量はウエ
ツトで片面あたり4.1g/m2であり、固型分とし
て約0.0286g/m2である。 この様にして得られた支持体の滑り性は良好で
ブロツキングも発生せず良好に巻きとれた。 このようにして得られた実施例および比較例1
の支持体および比較例2の支持体の両面に低保
磁力パーマロイ層、続いて当該パーマロイ層に、
Co−Cr垂直磁化膜を連続スパタリング装置を
用いて連続的に以下の条件で形成した。 Mo−パーマロイ層:1mm厚のMo−パーマ
ロイターゲツト(Ni78%、Fe18%、Mo4%)
を使用し、DCマグネトロンスパツタ法で1×
10-2TorrのAr(99.99%)中で500Å/分の堆積
速度で0.4μm厚の膜を作製した。得られた膜の
面内方向の保磁力は支持体の表面の違いによら
ず約20e(エルステツド)であつた。 Co−Cr層:4mm厚のCo−Cr合金ターゲツト
(Cr17wt%)を使用し、DCマグネトロンスパ
ツタ法で1×10-2TorrのAr(99.99%)中で500
Å/分の堆積速度で0.3μm厚のCo−Cr合金膜
を得た。得られたCo−Cr垂直磁化膜のX線回
折のロツキングカーブより求めた六方最密結晶
格子のC軸の分散角(Δθ50:ロツキングカー
ブの半値巾)はいずれも5−6゜であり、磁気M
−Hカーブより求めた垂直方向の保磁力はいず
れも610〜660Oe(エルステツド)であり、面内
方向の保磁力はいずれも200〜250Oeであつた。
また飽和磁化は約450emu/c.c.であつた。これ
らの値は支持体の表面の違いにはよらず、一定
であつた。 しかしながら比較例1,2の支持体はスパタリ
ング中の支持体のすべりが悪く、冷却ロール上で
のシワが発生ししばしばスパタリングを中断せざ
るをえず、連続長尺媒体を得ることはできなかつ
た。さらに比較例2においてはスパタリング時に
支持体の溶断も発生した。 このようにして得られた垂直磁気記録媒体を5
1/4″のフロツピーデイスクとして、電磁変換特性
(デジタルの記録密度特性)およびシワ、キズ等
の外観を評価した。電磁変換特性の評価基準とし
ては、2KBPI記録再生時のS/N(db)比及び
2KBPI記録再生時の出力に対する50KBPI記録再
生時の出力の低下率により、高密度記録特性を評
価した。また得られた垂直記録媒体のきず、しわ
等の外観を目視で観察した。結果をまとめて表1
に示す。 以上の結果から本発明の垂直磁気記録媒体の
S/N(db)比は表裏が揃つて、シワ、キズ等の
欠陥が少いことが理解される。それに対し比較例
1においては表裏のS/N比の差が大きくかつ滑
剤を塗布しない面のきずが多く、また比較例2に
おいては表裏のS/N比は揃つておりかつ出力も
大きいがきずが表裏とも多くまたいずれの媒体も
シワが多くフレキシブルデイスク用磁気記録媒体
とはなしえない。また比較例においてはスパツタ
中の走行性も悪くとくに比較例2においては長尺
のスパタリングをすることはできなかつた。 【表】
Detailed Description of the Invention [Field of Application] The present invention relates to a thin film type perpendicular magnetic recording medium in which perpendicular magnetic recording layers are provided on both sides of a support, and more specifically, to solve problems in production when providing perpendicular magnetic recording layers. The present invention relates to a perpendicular magnetic recording medium suitable for use as a flexible disk, which has a structure with a small number of magnetic disks and has uniform characteristics on both sides. [Prior art and problems] In recent years, as a high-density magnetic recording medium, a metal thin film has been formed as a magnetic recording layer on a polymer film by a vacuum deposition method such as vacuum evaporation or sputtering, or a plating method without using a binder. Therefore, it has been proposed to use this ferromagnetic metal thin film as a magnetic recording layer. For example, Co vapor-deposited tape
147010), perpendicular magnetization film made of Co-Cr alloy (Japanese Patent Publication No. 58-91, Japanese Patent Publication No. 58-10764)
etc. are disclosed. The metal thin film formed by such thin film forming means such as vapor deposition, sputtering or ion plating has a thickness of 1.5 μm.
In the following, performance superior to conventional coated recording media in which the thickness of the magnetic layer is 3 μm or more can be obtained. However, if the thin metal film formed is thin, the surface condition (surface irregularities) of the non-magnetic support directly manifests as irregularities in the magnetic film, which has the disadvantage of causing spacing loss and dropouts. . That is, from the viewpoint of reproduction output value and error characteristics, it is preferable that the surface condition of the substrate be as flat as possible. However, it has been found that when an inexpensive polyester film is used as a support, the surface roughness of the film causes a spacing loss between the medium and the head, resulting in a significant reduction in the reproduction output. These problems can be solved by using a film with a small surface roughness, but such a film is expensive and usually has a large coefficient of friction due to its smooth surface. From the viewpoint of handling properties such as winding and transport, and running properties, the surface of the nonmagnetic support of a magnetic recording medium is required to be rough, and magnetic recording media have had contradictory problems.
In other words, if the surface of the film is smooth, the sliding properties between the films are poor and a blocking phenomenon occurs. It has also been found that if a magnetic film is formed while continuously winding the film because the slipperiness between the film and the roll is poor, defects such as wrinkles and scratches will occur during the formation of the magnetic film. Therefore, when using such a film, the magnetic film must be formed on a single sheet, which poses a problem in terms of productivity. As mentioned above, from the viewpoint of handling the film, it is required that the surface of the film be appropriately rough, and from the viewpoint of electromagnetic conversion characteristics, the film must have a surface as smooth as possible. One of the inventors of the present invention previously proposed in Japanese Patent Application Laid-Open No. 57-113418 that the surface roughness (CLA) and the number of protrusions on the surface of a non-magnetic support for a magnetic recording medium are It was proposed to use a certain range of non-magnetic supports. Although the above-mentioned problems were solved by this proposed magnetic recording medium, in some cases the S/N ratio during high-density recording decreased, the running performance deteriorated, and further performance improvements were required for practical use. I was in a situation where it was necessary. From these viewpoints, a polyester film coated with an easy-sliding coating has been proposed as a support that satisfies both contradictory requirements at the same time (Japanese Unexamined Patent Publication No. 124620/1983). Such films are particularly used as base films for magnetic tapes. In other words, by applying an easy-sliding coating to only one side of the support base film and using this surface as a running surface, problems during film handling will not occur, and by providing a magnetic recording layer on the smooth surface, a magnetic recording layer with excellent electromagnetic conversion characteristics can be created. Can be used as tape. However, when such a film is used to make a magnetic recording medium for a flexible disk, since the surface properties of the front and back sides are different, if a magnetic recording layer is provided on both sides, a defect occurs in that the electromagnetic conversion characteristics, especially the output of the front and back sides, are different. Various difficulties have arisen in using such recording and reproducing devices. In other words, in order to perform recording and playback using flexible disks with different characteristics on the front and back surfaces, it is necessary to design the head and input and output impedances to match each surface in order to make the interface between the medium and the head the same. However, there were problems in that the equipment became complicated and expensive, and there were problems in practical use. Therefore, it is not practical to use a polyester film coated with an easy-sliding coating on only one side as a magnetic recording medium for a double-sided flexible disk. Furthermore, when using such a film and providing perpendicular magnetic recording layers on both sides, another production problem has arisen. Normally, perpendicular magnetic recording layers are continuously formed on both sides of a polyester film in the same vacuum chamber by a physical deposition method using vacuum, such as sputtering, vapor deposition, or ion plating. In such a method,
During the transfer from the unwinding shaft to the winding shaft, the film comes into contact with a cooling drum or cooling plate and moves with the rotation of the cooling drum, or it moves while sliding on the cooling plate, during which time it is deposited by a physical deposition method. The particles thus formed fly through the vacuum and are deposited on the film. During deposition, the film is cooled by a cooling drum or plate to prevent radiant heat from the sputtering source, evaporation source, or heat from the plasma. The thickness of the perpendicular magnetic recording layer to be deposited is usually on the order of 0.1 to 1.5 microns, and in order to form a thin film of such thickness, the film is necessarily subjected to considerable heat. That is, in the case of sputtering, the film formation rate is usually about 0.01 to 1 μ/min, so the time the film stays in the plasma space where particles fly is required to be several tens of seconds or more, usually one minute or more. In addition, in the case of vapor deposition and ion plating, the film formation rate is 0.1 μ/min or more, usually 1 μ/min or more, which is faster than sputtering, but the radiant heat from the evaporation source is large, and the amount of heat received by the film is faster than sputtering. big. For this reason, the film undergoes heat shrinkage.
Thermal deformation such as thermal expansion occurs. Thermal deformation causes relative movement with the cooling drum or cooling plate, causing wrinkles,
This may cause scratches, etc. It has also been found that poor contact with the cooling drum or cooling plate sometimes causes problems in film formation, such as melting of the film. Such problems can be solved if the surface of the film is rough and has good sliding properties with the cooling drum or cooling plate, and deformation such as wrinkles can be solved by the film sliding smoothly on the cooling drum or cooling plate. Problems such as scratches and scratches rarely occur. When a perpendicular magnetic recording layer is provided on both sides, one side of the film will inevitably come into contact with the cooling drum, so such defects due to thermal deformation of the film can be avoided by using a film coated with easy slip coating on only one side. It was unavoidable. Furthermore, using films with different sliding properties on both sides cannot be used as a perpendicular magnetic recording medium for double-sided flexible disks in which films with different properties on the front and back sides are used as a support from the viewpoint of each drum or cooling plate. [Object of the present invention] The present invention was made in view of the current situation, and provides a double-sided flexible disk in which the running properties of the support during the production of the magnetic recording layer are excellent on both the front and back sides, and the characteristics of the front and back sides are uniform and the reproduction output value is large. The purpose of this invention is to provide a magnetic recording medium. [Configuration and effects of the present invention] The above objects are achieved by the present invention as described below.
That is, the present invention relates to a perpendicular magnetic recording medium having recording layers made of magnetic metal thin films on both the front and back sides of a non-magnetic support, in which a support is formed by forming a coating film in which a lubricant is dispersed on both sides of a polymer film. A perpendicular magnetic recording medium characterized in that a perpendicular magnetic recording layer made of a magnetic metal thin film with a thickness of 1.5 μm or less is formed on each side of the support, and preferably has a surface roughness [CLA (unit: μm)] is 0.008μm
It is in the range of 0.02 μm or less, and more preferably, the height h (unit: μm) of the protrusions on the surface and the number N (unit: ke/mm 2 ) of the protrusions on the surface are 0.27<h≦0.54, N10, 0.54< This is a perpendicular magnetic recording medium suitable as a flexible disk, characterized in that h satisfies N0.2. The above-mentioned present invention was made as follows. In other words, in perpendicular magnetic recording media, since magnetization is recorded in the direction perpendicular to the film surface, the surface roughness of the support greatly affects the reproduction output, and as mentioned above, in the case of magnetic metal thin films, the surface characteristics of the support This directly appears as unevenness on the surface of the recording layer, which greatly affects the reproduction output. However, after various studies, it was found that the reduction in reproduction output is not so large and is at a sufficiently practical level when a support is formed by forming a coating film in which a lubricant is dispersed in a smooth polymer film. The present invention has been made based on this knowledge. Since the support is a polymer film on which a coating film with a lubricant dispersed on both sides is formed, even though the surface of the film itself is very smooth, there are no problems in handling such as transporting or winding the film as described above. A perpendicular magnetic recording medium with no difference in the characteristics of the perpendicular magnetic recording layers provided on both sides and a sufficient output level can be obtained. Note that the thickness of the perpendicular magnetic recording layer and the magnetic metal thin film that forms it are determined as described above.
It should be 1.5μm or less. If the thickness exceeds 1.5 μm, its surface characteristics may differ from those of the support, and desired reproduction characteristics may not be obtained. By the way, when the surface roughness CLA of the support is less than 0.008 μm, the runnability decreases, making continuous production of magnetic metal thin films difficult, while when the CLA is 0.020 μm or more, the electromagnetic conversion characteristics deteriorate. The decrease is particularly large during high-density recording. Therefore, the surface CLA is
It needs to be in the range of 0.008 to 0.020 μm, more preferably in the range of 0.008 to 0.015 μm. Further, protrusions on the surface of the medium are not directly related to the average value (envelope) of the reproduction output, but are related to dropout (D/O), which is important in practice, and the influence differs depending on the track width of a flexible disk or the like. Because it is a thin film type and has a high track density,
For the protrusions on the substrate, the protrusion height h (unit: μm) and the number N (pieces/m 2 ) of the protrusions must satisfy the following formula: 0.27<h0.54 is N10 0.54<h is N0.2. Further, it is preferable that the following formula 0.27h<0.54 satisfies N5 0.54<h N=0. Note that microprotrusions with h<0.27 or less are included in CLA and evaluated regardless of D/O. In addition, the polymer film serving as the support of the present invention mentioned above includes polyolefins such as polyethylene and polypropylene, polyamides such as nylon 6, polyethylene terephthalate, polyethylene-2,6-
Polyester and other thermoplastic resin films such as naphthalate can be used. Among them, polyethylene terephthalate and polyethylene-2,6-naphthalate are low cost and have good dimensional stability, surface properties,
It is preferable because it has excellent heat resistance, mechanical properties, etc. In the present invention, in order to impart slipperiness to the polymer film and adjust the surface roughness to obtain the support described above, a solution in which a lubricant is dispersed in water or a solvent is applied to both surfaces of the polymer film. This is done by applying. All conventionally known methods can be used to impart slipperiness by applying a solution. For example, a method may be used in which an aqueous or solvent solution of (lubricant + polymeric binder + surfactant) is applied during film formation. Examples of the lubricant include organic lubricants such as sorbitan, organic polymer lubricants such as polytetrafluoroethylene and polyethylene, and inorganic lubricants such as alumina, kaolin, silica, and molybdenum sulfide. The average particle size of the lubricant used needs to be large in order to impart slipperiness, but needs to be small from the viewpoint of electromagnetic conversion characteristics, and is determined by taking both factors into account. Generally, a thickness of about 50 to 5000 Å can be used, and more preferably a thickness of about 100 to 1500 Å. The amount added is preferably in the range of 0.02 to 2 wt% relative to the coating liquid. Examples of the polymeric binder include copolyurethane, nylon, and melamine. especially,
For example, a metal salt such as Ti(CH 2 =CHCOO) 4 and a water-soluble, water-swollen, oily or water-dispersible film-forming polymer compound such as a water-soluble silicone resin or polyvinyl alcohol, a monomer thereof, or a mixture thereof. An aqueous solution or aqueous dispersion is preferred. Further, a surfactant is preferably added for the purpose of improving the wettability with the film and the dispersibility of the coating liquid. Further, there is no problem in adding ultraviolet absorbers, antistatic agents, etc. A coating liquid in which (lubricant + polymeric binder + surfactant) is dispersed in water or a solvent can be applied during or after film formation, and dried to obtain a support with slipperiness. For example, when coating a biaxially oriented polyethylene terephthalate film, the coating process is one of a series of continuous film manufacturing processes in which molten polyethylene terephthalate resin is extruded through a slit using an extruder to form an unstretched film, then uniaxially stretched, and then biaxially stretched. An in-line coating method that can be carried out without disturbing the flow of the film is industrially advantageous. Particularly preferably, the coating is applied to both surfaces of the running film immediately before biaxial stretching, since the resulting coating film is an aggregate of many microprotrusions, which is good for the purpose of imparting slipperiness. Further, by incorporating a lubricant into the coating liquid, the form of the coating film described above can be made more preferable. The perpendicular magnetic recording layer of the present invention may be any layer made of a continuous thin film of magnetic metal with a thickness of 1.5 μm or less that enables perpendicular magnetic recording, and may have a multilayer structure, with an intermediate layer such as an adhesive layer between the layers. It may have layers. Alternatively, a protective layer may be provided. Coating film (magnetic recording layer) used for such purpose
For example, there is a perpendicularly magnetized film known in Japanese Patent Publication No. 1983-91, among others, a double layer consisting of a Co-Cr alloy film with an axis of easy magnetization perpendicular to the film surface and a low coercive force layer. A film structure is preferable as a double-sided recording medium from the viewpoint of reproduction surface and the like. As a means for forming the metal thin film of the recording layer, conventionally known vacuum evaporation methods, ion plating methods, physical vapor deposition methods such as sputtering methods, and electroless plating methods can be applied. Among them, the magnetron sputtering method is used to form the above-mentioned perpendicular magnetic recording layer on a polyester substrate to obtain a perpendicular magnetic recording medium, since it is possible to form a film at a low temperature and to form a perpendicularly anisotropic film stably. Or JP-A-57-
The opposed target sputtering method disclosed in Publication No. 158380 and the like is preferred. The method for measuring surface properties is shown below. 1 CLA [Center Line Average (Center Line Average)]
Obtained according to JIS B 0601. In other words, a commercially available stylus type surface roughness meter (for example, manufactured by Tokyo Seimitsu Co., Ltd.)
SURFCOM 30B), needle diameter 2μm needle load
0.07g, cutoff 0.25mm, measuring length approximately 2mm.
Asked for CLA. 2. Protrusion height and number of surface protrusions: Observe the medium surface using a visible monochromatic light multiple interference microscope [for example, using a thallium lamp (input = 535 nm) manufactured by Carl Zeiss JENA. ] was used to photograph and observe at a magnification of 100 to 200 times, and the height and number of protrusions were determined from the interference draft. Usually, 10 arbitrary locations were photographed and converted to 1mm2 . Examples and Comparative Examples 1 and 2 Zinc acetate was added as a catalyst to 100 parts by weight of dimethyl terephthalate and 70 parts by weight of ethylene glycol.
Adding 0.023 parts by weight (0.020 mol% to dimethyl terephthalate), transesterification was carried out at 150 to 240°C for 4 hours while distilling methanol off, and then the stabilizer (glycol solution of phosphorus compound) was cooled once to room temperature. Add 0.014 parts by weight in terms of trimethyl phosphate. Next, 0.04 parts by weight of antimony trioxide was added as a polycondensation catalyst, and the polycondensation reaction was carried out for 4 hours in a high vacuum of 1 mmHg or less [η] = 0.65 (O
- chlorophenol solution, measured at 25°C) of polyethylene terephthalate was obtained. Furthermore, this polyethylene terephthalate was extruded to produce an unstretched film with a thickness of 650 μm, and the film was stretched 3.5 times in the longitudinal direction at 90°C.
Biaxial stretching was performed in the transverse direction by a factor of 4.0 at 100°C, followed by heat setting at 205°C for 30 seconds to create a biaxially stretched film with a thickness of 50 μm. A coating liquid having the following composition was applied to both sides of the film in Examples and to one side of Comparative Example 1 before the transverse stretching step. As Comparative Example 2, an uncoated film (support) was used. The composition of the coating liquid composition is as follows. ●Aluminum acrylate (Asada Chemical KK product name P-
3) 30wt%...60 parts by weight ●Polyethylene glycol (Molecular weight manufactured by NOF
20000Product name PEG 200)...20 parts by weight●Polyethylene glycol diglycidyl ether (trade name NEROIO, manufactured by Nagase Sangyo)...10 parts by weight●Molybdenum disulfide...5 parts by weight●Nonionic surfactant (NS 208.5)
...5 parts by weight or more of a coating composition with a total solids concentration of 2% by weight
It was diluted with water to make a coating solution. The coating amount was 4.1 g/m 2 per side in wet form, and about 0.0286 g/m 2 in solid content. The support obtained in this way had good slipperiness and could be wound up well without any blocking. Examples and Comparative Example 1 thus obtained
A low coercive force permalloy layer was applied to both sides of the support of Comparative Example 2 and the support of Comparative Example 2, and then the permalloy layer was coated with a low coercivity permalloy layer.
A Co--Cr perpendicular magnetization film was continuously formed using a continuous sputtering device under the following conditions. Mo-permalloy layer: 1mm thick Mo-permalloy target (Ni78%, Fe18%, Mo4%)
using the DC magnetron sputtering method.
A 0.4 μm thick film was prepared at a deposition rate of 500 Å/min in Ar (99.99%) at 10 −2 Torr. The coercive force in the in-plane direction of the obtained film was about 20e (Oersted) regardless of the difference in the surface of the support. Co-Cr layer: A 4 mm thick Co-Cr alloy target (Cr17wt%) was used, and a
A 0.3 μm thick Co-Cr alloy film was obtained at a deposition rate of Å/min. The C-axis dispersion angle (Δθ50: half-width of the rocking curve) of the hexagonal close-packed crystal lattice determined from the X-ray diffraction rocking curve of the obtained Co-Cr perpendicularly magnetized film was 5-6°. , magnetic M
The coercive force in the vertical direction determined from the -H curve was 610 to 660 Oe (Oersted), and the coercive force in the in-plane direction was 200 to 250 Oe.
The saturation magnetization was approximately 450 emu/cc. These values were constant regardless of the difference in the surface of the support. However, the supports of Comparative Examples 1 and 2 had poor slippage during sputtering, causing wrinkles on the cooling roll, and sputtering had to be frequently interrupted, making it impossible to obtain a continuous long medium. . Furthermore, in Comparative Example 2, the support was fused and cut during sputtering. The perpendicular magnetic recording medium obtained in this way was
As a 1/4" floppy disk, we evaluated the electromagnetic conversion characteristics (digital recording density characteristics) and the appearance of wrinkles, scratches, etc.The evaluation criteria for the electromagnetic conversion characteristics were the S/N (db ) ratio and
High-density recording characteristics were evaluated based on the rate of decrease in output during 50 KBPI recording and reproducing relative to the output during 2 KBPI recording and reproducing. In addition, the appearance of the obtained perpendicular recording medium, such as scratches and wrinkles, was visually observed. Table 1 summarizes the results.
Shown below. From the above results, it is understood that the S/N (db) ratio of the perpendicular magnetic recording medium of the present invention is the same on both sides, and there are few defects such as wrinkles and scratches. On the other hand, in Comparative Example 1, the difference in S/N ratio between the front and back sides is large and there are many flaws on the surface to which lubricant is not applied, and in Comparative Example 2, the S/N ratio between the front and back sides is the same and the output is large, but there are many flaws. There are many wrinkles on both the front and back sides, and both media have many wrinkles and cannot be used as magnetic recording media for flexible disks. Furthermore, in the comparative examples, the runability during sputtering was poor, and in particular, in comparative example 2, it was not possible to perform long sputtering. 【table】

Claims (1)

【特許請求の範囲】 1 高分子フイルムの両面に滑剤を分散せしめた
塗膜を形成してなる支持体の両面にそれぞれ1.5μ
以下の厚みの磁性体金属薄膜よりなる垂直磁気記
録層を形成したことを特徴とする垂直磁気記録媒
体。 2 当該支持体の表面粗さ[CLA(単位μm)]が
0.008μm以上0.02μm以下の範囲にある特許請求の
範囲第1項記載の垂直磁気記録媒体。 3 当該支持体の表面の突起物の突起高さh(単
位μm)とその個数N(単位個/mm2)が以下の式 0.27<h≦0.54でN10 0.54<hで N0.2 の条件を満たす特許請求の範囲第2項記載の垂直
磁気記録媒体。
[Claims] 1. 1.5 μm on each side of a support formed by forming a coating film with a lubricant dispersed on both sides of a polymer film.
A perpendicular magnetic recording medium comprising a perpendicular magnetic recording layer made of a magnetic metal thin film having the following thickness: 2 The surface roughness [CLA (unit: μm)] of the support is
The perpendicular magnetic recording medium according to claim 1, wherein the perpendicular magnetic recording medium has a diameter of 0.008 μm or more and 0.02 μm or less. 3 The height h (unit: μm) of the protrusions on the surface of the support and the number N (unit: pieces/mm 2 ) of the protrusions are as follows: 0.27<h≦0.54, N10; 0.54<h, N0.2. A perpendicular magnetic recording medium according to claim 2 which satisfies the scope of claim 2.
JP22054083A 1983-11-25 1983-11-25 Vertical magnetic recording medium Granted JPS60113319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22054083A JPS60113319A (en) 1983-11-25 1983-11-25 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22054083A JPS60113319A (en) 1983-11-25 1983-11-25 Vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60113319A JPS60113319A (en) 1985-06-19
JPH0334127B2 true JPH0334127B2 (en) 1991-05-21

Family

ID=16752588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22054083A Granted JPS60113319A (en) 1983-11-25 1983-11-25 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS60113319A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265227A (en) * 1985-09-18 1987-03-24 Teijin Ltd Medium for vertical magnetic recording
JPS62109216A (en) * 1985-11-07 1987-05-20 Teijin Ltd Medium for vertical magnetic recording
JPS62124926A (en) * 1985-11-27 1987-06-06 Teijin Ltd Polyester film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113418A (en) * 1981-01-05 1982-07-14 Teijin Ltd Magnetic recording medium
JPS57157511A (en) * 1981-03-24 1982-09-29 Teijin Ltd Opposite target type sputtering device
JPS58124620A (en) * 1982-01-20 1983-07-25 Teijin Ltd Preparation of easy slidable biaxially stretched polyester film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113418A (en) * 1981-01-05 1982-07-14 Teijin Ltd Magnetic recording medium
JPS57157511A (en) * 1981-03-24 1982-09-29 Teijin Ltd Opposite target type sputtering device
JPS58124620A (en) * 1982-01-20 1983-07-25 Teijin Ltd Preparation of easy slidable biaxially stretched polyester film

Also Published As

Publication number Publication date
JPS60113319A (en) 1985-06-19

Similar Documents

Publication Publication Date Title
US4505966A (en) Magnetic recording medium
JPH0347191B2 (en)
US5976668A (en) Base film for magnetic recording medium and magnetic recording medium using same
JPH0328732B2 (en)
JPH0334127B2 (en)
US5431983A (en) Magnetic recording tape comprising a polyethylene-2,6-napthalate substrate, magnetic metal thin film, and a backcoat layer
JPH0130225B2 (en)
JPH0152815B2 (en)
JPS6079518A (en) Magnitic recording medium
JPH0680525B2 (en) Magnetic recording tape
JPH0477375B2 (en)
JPH0152816B2 (en)
JPS6050728A (en) Magnetic recording medium
JP2659016B2 (en) Magnetic recording media
EP0510893B1 (en) Magnetic recording tape
JPH0377575B2 (en)
JPH0513324B2 (en)
JPS60113315A (en) Magnetic recording medium
JPH0561684B2 (en)
JPS6079519A (en) Magnetic recording medium
JPH0357532B2 (en)
JPS62121926A (en) Magnetic recording medium and its production
JPS61246915A (en) Magnetic recording medium
JPS61239423A (en) Magnetic recording medium
JP2002216340A (en) Magnetic recording medium