JPH04335145A - Sheet material defect detector - Google Patents

Sheet material defect detector

Info

Publication number
JPH04335145A
JPH04335145A JP3107362A JP10736291A JPH04335145A JP H04335145 A JPH04335145 A JP H04335145A JP 3107362 A JP3107362 A JP 3107362A JP 10736291 A JP10736291 A JP 10736291A JP H04335145 A JPH04335145 A JP H04335145A
Authority
JP
Japan
Prior art keywords
light
fiber
sheet material
receiving
side polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3107362A
Other languages
Japanese (ja)
Inventor
Akito Okamoto
炳人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP3107362A priority Critical patent/JPH04335145A/en
Publication of JPH04335145A publication Critical patent/JPH04335145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To enable a defect of a sheet material such as a textile to be detected accurately by a detector which performs detection based on a transmission light. CONSTITUTION:An irradiation light L1 is machined into light constituents at a specific polarization angle only through a projection-side polarization filter 2F and then is projected to a textile 10. The irradiation light L1 is diffused within the textile 10 and a polarization angle is changed, thus enabling light to be received by a reception optical fiber 4 through a reception-side polarization filter 4F. When this reception-side filter 4F has a same polarization angle as that of the projection-side polarization filter 2F, the amount of received light is reduced. Then, when the irradiation light L1 is transmitted through a hole 19, the amount of received light is maintained to be high and the hole 19 can be detected. Also, by placing a plurality of fibers in zigzag manner, more accurate detection can be made.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はシート材の穴等の欠陥を
検出する為の検出器に関し、特に偏光フィルタを介した
照射光の照射に基づき検出を行なう構造に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detector for detecting defects such as holes in sheet materials, and more particularly to a structure that performs detection based on irradiation with light through a polarizing filter.

【0002】0002

【従来の技術】シート材の欠陥判別としては、例えば製
造段階で生じた織物の穴等の欠陥を判別、認識するもの
がある。通常、織物は、織工程や染色工程等、複数の自
動化工程を経て製造される。すなわち、各工程の所定の
動作によって順次織物が完成するが、例えば織動作の不
備等により織物に穴等が形成されてしまい欠陥が発生す
ることがある。
2. Description of the Related Art There is a method for determining defects in sheet materials, for example, by determining and recognizing defects such as holes in fabrics that occur during the manufacturing stage. Typically, textiles are manufactured through multiple automated processes, such as a weaving process and a dyeing process. That is, although a woven fabric is sequentially completed through predetermined operations in each step, defects may occur, such as holes or the like being formed in the woven fabric due to, for example, imperfections in the weaving operations.

【0003】このような欠陥を有する織物は製品化する
ことができない為、織物の穴の有無の判別を行なう必要
がある。しかし、判別者による欠陥判別が、一連の作業
工程の途中で行なわれると、製造作業が中断されること
になり作業効率が低下してしまう。この為、各製造工程
を経た後、判別者が目視により欠陥判別を行なう。
[0003] Fabrics with such defects cannot be made into products, so it is necessary to determine whether or not there are holes in the fabric. However, if the defect determination by a discriminator is performed in the middle of a series of work steps, the manufacturing work will be interrupted and work efficiency will decrease. For this reason, after passing through each manufacturing process, a discriminator visually identifies defects.

【0004】0004

【発明が解決しようとする課題】上記従来の織物の欠陥
判別には次のような問題があった。織物の穴等の欠陥は
判別者の目視によって検知されるので、判別作業に手間
と時間を要し、作業効率の低下を招くという問題がある
。又、この欠陥判別は各製造工程を経た後に行なわれる
為、発生直後の穴の識別を行なうことはできない。すな
わち、欠陥が発生した織物の、以後の製造に要した織糸
や染料等が無駄になるという問題も生じる。
Problems to be Solved by the Invention The conventional defect determination of textiles has the following problems. Since defects such as holes in the fabric are detected visually by a discriminator, there is a problem in that the discriminating work requires time and effort, leading to a decrease in work efficiency. Furthermore, since this defect determination is performed after each manufacturing process, it is not possible to identify holes immediately after they occur. That is, a problem arises in that the yarns, dyes, etc. required for the subsequent production of the fabric in which the defect has occurred are wasted.

【0005】この為、例えば織工程に光学センサを取り
付け、織物を透過する光量に基づき、穴等の欠陥の発生
を常時監視することも考えられる。しかし、織物は本来
、透過性を有している為、透過光の有無に基づいて欠陥
を判別することは困難である。又、織物に生じている穴
が比較的小さい場合、受光量にはほとんど変化は生じず
、変化量に基づく検出も行うことができない。
[0005] For this reason, for example, it is conceivable to attach an optical sensor to the weaving process and constantly monitor the occurrence of defects such as holes based on the amount of light transmitted through the fabric. However, since textiles are inherently transparent, it is difficult to identify defects based on the presence or absence of transmitted light. Furthermore, if the holes formed in the fabric are relatively small, there will be almost no change in the amount of received light, and detection based on the amount of change cannot be performed.

【0006】そこで本発明は、透過光に基づき検出を行
なう検出器であって、正確に織物等、シート材の欠陥を
検出することができるシート材欠陥検出器を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sheet material defect detector which performs detection based on transmitted light and is capable of accurately detecting defects in sheet materials such as textiles.

【0007】[0007]

【課題を解決するための手段】請求項1のシート材欠陥
検出器は、照射光を発する投光ファイバ、照射光を受け
、当該照射光の所定偏光角度の光成分のみを透過してシ
ート材に照射する投光側偏光部材、シート材を透過した
透過光を受け、投光側偏光部材が透過する光成分に対し
、ほぼ同一又はほぼ90度異なる偏光角度を有する光成
分のみを透過する受光側偏光部材、受光側偏光部材を経
た透過光を受光する受光ファイバ、受光ファイバの受光
量変化に応じて、シート材の欠陥の有無を検出する検出
回路、を備えたことを特徴としている。
[Means for Solving the Problems] A sheet material defect detector according to claim 1 includes a light projecting fiber that emits irradiation light, a light emitting fiber that receives the irradiation light, and transmits only a light component of a predetermined polarization angle of the irradiation light. A light-receiving member that receives transmitted light that has passed through the sheet material and that transmits only light components that have a polarization angle that is approximately the same or approximately 90 degrees different from the light component that is transmitted by the light-emitting side polarizing member. It is characterized by comprising a side polarizing member, a light receiving fiber that receives transmitted light that has passed through the light receiving side polarizing member, and a detection circuit that detects the presence or absence of defects in the sheet material according to changes in the amount of light received by the light receiving fiber.

【0008】請求項2のシート材欠陥検出器は、請求項
1のシート材欠陥検出器において、投光ファイバは互い
に隣接して複数配置されており、第一の投光ファイバと
第二の投光ファイバとの接触部近傍に生じる間隙部に、
第三の投光ファイバが位置するよう各投光ファイバは配
列されており、受光ファイバは互いに隣接して複数配置
されており、第一の受光ファイバと第二の受光ファイバ
との接触部近傍に生じる間隙部に、第三の受光ファイバ
が位置するよう各受光ファイバは配列されている、こと
を特徴としている。
A second aspect of the sheet material defect detector is the sheet material defect detector of the first aspect, in which a plurality of light emitting fibers are arranged adjacent to each other, and the first light emitting fiber and the second light emitting fiber are arranged adjacent to each other. In the gap created near the contact part with the optical fiber,
Each light emitting fiber is arranged so that the third light emitting fiber is located, and a plurality of light receiving fibers are arranged adjacent to each other. The light receiving fibers are arranged so that the third light receiving fiber is located in the gap that is created.

【0009】[0009]

【作用】請求項1のシート材欠陥検出器においては、照
射光は投光側偏光部材を透過してシート材に照射され、
シート材を透過した透過光は更に受光側偏光部材を透過
して受光ファイバに受光される。そして、この受光側偏
光部材は、投光側偏光部材が透過する光成分に対し、ほ
ぼ同一又はほぼ90度異なる偏光角度を有する光成分の
みを透過する。
[Operation] In the sheet material defect detector according to claim 1, the irradiated light passes through the polarizing member on the light projecting side and is irradiated onto the sheet material,
The transmitted light that has passed through the sheet material further passes through the light-receiving side polarizing member and is received by the light-receiving fiber. The light-receiving side polarizing member transmits only a light component having a polarization angle that is substantially the same or approximately 90 degrees different from the light component that is transmitted by the light-emitting side polarizing member.

【0010】従って、シート材に穴等の欠陥がない場合
は、透過の際、照射光はシート材において拡散され偏光
角度に変化が生じ、他方、シート材に穴等がある場合、
この部分における照射光はシート材の影響を受けること
なく、偏光角度には変化は生じない。すなわち、シート
材の欠陥の有無に応じて、受光側偏光部材を透過する光
量は変化する。
Therefore, if there are no defects such as holes in the sheet material, the irradiated light will be diffused in the sheet material during transmission and the polarization angle will change.On the other hand, if the sheet material has holes etc.
The irradiated light in this portion is not affected by the sheet material, and the polarization angle does not change. That is, the amount of light transmitted through the light-receiving side polarizing member changes depending on the presence or absence of defects in the sheet material.

【0011】請求項2のシート材欠陥検出器においては
、投光ファイバは互いに隣接して複数配置されており、
第一の投光ファイバと第二の投光ファイバとの接触部近
傍に生じる間隙部に、第三の投光ファイバが位置するよ
う各投光ファイバは配列されている。そして、受光ファ
イバも互いに隣接して複数配置されており、投光ファイ
バと同様に、第一の受光ファイバと第二の受光ファイバ
との接触部近傍に生じる間隙部に、第三の受光ファイバ
が位置するよう各受光ファイバは配列されている。
In the sheet material defect detector according to the second aspect, a plurality of light emitting fibers are arranged adjacent to each other,
The light projecting fibers are arranged so that the third light projecting fiber is located in a gap formed near the contact portion between the first light projecting fiber and the second light projecting fiber. A plurality of light-receiving fibers are also arranged adjacent to each other, and like the light-emitting fibers, a third light-receiving fiber is placed in the gap created near the contact area between the first light-receiving fiber and the second light-receiving fiber. The light receiving fibers are arranged so as to be located at the same position.

【0012】このように、間隙部にも投光ファイバ、受
光ファイバが位置することにより、照射領域における照
射光量を平均化し、全領域で十分な光量を確保すること
ができる。
[0012] As described above, by locating the light emitting fiber and the light receiving fiber also in the gap, the amount of irradiated light in the irradiation area can be averaged, and a sufficient amount of light can be ensured in the entire area.

【0013】[0013]

【実施例】本発明の一実施例を図面に基づいて説明する
。まず、図1に検出器のヘッド部の側面図を示す。投光
ファイバ2(ファイバ束)は、検出対象であるシート材
としての織物10に向けて照射光L1を照射する。投光
ファイバ2と織物10との間には、図に示すように投光
側偏光フィルタ2Fが位置しており、照射光L1はこの
投光側偏光フィルタ2Fを通して織物10に投射される
ことになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained based on the drawings. First, FIG. 1 shows a side view of the head portion of the detector. The light emitting fiber 2 (fiber bundle) irradiates the irradiation light L1 toward the textile 10 as a sheet material that is a detection target. Between the light projection fiber 2 and the textile 10, as shown in the figure, a light projection side polarizing filter 2F is located, and the irradiation light L1 is projected onto the textile 10 through this light projection side polarizing filter 2F. Become.

【0014】偏光フィルタは、受けた光のうち特定の光
成分のみを透過するものであり、例えば本実施例におけ
る投光側偏光フィルタ2Fは0度(180度)の偏光角
度の光成分を透過するものとする。すなわち、織物10
には、投光側偏光フィルタ2Fにより0度(180度)
の偏光角度に加工された照射光L1のみが投射される。
[0014] A polarizing filter transmits only a specific light component of the received light. For example, the light emitting side polarizing filter 2F in this embodiment transmits a light component with a polarization angle of 0 degrees (180 degrees). It shall be. That is, the fabric 10
0 degrees (180 degrees) by the polarizing filter 2F on the light emitting side.
Only the irradiation light L1 processed to have a polarization angle of is projected.

【0015】織物10は本来、織糸の織目や織糸自体に
微細な空間を多数備えて形成されており、投射された照
射光L1は織物10において遮断されず織物を透過する
。しかし、照射光L1は織物10の表面や内部で織糸に
反射し、拡散されながら透過する。この織物10におけ
る拡散作用により、0度(180度)に加工された照射
光L1の偏光角度には変化が生じ、種々の偏光角度を含
む光に転化される。
The textile 10 is originally formed with a large number of minute spaces in the weave of the weaving threads and the weaving threads themselves, and the projected irradiation light L1 is not blocked by the textile 10 but passes through the textile. However, the irradiated light L1 is reflected by the threads on the surface and inside of the fabric 10, and is transmitted while being diffused. Due to the diffusion effect in the fabric 10, the polarization angle of the irradiated light L1 processed to 0 degrees (180 degrees) changes, and is converted into light including various polarization angles.

【0016】こうして、偏光角度が変化した照射光L1
は、透過光L2として織物10を透過し、次いで受光側
偏光フィルタ4Fに入射する。この受光側偏光フィルタ
4Fは、投光側偏光フィルタ2Fとほぼ同様の偏光角度
、つまり0度(180度)の光成分のみを透過するよう
になっている。
In this way, the irradiated light L1 whose polarization angle has changed is
is transmitted through the fabric 10 as transmitted light L2, and then enters the light-receiving side polarizing filter 4F. The light-receiving side polarizing filter 4F is configured to transmit only light components having substantially the same polarization angle as the light-emitting side polarizing filter 2F, that is, 0 degrees (180 degrees).

【0017】ここで、透過光L2は上述のように織物1
0を透過する際の拡散作用によって、その偏光角度に変
化が生じている。この為、透過光L2の多くは受光側偏
光フィルタ4Fによって排除され、0度(180度)の
偏光角度を有する光のみが受光側偏光フィルタ4Fを透
過する。そして、受光側偏光フィルタ4Fを透過した透
過光L2は受光ファイバ4(ファイバ束)で受光される
。すなわち、織物10を透過した直後の透過光L2に比
べ、受光ファイバ4には光量が減少した状態の透過光L
2が受光されることになる。
Here, the transmitted light L2 passes through the fabric 1 as described above.
Due to the diffusion effect when transmitting 0, the polarization angle changes. Therefore, most of the transmitted light L2 is rejected by the light-receiving side polarizing filter 4F, and only the light having a polarization angle of 0 degrees (180 degrees) is transmitted through the light-receiving side polarizing filter 4F. The transmitted light L2 that has passed through the light-receiving side polarizing filter 4F is received by the light-receiving fiber 4 (fiber bundle). That is, compared to the transmitted light L2 immediately after passing through the textile 10, the transmitted light L2 is transmitted to the light receiving fiber 4 in a state where the amount of light is reduced.
2 will be received.

【0018】尚、投光ファイバ2、投光側偏光フィルタ
2F、受光側偏光フィルタ4F及び受光ファイバ4は、
矢印90方向に移動し、織物10の両面上を走査して検
出を行う。次に、照射光L1が、織物10の欠陥箇所、
穴19に投射された場合の状態を図1Bに基づいて説明
する。
The light emitting fiber 2, the light emitting side polarizing filter 2F, the light receiving side polarizing filter 4F, and the light receiving fiber 4 are as follows:
It moves in the direction of arrow 90 and scans both sides of the fabric 10 for detection. Next, the irradiation light L1 is applied to the defective part of the fabric 10,
The state when projected into the hole 19 will be explained based on FIG. 1B.

【0019】織物10の穴19に投射された照射光L1
は、そのまま穴19から織物10を通過し、透過光L2
として受光側偏光フィルタ4Fに入射する。この場合、
透過光L2は織物10での拡散の影響を受けないので、
偏光角度には変化が生じず、0度(180度)の偏光角
度を有する光成分のままで受光側偏光フィルタ4Fに入
射することになる。すなわち、織物10を透過した透過
光L2は、その光量をほぼ維持した状態で受光側偏光フ
ィルタ4Fを透過し、受光ファイバ4に受光される。
Irradiation light L1 projected onto the hole 19 of the fabric 10
passes through the fabric 10 from the hole 19 as it is, and the transmitted light L2
The light is incident on the light-receiving side polarizing filter 4F. in this case,
Since the transmitted light L2 is not affected by diffusion in the fabric 10,
There is no change in the polarization angle, and the light component that has a polarization angle of 0 degrees (180 degrees) enters the light-receiving side polarization filter 4F as it is. That is, the transmitted light L2 that has passed through the fabric 10 is transmitted through the light-receiving side polarizing filter 4F with its light intensity substantially maintained, and is received by the light-receiving fiber 4.

【0020】以上のように、穴19が発生している場合
は、織物10に穴19が発生していない場合に比較し、
受光ファイバ4に受光される透過光L2の受光量は増加
する。 そして、受光ファイバ4が受光した光量は検出回路に取
り込まれ、その光量変化が監視されて、受光量が増加し
たとき織物10に穴19等の欠陥が発生していることが
認識される。
As described above, when holes 19 occur, compared to when holes 19 do not occur in the fabric 10,
The amount of transmitted light L2 received by the light receiving fiber 4 increases. The amount of light received by the light-receiving fiber 4 is taken into a detection circuit, and changes in the amount of light are monitored. When the amount of received light increases, it is recognized that a defect such as a hole 19 has occurred in the fabric 10.

【0021】尚、受光側偏光フィルタ4Fとして、投光
側偏光フィルタ2Fが透過する偏光角度に対し90度異
なる偏光角度のもの、すなわち90度(270度)の偏
光フィルタを用いてもよい。この場合は、逆に穴等の欠
陥のない正常箇所の検出時は受光量は多く、欠陥箇所を
検出すると受光量が減少することになる。
As the light-receiving side polarizing filter 4F, a polarizing filter having a polarization angle that is 90 degrees different from the polarization angle transmitted by the light-emitting side polarizing filter 2F, that is, 90 degrees (270 degrees) may be used. In this case, conversely, when a normal location without defects such as holes is detected, the amount of light received is large, and when a defective location is detected, the amount of received light is decreased.

【0022】投光ファイバ2及び受光ファイバ4を複数
設けることもできる。ファイバを複数設けることにより
、織物10上の走査に際し、広範囲の検出が可能となる
。又、複数の投光ファイバ2及び受光ファイバ4を図2
に示すように配置するとより効果的である。図2Aは、
9本の投光ファイバ21、22、23、24、25、2
6、27、28、29を配置した状態を示す正面図であ
り、これらの投光ファイバを矢印90方向に走査して検
出を行う。他方、受光ファイバ2も複数設け同様に配列
する。尚、ファイバは9本より多く又は少なく設けても
よい。
It is also possible to provide a plurality of light emitting fibers 2 and light receiving fibers 4. By providing a plurality of fibers, a wide range of detection is possible when scanning the fabric 10. In addition, a plurality of light emitting fibers 2 and light receiving fibers 4 are shown in FIG.
It is more effective to arrange it as shown in the figure. Figure 2A is
Nine light emitting fibers 21, 22, 23, 24, 25, 2
6, 27, 28, and 29 are arranged, and detection is performed by scanning these light emitting fibers in the direction of arrow 90. On the other hand, a plurality of light receiving fibers 2 are also provided and arranged in the same manner. Note that more or less than nine fibers may be provided.

【0023】図2Aの投光ファイバの中、投光ファイバ
21、22の拡大図を図2Bに示す。ファイバは通常、
円筒形に形成されている為、投光ファイバ21、22を
近接して配置したとしても、その接触部P1においては
ファイバ中心部に比較し弱い光量しか照射できないこと
になる。従って、この部分における受光量変化も小さく
不明確となり、正確な検出を行うことができない。
FIG. 2B shows an enlarged view of the light emitting fibers 21 and 22 among the light emitting fibers in FIG. 2A. Fiber is usually
Since it is formed in a cylindrical shape, even if the light emitting fibers 21 and 22 are arranged close to each other, only a weaker amount of light can be irradiated at the contact portion P1 than at the center of the fiber. Therefore, the change in the amount of light received in this portion is also small and unclear, making it impossible to perform accurate detection.

【0024】そこで、投光ファイバ21、22の接触部
P1近傍に生じるこの間隙部に、投光ファイバ26を位
置させ、十分な光量を確保している。このように各投光
ファイバを配置することにより、照射領域H1(図2A
)の全領域において平均化した光量を照射し、正確な検
出を行うことが可能となる。
[0024] Therefore, the light projecting fiber 26 is positioned in this gap formed near the contact portion P1 of the light projecting fibers 21 and 22 to ensure a sufficient amount of light. By arranging each light emitting fiber in this way, the irradiation area H1 (Fig. 2A
), it becomes possible to irradiate an average amount of light over the entire area and perform accurate detection.

【0025】次に、検出回路の一実施例を図3に示す。 検出回路50は、増幅器52、比較器54及びシュミッ
ト回路56を備えている。受光ファイバ4に導かれた透
過光L2は増幅器52に与えられ、増幅された受光信号
が出力される。この受光信号の波形データを図4に示す
。図4Aは織物10の欠陥のない部分を検出したときの
波形であり(図1A参照)、図4Bは穴19を検出した
ときの波形データである(図1B参照)。図4Bに示さ
れるように、織物10の穴19の部分では波形データに
大幅な変化が生じ、変化波形19Wが形成される。
Next, an embodiment of the detection circuit is shown in FIG. The detection circuit 50 includes an amplifier 52, a comparator 54, and a Schmitt circuit 56. The transmitted light L2 guided to the light-receiving fiber 4 is given to an amplifier 52, and an amplified light-receiving signal is output. FIG. 4 shows the waveform data of this light reception signal. FIG. 4A shows waveform data when a defect-free portion of the fabric 10 is detected (see FIG. 1A), and FIG. 4B shows waveform data when a hole 19 is detected (see FIG. 1B). As shown in FIG. 4B, a significant change occurs in the waveform data at the hole 19 portion of the fabric 10, and a changed waveform 19W is formed.

【0026】この受光信号は、次いで比較器54に与え
られ、予め設定されているしきい値Thと比較される。 比較の結果、受光信号がしきい値Thを越えた場合、比
較器54は比較信号を出力する。すなわち、しきい値T
hを越える変化波形19Wが認識され、比較信号が出力
される。比較信号はシュミット回路56に取り込まれ、
所定長さのパルスが欠陥信号として1パルス出力される
。この欠陥信号が出力されたとき、織作業が中断され、
欠陥の発生した織物が織工程から除外される。
This light reception signal is then applied to a comparator 54 and compared with a preset threshold Th. As a result of the comparison, if the light reception signal exceeds the threshold Th, the comparator 54 outputs a comparison signal. That is, the threshold T
A changing waveform 19W exceeding h is recognized and a comparison signal is output. The comparison signal is taken into the Schmitt circuit 56,
One pulse of a predetermined length is output as a defect signal. When this defect signal is output, the weaving operation is interrupted and
Fabrics with defects are removed from the weaving process.

【0027】増幅器52と比較器54との間に微分回路
を設けることもできる(図示せず)。微分回路を設ける
ことにより受光信号の変化量を検出し、より明瞭な波形
データを得ることができる。この為、検出の精度を向上
させることが可能となる。尚、図4において示されてい
るデータは、実験において、検出ヘッド部を織物の同一
箇所で繰り返し往復走査させたものであり、各図中には
一定幅の同一波形が反復して示されている。
A differentiating circuit may also be provided between amplifier 52 and comparator 54 (not shown). By providing a differentiation circuit, it is possible to detect the amount of change in the received light signal and obtain clearer waveform data. Therefore, it is possible to improve the detection accuracy. The data shown in Figure 4 was obtained by repeatedly scanning the detection head back and forth at the same location on the fabric in an experiment, and the same waveform with a constant width is repeatedly shown in each figure. There is.

【0028】[0028]

【発明の効果】請求項1のシート材欠陥検出器において
は、シート材の欠陥の有無に応じて、受光側偏光部材を
透過する光量が変化する。従って、受光側偏光部材を透
過した光量の変化に基づいて正確にシート材の欠陥の有
無を検出することができる。
In the sheet material defect detector of the first aspect, the amount of light transmitted through the light-receiving side polarizing member changes depending on the presence or absence of defects in the sheet material. Therefore, it is possible to accurately detect the presence or absence of a defect in the sheet material based on the change in the amount of light transmitted through the light-receiving side polarizing member.

【0029】請求項2のシート材欠陥検出器においては
、間隙部にも投光ファイバ、受光ファイバが位置するこ
とにより、照射領域における照射光量を平均化し、全領
域で十分な光量を確保することができる。この為、より
有効な投光及び受光を行うことができ、更に正確な欠陥
検出が可能となる。
In the sheet material defect detector according to the second aspect, by locating the light emitting fiber and the light receiving fiber also in the gap, the amount of irradiated light in the irradiation area is averaged and a sufficient amount of light is ensured in the entire area. Can be done. Therefore, more effective light projection and light reception can be performed, and more accurate defect detection is possible.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のシート材欠陥検出器の一実施例にかか
るヘッド部の側面図である。
FIG. 1 is a side view of a head portion according to an embodiment of a sheet material defect detector of the present invention.

【図2】本発明のシート材欠陥検出器の一実施例にかか
る投光ファイバの正面図である。
FIG. 2 is a front view of a light emitting fiber according to an embodiment of the sheet material defect detector of the present invention.

【図3】本発明のシート材欠陥検出器の検出回路の一実
施例を示す図である。
FIG. 3 is a diagram showing an embodiment of the detection circuit of the sheet material defect detector of the present invention.

【図4】図3に示す増幅器からの受光信号の波形データ
であり、各々Aは正常な織物面での波形、Bは穴のある
織物面での波形である。
FIG. 4 is waveform data of a light reception signal from the amplifier shown in FIG. 3, where A is a waveform on a normal fabric surface and B is a waveform on a fabric surface with holes.

【符号の説明】[Explanation of symbols]

2・・・・・投光ファイバ 2F・・・・・投光側偏光フィルタ 4・・・・・受光ファイバ 4F・・・・・受光側偏光フィルタ 10・・・・・織物 19・・・・・穴 L1・・・・・照射光 L2・・・・・透過光 50・・・・・検出回路 2... Light emitting fiber 2F...Emission side polarizing filter 4... Light receiving fiber 4F・・・Receiving side polarizing filter 10...Textiles 19...hole L1...Irradiation light L2...Transmitted light 50...Detection circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】照射光を発する投光ファイバ、照射光を受
け、当該照射光の所定偏光角度の光成分のみを透過して
シート材に照射する投光側偏光部材、シート材を透過し
た透過光を受け、投光側偏光部材が透過する光成分に対
し、ほぼ同一又はほぼ90度異なる偏光角度を有する光
成分のみを透過する受光側偏光部材、受光側偏光部材を
経た透過光を受光する受光ファイバ、受光ファイバの受
光量変化に応じて、シート材の欠陥の有無を検出する検
出回路、を備えたことを特徴とするシート材欠陥検出器
Claims 1: A light projection fiber that emits irradiation light; a light projection side polarizing member that receives irradiation light and transmits only the light component of the irradiation light at a predetermined polarization angle to irradiate it onto a sheet material; A light-receiving-side polarizing member that receives light and transmits only light components having a polarization angle that is substantially the same or approximately 90 degrees different from the light component that is transmitted by the light-emitting-side polarizing member, and receives the transmitted light that has passed through the light-receiving-side polarizing member. A sheet material defect detector comprising a light receiving fiber and a detection circuit that detects the presence or absence of a defect in the sheet material according to a change in the amount of light received by the light receiving fiber.
【請求項2】請求項1のシート材欠陥検出器において、
投光ファイバは互いに隣接して複数配置されており、第
一の投光ファイバと第二の投光ファイバとの接触部近傍
に生じる間隙部に、第三の投光ファイバが位置するよう
各投光ファイバは配列されており、受光ファイバは互い
に隣接して複数配置されており、第一の受光ファイバと
第二の受光ファイバとの接触部近傍に生じる間隙部に、
第三の受光ファイバが位置するよう各受光ファイバは配
列されている、ことを特徴とするシート材欠陥検出器。
2. The sheet material defect detector according to claim 1, comprising:
A plurality of light emitting fibers are arranged adjacent to each other, and each light emitting fiber is arranged so that the third light emitting fiber is located in the gap created near the contact area between the first light emitting fiber and the second light emitting fiber. The optical fibers are arranged, and a plurality of light-receiving fibers are arranged adjacent to each other, and in the gap formed near the contact part between the first light-receiving fiber and the second light-receiving fiber,
A sheet material defect detector characterized in that each light receiving fiber is arranged such that a third light receiving fiber is located.
JP3107362A 1991-05-13 1991-05-13 Sheet material defect detector Pending JPH04335145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107362A JPH04335145A (en) 1991-05-13 1991-05-13 Sheet material defect detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107362A JPH04335145A (en) 1991-05-13 1991-05-13 Sheet material defect detector

Publications (1)

Publication Number Publication Date
JPH04335145A true JPH04335145A (en) 1992-11-24

Family

ID=14457157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107362A Pending JPH04335145A (en) 1991-05-13 1991-05-13 Sheet material defect detector

Country Status (1)

Country Link
JP (1) JPH04335145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666199A (en) * 1994-07-11 1997-09-09 Phillips Petroleum Company Apparatus and process for detecting the presence of gel defects in oriented sheets or films based on polarization detection
JP2005290623A (en) * 2004-03-31 2005-10-20 Arisawa Mfg Co Ltd Aperture ratio-measuring device
CN103473770A (en) * 2013-09-05 2013-12-25 东华大学 Linear fabric flaw detection method based on rectangular window projection and singular value decomposition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS451060Y1 (en) * 1969-03-06 1970-01-19
JPS4835882A (en) * 1971-09-08 1973-05-26
JPS5039591A (en) * 1973-08-13 1975-04-11
JPS6118844A (en) * 1984-07-06 1986-01-27 Glory Ltd Apparatus for detecting contamination of circular article such as coin
JPS61111446A (en) * 1984-07-17 1986-05-29 セントレ テクニク デ インダストリエ デス パリエ−ルス,カ−ルトンス エ セルル−セス Continuous measuring device for state of molding of sheet ofpaper
JPS6211153A (en) * 1985-07-09 1987-01-20 Dainippon Printing Co Ltd Sensor head for detecting printing flaw
JPS62157549A (en) * 1985-12-30 1987-07-13 Kanzaki Paper Mfg Co Ltd Anisotropy measuring apparatus for sheet-like light transmitting sample
JPS62245951A (en) * 1986-04-18 1987-10-27 Pioneer Electronic Corp Disk measuring instrument

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS451060Y1 (en) * 1969-03-06 1970-01-19
JPS4835882A (en) * 1971-09-08 1973-05-26
JPS5039591A (en) * 1973-08-13 1975-04-11
JPS6118844A (en) * 1984-07-06 1986-01-27 Glory Ltd Apparatus for detecting contamination of circular article such as coin
JPS61111446A (en) * 1984-07-17 1986-05-29 セントレ テクニク デ インダストリエ デス パリエ−ルス,カ−ルトンス エ セルル−セス Continuous measuring device for state of molding of sheet ofpaper
JPS6211153A (en) * 1985-07-09 1987-01-20 Dainippon Printing Co Ltd Sensor head for detecting printing flaw
JPS62157549A (en) * 1985-12-30 1987-07-13 Kanzaki Paper Mfg Co Ltd Anisotropy measuring apparatus for sheet-like light transmitting sample
JPS62245951A (en) * 1986-04-18 1987-10-27 Pioneer Electronic Corp Disk measuring instrument

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666199A (en) * 1994-07-11 1997-09-09 Phillips Petroleum Company Apparatus and process for detecting the presence of gel defects in oriented sheets or films based on polarization detection
JP2005290623A (en) * 2004-03-31 2005-10-20 Arisawa Mfg Co Ltd Aperture ratio-measuring device
JP4498800B2 (en) * 2004-03-31 2010-07-07 株式会社有沢製作所 Aperture ratio measuring device
CN103473770A (en) * 2013-09-05 2013-12-25 东华大学 Linear fabric flaw detection method based on rectangular window projection and singular value decomposition
CN103473770B (en) * 2013-09-05 2016-06-15 东华大学 A kind of linear textiles flaw detection method based on rectangular window projection and singular value decomposition

Similar Documents

Publication Publication Date Title
CA1071732A (en) Method for automatic fabric inspection
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
US3812349A (en) Apparatus for inspecting cigarettes or the like
US3474254A (en) Photoelectronic apparatus for scanning textile material
SK12112000A3 (en) A method of determining the thickness and/or the homogeneity of a moving linear textile formation and a device for carrying out the method
US5900945A (en) Check detector in neck and finished portion of molded bottle
US4866289A (en) Winding-form inspecting apparatus for wound-yarn packages
US7551284B2 (en) Method and device for the optical monitoring of a running fiber strand
JPH04335145A (en) Sheet material defect detector
JP2008537591A (en) Apparatus and method for optical scanning of an elongated fiber material
US5157266A (en) Method and device for testing transparent sheets
US3958128A (en) System for determining a transversal position of any defect in a traveling sheet material
JP2783468B2 (en) Textile defect detector
US4870727A (en) Method for detecting anomalies in corduroy preparation
JPH09225939A (en) Method and device for manufacturing prepreg
JPH04127564U (en) defect detector
KR100406425B1 (en) An apparatus for detecting surface defect using diffused infra-red illumination
JPS62150146A (en) Defect detector for unwoven fabric
US4701985A (en) Apparatus for detecting anomalies in corduroy preparation
JPH09159576A (en) Flaw detector of ball
JP3474159B2 (en) Method and apparatus for detecting light and dark portions contained in yarn
KR20020051990A (en) Apparatus for detecting surface- and holed defects using the multiple illumination band and color CCD camera
JPH062232A (en) Method for sensing yarn breakage and yarn breakage sensor
US3777166A (en) Control device for a mark on a continuously moving band
US20020191184A1 (en) Method and device for detection of a translucent area or object by a light barrier