JPH0334021B2 - - Google Patents

Info

Publication number
JPH0334021B2
JPH0334021B2 JP58129164A JP12916483A JPH0334021B2 JP H0334021 B2 JPH0334021 B2 JP H0334021B2 JP 58129164 A JP58129164 A JP 58129164A JP 12916483 A JP12916483 A JP 12916483A JP H0334021 B2 JPH0334021 B2 JP H0334021B2
Authority
JP
Japan
Prior art keywords
glass fibers
defects
glass fiber
microwave
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58129164A
Other languages
Japanese (ja)
Other versions
JPS6020138A (en
Inventor
Susumu Tabata
Tomoatsu Sato
Ryoji Shida
Chokichiro Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP12916483A priority Critical patent/JPS6020138A/en
Publication of JPS6020138A publication Critical patent/JPS6020138A/en
Publication of JPH0334021B2 publication Critical patent/JPH0334021B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、織布(クロス)形態のガラス繊維
の欠陥を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting defects in glass fibers in the form of woven fabric (cloth).

ガラス繊維には、異物のガラス戦域への混入も
しくはその表面への付着、ガラス繊維の太さもし
くは厚みの変動、またはガラス繊維の汚れ等の欠
陥が発生する。
Defects occur in glass fibers, such as foreign matter entering the glass field or adhering to its surface, variations in the thickness or thickness of the glass fibers, or contamination of the glass fibers.

〔従来の技術〕[Conventional technology]

ガラス繊維の欠陥の種類をその原因について分
類すると、次のものがある。
The types of glass fiber defects can be classified into the following types based on their causes:

1つはガラスの単繊維(フイラメント)への異
物の混入又は付着によるもので、その原材料中へ
の金属等の導電性異物等の混入或いはガラスの未
溶融片の混入等によつて起こる。他の1つはガラ
ス繊維の太さもしくは厚みの変動、または糸む
ら、織りむらで、製造工程の諸条件によつて起こ
る。さらに他の1つはガラス繊維の汚れで、製造
工程中に、水、油、ほこり等が付着して起こる。
One is due to the mixing or adhesion of foreign matter to the single glass fiber (filament), which is caused by the mixing of conductive foreign matter such as metal into the raw material or the mixing of unmelted pieces of glass. The other problem is variations in the thickness or thickness of the glass fibers, uneven threads, and uneven weaving, which are caused by various conditions of the manufacturing process. Another type of stain is glass fiber contamination, which occurs when water, oil, dust, etc. adhere to the glass fiber during the manufacturing process.

このようなガラス繊維の欠陥は商品価値を著し
く低下させる。具体的には、例えば導電性異物の
混入は、電気絶縁体として用いるガラス繊維の品
質を悪くする。それゆえガラス繊維の欠陥を検出
し、それが生じる原因を究明して品質管理を十分
に行うことが要求される。
Such defects in glass fibers significantly reduce commercial value. Specifically, for example, the contamination of conductive foreign matter deteriorates the quality of glass fiber used as an electrical insulator. Therefore, it is required to detect defects in glass fibers, investigate the cause of their occurrence, and perform sufficient quality control.

しかしながら、ガラス繊維は微細な形状を持つ
ものであり、その検査は困難である。従来は主と
して肉眼による方法が用いられていたが、単繊維
(フイラメント)又は糸(ストランド)の状態で
は数量的に抜き取り検査しかできず、特に金属等
の導電性異物のように1〜8μと極めて微小な異
物が混入した場合にはその検出は不可能で完全な
検査ができない。また織布(クロス)の状態で
は、肉眼による方法では多大な検査時間を要し、
熟練や勘に頼る検査となり、やはり完全な検査が
期し難い。
However, glass fibers have minute shapes, and inspection thereof is difficult. Conventionally, the method using the naked eye was mainly used, but in the state of single fibers (filaments) or threads (strands), it was only possible to perform quantitative sampling inspections, and in particular conductive foreign substances such as metals, which were extremely small (1 to 8μ), could be inspected. If minute foreign matter is mixed in, it is impossible to detect it and a complete inspection cannot be performed. In addition, in the state of woven fabric (cloth), it takes a lot of time to inspect using the naked eye method.
The test relies on skill and intuition, and it is difficult to expect a perfect test.

この発明の目的は、したがつて、ガラス繊維の
欠陥、特に肉眼による検出が不可能な欠陥をも、
自動的にかつ高速に検出できる方法を提供するこ
とである。
It is therefore an object of the invention to also detect defects in glass fibers, in particular defects that are impossible to detect with the naked eye.
It is an object of the present invention to provide a method for automatic and high-speed detection.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、伝送されるマイクロ波中にガラス
繊維を置くと、その送信波形と受信波形とに位相
差を生じ、さらにその位相差は、欠陥のあるガラ
ス繊維とそうでないガラス繊維とでは異なる、と
いう知見に基づいている。すなわち、この発明
は、ガラス繊維を、マイクロ波が伝送される導波
管の伝送方向にスリツト状に設けた貫通孔に、ガ
ラス繊維の繊維方向がマイクロ波の伝送方向と斜
交するように通過させ、その場合に生じるマイク
ロ波の送信波形と受信波形の位相差の差を検出し
て、ガラス繊維中の欠陥の有無を検出するもので
ある。
In this invention, when a glass fiber is placed in the transmitted microwave, a phase difference is generated between the transmitted waveform and the received waveform, and furthermore, the phase difference is different between a glass fiber with a defect and a glass fiber without a defect. It is based on this knowledge. That is, in the present invention, a glass fiber is passed through a through hole provided in a slit shape in the transmission direction of a waveguide through which microwaves are transmitted, so that the fiber direction of the glass fiber is diagonal to the transmission direction of the microwave. The presence or absence of defects in the glass fibers is detected by detecting the phase difference between the transmitted microwave waveform and the received microwave waveform that occurs in this case.

〔作用〕[Effect]

ガラス繊維Gを構成する単繊維は軟化状態の材
料を高速で引き延ばして製造されるので、その欠
陥は単繊維の長さ方向に伸びているのが通常であ
る。また、長尺状のガラス繊維を製造する場合、
通常は長尺方向に沿つて縦糸、その直角方向に横
糸を配して網目状に形成される。したがつて、織
布形態のガラス繊維Gの進行方向を導波管のマイ
クロ波伝送方向と直交させた場合、横糸はマイク
ロ波の伝送方向と平行になり、ある単繊維に連続
的な欠陥があつても、マイクロ波からみると点状
の欠陥となり、感度が悪く、ノイズと間違いやす
くなる。このことは、ガラス繊維自身の存在によ
つてもマイクロ波の位相のズレが生じるが、単繊
維の中心部の密度の高い部分と周囲の密度の小さ
い部分では位相のズレが異なり、マイクロ波の伝
送方向に対して直角に密度の高い部分と小さい部
分が交互に通過するため、欠陥による位相差のズ
レも誤差と間違いやすくなる。また、縦糸も導波
管に対し直角に移動するということは、導波管内
の最短距離を移動することになり、ガラス繊維の
通過速度を一定以上に上げることができない。
Since the single fibers constituting the glass fibers G are manufactured by stretching a softened material at high speed, the defects usually extend in the length direction of the single fibers. In addition, when manufacturing long glass fibers,
Usually, it is formed into a mesh shape with warp threads along the longitudinal direction and weft threads perpendicular to the warp threads. Therefore, if the traveling direction of the woven glass fiber G is perpendicular to the microwave transmission direction of the waveguide, the weft threads will be parallel to the microwave transmission direction, and a continuous defect will occur in a single fiber. Even if there is a defect, it will appear as a dot-like defect when viewed from the microwave, which has poor sensitivity and can easily be mistaken for noise. This means that the presence of the glass fiber itself causes a phase shift in the microwave, but the phase shift is different between the high-density central part of the single fiber and the surrounding low-density part, and the microwave Since high-density areas and low-density areas alternately pass perpendicular to the transmission direction, shifts in phase difference due to defects can easily be mistaken for errors. Furthermore, if the warp threads also move at right angles to the waveguide, they will move the shortest distance within the waveguide, making it impossible to increase the passing speed of the glass fibers above a certain level.

一方、ガラス繊維の進行方向をマイクロ波の伝
送方向に対して斜め(好ましくは45°にするのが
一番望ましい。)にすれば、ガラス繊維の繊維方
向がマイクロ波の伝送方向と斜交することにな
り、単繊維中に連続的に存在する欠陥も点状には
ならず、長い距離に亘つて連続的に検知でき確実
に検知できること、またガラス繊維の移動中正常
なガラス繊維によるマイクロ波の位相のズレは常
に一定となり、デジタル的変化がなく誤差が生じ
にくいこと、さらには、縦糸も導波管中で長い距
離滞在するためガラス繊維の通過速度を上げるこ
とができること、等の利点があり、ガラス繊維中
の欠陥を正確に、かつ、速く検出することを可能
にしている。
On the other hand, if the traveling direction of the glass fiber is made oblique to the microwave transmission direction (preferably at 45 degrees), the fiber direction of the glass fiber will be oblique to the microwave transmission direction. This means that defects that exist continuously in a single fiber do not become dots, but can be detected continuously over a long distance and can be detected reliably. The phase shift is always constant, there is no digital change, and errors are less likely to occur.Furthermore, since the warp threads stay in the waveguide for a long distance, the passing speed of the glass fiber can be increased. This makes it possible to detect defects in glass fibers accurately and quickly.

このように、縦糸中の欠陥と横糸中の欠陥とが
検出感度及び検出可能時間の両面で均等に検出で
きることになり、総合的な検出感度が向上すると
ともに欠陥有無の判定レベル設定等が単純化し、
欠陥検出を容易・確実ならしめている。
In this way, defects in warp yarns and defects in weft yarns can be detected equally in terms of both detection sensitivity and detectable time, improving overall detection sensitivity and simplifying the determination level setting for the presence or absence of defects. ,
This makes defect detection easy and reliable.

〔実施例〕〔Example〕

第1図及び第2図において、1はマイクロ波を
発生する送信器、2,3はマイクロ波を伝送する
同軸ケーブル、4,5はマイクロ波を同軸ケーブ
ルから後述の導波管に変換する変換器、6,7は
一方向に進む所要のマイクロ波のみを通し、反射
波を減衰させる単向管、8はマイクロ波伝送線路
を形成している導波管、9は導波管8の管壁に伝
送方向に穿設され、織布形態のガラス繊維Gを通
過させるスリツト状の貫通孔、10はマイクロ波
を受信する受信機、11はマイクロ波の送信波形
と受信波形との位相差を測定する変位計である。
図示するように、ガラス繊維Gの進行方向は導波
管の長手方向つまりマイクロ波の伝送方向に対し
て傾いている。
In Figures 1 and 2, 1 is a transmitter that generates microwaves, 2 and 3 are coaxial cables that transmit microwaves, and 4 and 5 are converters that convert microwaves from coaxial cables to waveguides, which will be described later. 6 and 7 are unidirectional tubes that pass only the required microwaves traveling in one direction and attenuate reflected waves; 8 is a waveguide forming a microwave transmission line; 9 is a pipe of waveguide 8; A slit-like through hole is formed in the wall in the transmission direction and allows the glass fiber G in the form of a woven fabric to pass through, 10 is a receiver for receiving microwaves, and 11 is a receiver for detecting the phase difference between the transmitted waveform and the received waveform of the microwave. This is a displacement meter for measurement.
As shown in the figure, the traveling direction of the glass fiber G is inclined with respect to the longitudinal direction of the waveguide, that is, the direction of microwave transmission.

上記構成において、被検体である織布形態のガ
ラス繊維Gを、例えば60m/分の一定速度で、マ
イクロ波が伝送されている導波管8の貫通孔9を
通過させる。
In the above configuration, the glass fiber G in the form of a woven fabric to be examined is passed through the through hole 9 of the waveguide 8 through which microwaves are transmitted, at a constant speed of, for example, 60 m/min.

この場合にマイクロ波の送信波形及び受信波形
は第3図に示すようになる。すなわち、ガラス繊
維に欠陥のないときは、送信波形aに対して受信
波形bは位相差αを示し、欠陥のあるときは、例
えば受信波形cは欠陥のない場合の受信波形bに
対してさらに位相差βを示す。これらの位相差を
変位計11により測定し、位相差が欠陥のない場
合の位相差αに比べて所定の量だけ増減したこと
を検出して欠陥を検出できる。なお、マイクロ波
の周波数は、例えば9〜11GHzが適当な値として
用いられる。
In this case, the microwave transmission waveform and reception waveform are as shown in FIG. That is, when there is no defect in the glass fiber, the received waveform b shows a phase difference α with respect to the transmitted waveform a, and when there is a defect, for example, the received waveform c shows a phase difference α with respect to the received waveform b when there is no defect. It shows the phase difference β. These phase differences are measured by the displacement meter 11, and a defect can be detected by detecting that the phase difference has increased or decreased by a predetermined amount compared to the phase difference α when there is no defect. Note that a suitable value for the frequency of the microwave is, for example, 9 to 11 GHz.

ガラス繊維Gの進行方向が導波管の伝送方向に
対して傾いているのは、作用の項で詳述したよう
に、ガラス繊維の繊維方向をマイクロ波の伝送方
向に対して斜交させることにより、縦糸の欠陥及
び横糸の欠陥の検出感度をバランスさせながら両
者を共に検出し易くするためである。
The reason why the traveling direction of the glass fiber G is inclined with respect to the transmission direction of the waveguide is that the fiber direction of the glass fiber is oblique to the transmission direction of the microwave, as explained in detail in the operation section. This is to make it easier to detect warp defects and weft defects while balancing the detection sensitivities of both defects.

〔発明の効果〕 以上説明したように、この発明は、ガラス繊維
をマイクロ波の伝送路中に斜交して通過させ、そ
の欠陥を送信波形と受信波形の位相差によつて検
知するようにしたから、欠陥検出の確実化および
自動化が可能になり、特に肉眼観察では到底不可
能な極めて微小な欠陥を容易且つ確実に検査し得
るという著効を奏する。
[Effects of the Invention] As explained above, the present invention allows glass fibers to pass obliquely through a microwave transmission path, and defects therein are detected by the phase difference between the transmitted waveform and the received waveform. Therefore, defect detection can be ensured and automated, and in particular, extremely small defects, which are impossible to observe with the naked eye, can be easily and reliably inspected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施する装置の概略構成
図、第2図は第1図−線に沿う断面図、第3
図はマイクロ波の送信波形と受信波形を示す図で
ある。 G……織布形態のガラス繊維、a……マイクロ
波の送信波形、b……マイクロ波の受信波形(欠
陥なし)、c……マイクロ波の受信波形(欠陥あ
り)、8……導波管、9……貫通孔。
Fig. 1 is a schematic configuration diagram of an apparatus for carrying out the present invention, Fig. 2 is a sectional view taken along the line shown in Fig. 1, and Fig. 3
The figure is a diagram showing a microwave transmission waveform and a reception waveform. G...Glass fiber in the form of woven fabric, a...Microwave transmission waveform, b...Microwave reception waveform (no defects), c...Microwave reception waveform (with defects), 8...Waveguide Pipe, 9...through hole.

Claims (1)

【特許請求の範囲】[Claims] 1 マイクロ波が伝送される導波管の対向壁面に
織布形態のガラス繊維を通過させるスリツト状貫
通孔を該マイクロ波の伝送方向に沿つて設け、該
貫通孔を通過する該織布形態のガラス繊維の平面
内において該ガラス繊維の繊維方向が該マイクロ
波の伝送方向と斜交するように該ガラス繊維を配
置せしめ、該マイクロ波の送信波形と該ガラス繊
維通過後の該マイクロ波の受信波形の位相差の差
を検知することによりガラス繊維内の欠陥を検出
することを特徴とするガラス繊維の欠陥を検出す
る方法。
1 A slit-like through hole through which a woven glass fiber passes is provided on the opposite wall surface of a waveguide through which microwaves are transmitted, along the transmission direction of the microwave, and a slit-like through hole through which a woven glass fiber passes through the through hole is provided. The glass fibers are arranged such that the fiber direction of the glass fibers is oblique to the transmission direction of the microwaves in the plane of the glass fibers, and the transmission waveform of the microwaves and the reception of the microwaves after passing through the glass fibers are A method for detecting defects in glass fibers, comprising detecting defects in glass fibers by detecting a difference in phase difference of waveforms.
JP12916483A 1983-07-14 1983-07-14 Method for detecting defect of glass fiber Granted JPS6020138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12916483A JPS6020138A (en) 1983-07-14 1983-07-14 Method for detecting defect of glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12916483A JPS6020138A (en) 1983-07-14 1983-07-14 Method for detecting defect of glass fiber

Publications (2)

Publication Number Publication Date
JPS6020138A JPS6020138A (en) 1985-02-01
JPH0334021B2 true JPH0334021B2 (en) 1991-05-21

Family

ID=15002721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12916483A Granted JPS6020138A (en) 1983-07-14 1983-07-14 Method for detecting defect of glass fiber

Country Status (1)

Country Link
JP (1) JPS6020138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127971A (en) * 2009-12-16 2011-06-30 Kindai Techno Corp Method for detecting conductive particle substance in sheet-like electric material and device for the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299755A (en) * 1986-06-20 1987-12-26 Nitto Gurasufuaibaa Kogyo Kk Method and apparatus for detecting conductive material in glass fiber
JPS63145951A (en) * 1986-12-09 1988-06-18 Daipoole:Kk Physical quantity measuring apparatus
FR2619217B1 (en) * 1987-08-04 1989-11-10 Aerospatiale DEVICE FOR CONTINUOUSLY MEASURING THE RATE OF IMPREGNATION BY A SUBSTANCE OF CONDUCTIVE FIBERS OR NON-ELECTRICITY.
JPH01163645A (en) * 1987-12-21 1989-06-27 Kanzaki Paper Mfg Co Ltd Instrument for measuring high frequency character of sheetlike material
JPH01172738A (en) * 1987-12-28 1989-07-07 Asahi Fiber Glass Co Ltd Detecting method for dielectric
DE202005001756U1 (en) * 2004-02-12 2005-05-04 Trützschler GmbH & Co KG Microwave sensor for measuring a dielectric property of a product
JP2006300828A (en) * 2005-04-22 2006-11-02 Kindai Techno Corp Detector for conductive micro particle substance contained in prepreg

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562642A (en) * 1968-12-02 1971-02-09 Richard Hochschild Apparatus and method for measuring properties of materials by sensing signals responsive to both amplitude and phase changes in transmitted or reflected microwave energy
US3577071A (en) * 1969-01-06 1971-05-04 Automation Ind Inc Microwave material tester
JPS4918839A (en) * 1972-06-15 1974-02-19
JPS51114984A (en) * 1975-04-02 1976-10-09 Hitachi Ltd Method of evaluating resin-coated thin sheets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562642A (en) * 1968-12-02 1971-02-09 Richard Hochschild Apparatus and method for measuring properties of materials by sensing signals responsive to both amplitude and phase changes in transmitted or reflected microwave energy
US3577071A (en) * 1969-01-06 1971-05-04 Automation Ind Inc Microwave material tester
JPS4918839A (en) * 1972-06-15 1974-02-19
JPS51114984A (en) * 1975-04-02 1976-10-09 Hitachi Ltd Method of evaluating resin-coated thin sheets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127971A (en) * 2009-12-16 2011-06-30 Kindai Techno Corp Method for detecting conductive particle substance in sheet-like electric material and device for the same

Also Published As

Publication number Publication date
JPS6020138A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
CA1065436A (en) Method and apparatus for video inspection of articles of manufacture
JP2869744B2 (en) Apparatus for monitoring and / or measuring parameters of a moving filamentous or wire-like test sample and method of operating the same
JPH0334021B2 (en)
US2548598A (en) Apparatus for detection of flaws by means of microwaves
AU583556B2 (en) System for automatically inspecting transparent containers for sidewall and dimensional defects
US4066492A (en) Method and device for examining pulp for the presence of shives
US4841223A (en) Method and apparatus for measuring fiber orientation anisotropy
JP3543947B2 (en) Device for monitoring film thickness deposited in reactor and dry processing method
FI65673C (en) FOERFARANDE OCH ANORDNING FOER DETEKTERING AV KVISTAR ELLER DYIKT I SAOGAT VIRKE
KR850002321A (en) Method for analyzing heterogeneity of transparent body and apparatus
US3543566A (en) Method of testing metallic article by means of ultrasonic beams
JPH0540099A (en) Fuzz inspecting device
JPS59183312A (en) Inspecting device for filamentous body
US4240752A (en) Process and apparatus for recognizing cloud disturbances in a sample solution which is being subjected to absorption photometry
JPS58104266A (en) Method and apparatus for inspecting entangled degree of interlaced yarn
JP2002122573A (en) Method and apparatus for inspection of defect of round material
BAUER Development of improved magnetic particle inspection procedures(Development of semi-automatic device for detecting surface and near-surface flaws in ferromagnetic parts)
JPH046899B2 (en)
JPH04274742A (en) Method and apparatus for measuring orientation of belt-like fiber
JPS5685409A (en) Method of measuring uneveness in man-made fiber yarn
SU438866A1 (en) Method for determining fiber orientation
JPH09222315A (en) Pattern inspection device
JPH04279857A (en) Probe arrangement for ultrasonic flaw detector
JPH04335145A (en) Sheet material defect detector
JPS59214748A (en) Detection of conductive substance in fibrous glass