JPH0333765B2 - - Google Patents

Info

Publication number
JPH0333765B2
JPH0333765B2 JP62157936A JP15793687A JPH0333765B2 JP H0333765 B2 JPH0333765 B2 JP H0333765B2 JP 62157936 A JP62157936 A JP 62157936A JP 15793687 A JP15793687 A JP 15793687A JP H0333765 B2 JPH0333765 B2 JP H0333765B2
Authority
JP
Japan
Prior art keywords
rotor
turbine rotor
turbine
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62157936A
Other languages
Japanese (ja)
Other versions
JPS63121622A (en
Inventor
Mitsuo Kawai
Kanji Kawaguchi
Osamu Watanabe
Yoshio Nakayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15793687A priority Critical patent/JPS63121622A/en
Publication of JPS63121622A publication Critical patent/JPS63121622A/en
Publication of JPH0333765B2 publication Critical patent/JPH0333765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はタービンロータの製造方法に係り、特
に高温で優れたクリープ強さを有するとともに、
低温においても優れた靭性を有するタービンロー
タの製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a turbine rotor, which has particularly excellent creep strength at high temperatures, and
The present invention relates to a method for manufacturing a turbine rotor that has excellent toughness even at low temperatures.

(従来の技術) 近年、上記タービンは大容量化による熱効率の
向上および単位出力当たりの建設費の低減を目的
として、年々大形化し、また電力需要に応じて出
力増減や起動停止という機能が要求される中間負
荷的運用もなされている。このタービンの大容量
化などに伴ないタービンの使用温度は上昇し、現
在蒸気タービンの最高蒸気温度は556℃となり、
また軸受けスパンの長い複流型中圧ロータや高中
圧一体型ロータの採用に伴ない高温で優れたクリ
ープ強さを有する耐熱鋼の開発が一層要求されて
きている。また前述したようにタービンの大容量
化に伴ない一方ではロータ径が増加するとともに
ロータに埋め込まれる動翼が長大化するのに加え
てタービン起動停止の頻繁化により起動時にター
ビンロータ中心部での低温の靭性も優れたものが
要求されている。
(Prior art) In recent years, the above turbines have become larger year by year with the aim of improving thermal efficiency by increasing capacity and reducing construction costs per unit output, and there is also a need for functions to increase/decrease output and start/stop in response to power demand. It is also used as an intermediate load. As the capacity of these turbines has increased, the operating temperature of the turbine has increased, and currently the maximum steam temperature of a steam turbine is 556℃.
In addition, with the adoption of double-flow medium pressure rotors with long bearing spans and high-medium pressure integrated rotors, there is an increasing demand for the development of heat-resistant steels that have excellent creep strength at high temperatures. Furthermore, as mentioned above, as the capacity of turbines increases, the rotor diameter increases and the rotor blades embedded in the rotor become longer.In addition, the turbine starts and stops more frequently, causing the center of the turbine rotor to Excellent toughness at low temperatures is also required.

ところで従来の蒸気タービン用の耐熱鋼として
は一般に1%Cr−1%Mo−0.25%V鋼と称せら
れる材料や、12%Cr系鋼で構成されている。添
付図は中圧タービンの構成例を示す一部切欠断面
図であるが、蒸気入口1の蒸気温度は566℃と高
温化しており、かつcr−Mo−V鋼或いは12%Cr
系鋼で構成されている従来のロータを使用した場
合には、ロータ軸受けスパン3から4の間隔が長
大化しているため、動作時には高温強度の不足か
らロータ曲がりが発生する。このためロータ表層
5を冷却しているのが現状であるがこれはタービ
ン性能の低下およびタービンを複雑化している。
また高中圧一体型タービンにおいてもロータ軸受
けスパンが長くなるため高温強度のよりすぐれた
ータが必要とされる。
By the way, conventional heat-resistant steel for steam turbines is generally made of a material called 1% Cr-1% Mo-0.25% V steel or 12% Cr steel. The attached figure is a partially cutaway sectional view showing an example of the configuration of an intermediate pressure turbine, and the steam temperature at the steam inlet 1 is as high as 566°C, and it is made of cr-Mo-V steel or 12% Cr.
When a conventional rotor made of stainless steel is used, the distance between the rotor bearing spans 3 and 4 is large, so the rotor bends during operation due to lack of high-temperature strength. For this reason, the current situation is to cool the rotor surface layer 5, but this reduces turbine performance and complicates the turbine.
Also, in high- and intermediate-pressure integrated turbines, the rotor bearing span becomes longer, so a rotor with better high-temperature strength is required.

さらに中間負荷的運用による起動停止の頻繁化
はタービンの起動時にロータ中心部6にかかる応
力を過酷化しつつあり、このために低温靭性にも
すぐれ、脆性破壊に対しより安全なロータが必要
である。
Furthermore, frequent startup and shutdown due to intermediate load operation is increasing the stress applied to the rotor center 6 when the turbine is started, and for this reason, there is a need for a rotor that has excellent low-temperature toughness and is safer against brittle fracture. .

なお添付図において、2は蒸気出口、7は動
翼、8は静翼、9はケーシングをそれぞれ示す。
In the attached drawings, 2 indicates a steam outlet, 7 indicates a moving blade, 8 indicates a stationary blade, and 9 indicates a casing.

(発明が解決しようとする問題点) このように従来ロータでは高温のクリープ強さ
および低温での靭性が不十分で蒸気タービンの大
容量化および中間負荷的運用には対処し得ない欠
点を有している。
(Problems to be Solved by the Invention) As described above, conventional rotors have insufficient creep strength at high temperatures and toughness at low temperatures, making them incapable of coping with large-capacity steam turbines and medium-load operation. are doing.

本発明は上述の問題点を考慮してなされたもの
であり、高温で優れたクループ強さを有するとと
もに低温での靭性が優れたタービンロータを得る
ことのできる製造方法を提供することを目的とす
る。
The present invention has been made in consideration of the above-mentioned problems, and an object of the present invention is to provide a manufacturing method capable of obtaining a turbine rotor having excellent croup strength at high temperatures and excellent toughness at low temperatures. do.

[発明の構成] (問題点を解決するための手段および作用) 本発明は、原料合金を溶解後真空カーボン脱酸
を行ない、鋳造・鍛造の後、加熱によりオーステ
ナイト組織に変態させ、その後急冷によりマルテ
ンサイト組織に変態させ、次いで焼戻しを行なう
ことにより、化学組成が重量パーセントでクロム
10%以上11%未満、マンガン0.3〜1.0%、モリブ
デン0.5〜2.0%、シリコン0.2%以下、ニツケル
0.1〜1.5%、ニオブ0.01〜0.5%、バナジウム0.1〜
0.5%、タングステン0.5〜2.0%、炭素0.05〜0.3
%、窒素0.01〜0.1%、残部鉄および付随的不純
物よりなり、実質的に焼戻しマンテンサイト組織
である鉄基合金で構成されるタービンロータを得
ることを特徴とするタービンロータの製造方法で
ある。
[Structure of the invention] (Means and effects for solving the problem) The present invention involves performing vacuum carbon deoxidation after melting the raw material alloy, transforming it into an austenite structure by heating after casting and forging, and then transforming it into an austenite structure by rapid cooling. By transforming into a martensitic structure and then tempering, the chemical composition becomes chromium in weight percent.
10% or more and less than 11%, manganese 0.3-1.0%, molybdenum 0.5-2.0%, silicon 0.2% or less, nickel
0.1~1.5%, niobium 0.01~0.5%, vanadium 0.1~
0.5%, tungsten 0.5~2.0%, carbon 0.05~0.3
%, nitrogen 0.01-0.1%, balance iron and incidental impurities, and obtaining a turbine rotor made of an iron-based alloy having a substantially tempered mantensite structure.

上述の製造方法で得た特定の組成・組織の鉄基
合金で構成されるタービンロータは、高温での優
れたクリープ強さと、低温での優れた靭性を有す
るものとなる。
A turbine rotor made of an iron-based alloy with a specific composition and structure obtained by the above manufacturing method has excellent creep strength at high temperatures and excellent toughness at low temperatures.

なお、本発明にかかる鉄基合金の化学組成は次
式 クロム当量=−40×C%−30×N%−2×Mn%−4×Ni
%+Cr%+4×Mo%+6×Si%+11 ×V%+5×Nb%+1.5×W% においてクロム当量を11以下とすることが望まし
い。その理由としては本発明にかかる蒸気タービ
ンロータのごとき大型鋼塊においてはクロム当量
が11を越えると局部的な合金成分のばらつきから
フエライト組織が生成し、クリープ強さの低下を
きたす傾向が認められるからである。
The chemical composition of the iron-based alloy according to the present invention is expressed by the following formula: chromium equivalent = -40 x C% - 30 x N% - 2 x Mn% - 4 x Ni
%+Cr%+4×Mo%+6×Si%+11×V%+5×Nb%+1.5×W% It is desirable that the chromium equivalent is 11 or less. The reason for this is that in large steel ingots such as the steam turbine rotor according to the present invention, when the chromium equivalent exceeds 11, a ferrite structure is generated due to local variations in alloy composition, which tends to reduce creep strength. It is from.

本発明の製造方法を詳細に説明する。 The manufacturing method of the present invention will be explained in detail.

まず所要量の元素を配合し溶解後、真空カーボ
ン脱酸を行なつた後鋳造し、次いで例えば1100〜
1300℃に加熱後さらに鍛造しロータの所定の形状
にしてから、例えば1000〜1150℃の温度で完全に
オーステナイト組織に変態するのに十分な時間熱
処理を行なう。かくして合金組織を完全にオース
テナイト組織に変態させた後、油中或いは水噴霧
等で100℃程度まで急冷する。この急冷により合
金γ−α′変態により実質的に均一なマルテンサイ
ト組織となる。しかるのち、このまま100℃付近
に数十時間維持し均質化する。
First, the required amount of elements are mixed and melted, vacuum carbon deoxidized, and then cast.
After being heated to 1300°C, it is further forged to form the desired shape of the rotor, and then heat treated at a temperature of, for example, 1000 to 1150°C for a time sufficient to completely transform into an austenite structure. After the alloy structure is completely transformed into an austenite structure in this way, it is rapidly cooled to about 100°C in oil or water spray. This rapid cooling results in a substantially uniform martensitic structure due to the alloy γ-α' transformation. Afterwards, it is kept at around 100°C for several tens of hours to homogenize it.

さらに、例えば500〜700℃で数時間から数十時
間維持して焼戻しを行なうと合金組織は最終的に
焼戻しマルテンサイト組織となり、高温での優れ
たクリープ強さと低温での優れた靭性を有するタ
ービンロータを得ることができる。
Furthermore, if tempering is performed by maintaining the temperature at 500 to 700°C for several hours to several tens of hours, the alloy structure will eventually become a tempered martensitic structure, resulting in a turbine with excellent creep strength at high temperatures and excellent toughness at low temperatures. You can get the rotor.

ここで本発明にかかる鉄基合金の組成の限定理
由を説明する。
Here, the reasons for limiting the composition of the iron-based alloy according to the present invention will be explained.

(1) クロム10%以上11%未満;クロムは鉄中に固
溶し合金の強度を向上させるとともに耐酸化
性、耐食性を向上させるのに必要な元素で、10
%未満では十分な強度や耐酸化性、耐食性を得
ることはできず、また11%以上では好ましくな
いフエライト組織を生成し高温のクリープ強さ
を低下させる。
(1) Chromium 10% or more and less than 11%; Chromium is a necessary element that dissolves in iron and improves the strength of the alloy as well as oxidation resistance and corrosion resistance.
If it is less than 11%, sufficient strength, oxidation resistance, and corrosion resistance cannot be obtained, and if it is more than 11%, an undesirable ferrite structure is formed and the creep strength at high temperatures is reduced.

(2) マンガン0.3〜1.0%;マンガンは溶解時の脱
酸、脱硫剤として必要な元素であり、また合金
のオーステナイト相の範囲を拡げる元素で、少
なくとも0.3%は必要であり、1.0%を越えると
高温のクリープ強さを低下させる。さらに実用
上は0.4〜0.7%とすることが好ましい。
(2) Manganese 0.3 to 1.0%; Manganese is a necessary element as a deoxidizing and desulfurizing agent during melting, and is also an element that expands the range of austenite phase in the alloy, so at least 0.3% is necessary, and more than 1.0% and reduce the creep strength at high temperatures. Further, in practical terms, it is preferably 0.4 to 0.7%.

(3) モリブデン0.5〜2.0%;モリブデンは合金中
に固溶体強化により低温および高温での強さを
向上させるとともに焼戻し脆性を防ぐのに必要
な元素で0.5%未満ではその効果が少なく、ま
た2.0%を越えると好ましくないフエライト相
を生じ低温および高温強度を低下させる。さら
に実用上は0.8〜1.5%とすることが好ましい。
(3) Molybdenum 0.5-2.0%; Molybdenum is an element necessary to improve the strength at low and high temperatures through solid solution strengthening in the alloy and to prevent temper brittleness. If it is less than 0.5%, its effect will be small, and if it is less than 2.0% If it exceeds this amount, an undesirable ferrite phase will be formed and the low and high temperature strength will be reduced. Further, in practical terms, it is preferably 0.8 to 1.5%.

(4) シリコン0.2%以下;シリコンはマンガンと
同様に溶解時の脱酸剤として必要な元素である
が多量の含有は低温での靭性を害するためなる
べく少ないほうが望ましく0.2%までとする。
(4) Silicon 0.2% or less: Like manganese, silicon is a necessary element as a deoxidizing agent during melting, but since a large amount of silicon will impair the toughness at low temperatures, it is desirable to keep it as low as possible, and it should be 0.2% or less.

0.2%以下という少量のSi含有によりタービ
ンロータのごとき大型鍛造品での偏析が防止さ
れ、均質で靭性に優れたタービンロータを得る
ことができる。
The small Si content of 0.2% or less prevents segregation in large forged products such as turbine rotors, making it possible to obtain turbine rotors that are homogeneous and have excellent toughness.

(5) ニツケル0.1〜1.5%;ニツケルは本発明にか
かる鉄基合金を高温でオーステナイト化組織と
するのに必要な元素で、ニツケルが存在しない
場合は好ましくないフエライト相が生成し易く
なるので、これを防止するためには少なくとも
0.1%は必要であり、1.5%を越えると高温での
強さが低下する。さらに実用上は0.4〜1.2%と
することが好ましい。
(5) Nickel 0.1-1.5%; Nickel is an element necessary to make the iron-based alloy according to the present invention into an austenitized structure at high temperatures, and if nickel is not present, an undesirable ferrite phase is likely to be formed. To prevent this, at least
0.1% is necessary, and if it exceeds 1.5%, the strength at high temperatures will decrease. Further, in practical terms, it is preferably 0.4 to 1.2%.

(6) ニオブ0.01〜0.5%;ニオブは合金中の炭素
および窒素と化合してNb(CN)を生成し合金
の素地中に微細に析出分散し高温のクリープ強
さを向上させるとともに、鋳造時および熱処理
時の結晶粒の粗大化を防止し低温での靭性を向
上させるのに必要な元素で、少なくとも0.01%
は必要である。しかし一方ではフエライト相の
生成を促進させ高温のクリープ強さを低下させ
るとともに過量の炭窒化物を生成して靭性の低
下をきたすので0.5%までとした。さらに実用
上は0.04〜0.1%とすることが好ましい。
(6) Niobium 0.01 to 0.5%; Niobium combines with carbon and nitrogen in the alloy to form Nb (CN), which is finely precipitated and dispersed in the alloy matrix, improving high-temperature creep strength and improving resistance during casting. and elements necessary to prevent grain coarsening during heat treatment and improve toughness at low temperatures, at least 0.01%
is necessary. However, on the other hand, it promotes the formation of a ferrite phase, lowers the creep strength at high temperatures, and also produces an excessive amount of carbonitrides, resulting in a decrease in toughness, so it is limited to 0.5%. Further, in practical terms, it is preferably 0.04 to 0.1%.

(7) バナジウム0.1〜0.5%;バナジウムは高温の
クリープ強さを向上させるために必要な元素で
0.1%未満ではその効果が十分ではなく、また
0.5%を越えるとフエライトが生成して高温の
クリープ強さが低下する。さらに実用上は0.18
〜0.25%とすることが好ましい。
(7) Vanadium 0.1-0.5%; Vanadium is an element necessary to improve high-temperature creep strength.
If it is less than 0.1%, the effect is not sufficient, and
If it exceeds 0.5%, ferrite will form and the high temperature creep strength will decrease. Furthermore, in practice it is 0.18
It is preferable to set it to 0.25%.

(8) タングステン0.5〜2.0%;タングステンはモ
リブデンと同様に固溶体強化により低温および
高温での強度を向上させる元素で0.5%未満で
はその効果が顕著ではなく、また2.0%を越え
ると靭性を低下させるのでこの範囲とする。さ
らに実用上は0.7〜1.6%とすることが好まし
い。
(8) Tungsten 0.5-2.0%; Like molybdenum, tungsten is an element that improves strength at low and high temperatures through solid solution strengthening. If it is less than 0.5%, the effect is not noticeable, and if it exceeds 2.0%, toughness decreases. Therefore, this range is used. Further, in practical terms, the content is preferably 0.7 to 1.6%.

(9) 炭素0.05〜0.3%;炭素は高温で鉄中に固溶
してオーステナイト組織を作り、急冷によりγ
−α′変態を起こさせ低温および高温での強さを
向上させるとともにニオブやクロムなどの元素
と炭化物を形成して高温のクリーブつよさを向
上させるのに必要なもので、0.05%未満ではそ
の効果が小さく、また0.3%を越えると低温で
の靭性が低下する。さらに実用上は0.11〜0.17
%とすることが好ましい。
(9) Carbon 0.05-0.3%; Carbon forms a solid solution in iron at high temperatures, forming an austenitic structure, and γ
-It is necessary to cause the α′ transformation to improve strength at low and high temperatures, and to form carbides with elements such as niobium and chromium to improve high-temperature cleaving strength. The effect is small, and if it exceeds 0.3%, the toughness at low temperatures will decrease. Furthermore, in practical terms, it is 0.11 to 0.17.
% is preferable.

(10) 窒素0.01〜0.1%;窒素はオーステナイト生
成元素で焼入時のオーステナイト相を安定にし
好ましくないフエライト相の生成を抑制すると
ともに、他の元素と化合して窒化物や炭窒化物
を形成して高温のクリープ強さを向上させるの
に必要な元素で、0.01%未満ではその効果が充
分でなく、また0.1%を越えると巣やミクロポ
アの発生を増加させるのでこの範囲とする。さ
らに実用上は0.04〜0.08%とすることが好まし
い。
(10) Nitrogen 0.01-0.1%; Nitrogen is an austenite-forming element that stabilizes the austenite phase during quenching and suppresses the formation of undesirable ferrite phase, and also combines with other elements to form nitrides and carbonitrides. It is an element necessary to improve high-temperature creep strength. If it is less than 0.01%, the effect will not be sufficient, and if it exceeds 0.1%, the occurrence of cavities and micropores will increase, so it is set in this range. Further, in practical terms, it is preferably 0.04 to 0.08%.

実施例 次に本発明について実施例をもつて詳細に説明
する。
EXAMPLES Next, the present invention will be described in detail using examples.

高周波真空溶解炉を用いて表−1に示す化学組
成のロータモデル素体を溶解、鋳造した、なお真
空カーボン脱酸は鋳造前に実施した。
A rotor model body having the chemical composition shown in Table 1 was melted and cast using a high frequency vacuum melting furnace, and vacuum carbon deoxidation was performed before casting.

次に鋳造したロータ素体を1200℃に加熱し鋳造
しロータ形状化した後、各試験素材を切り出し調
質熱処理を施した。表−2に熱処理条件を示す。
なお表中のAおよびCはロータ材の表層部をシミ
ユレートしたものであり、またB、Dは同じく中
心部をシミユレートしたものである。
Next, the cast rotor body was heated to 1200°C and cast to form a rotor shape, and then each test material was cut out and subjected to tempering heat treatment. Table 2 shows the heat treatment conditions.
Note that A and C in the table simulate the surface layer portion of the rotor material, and B and D similarly simulate the center portion.

次にこれら準備した各合金試料から引張試験
片、衝撃試験片およびクリープ破断試験片を作製
し、それぞれ試験を行なつた。これらの試験結果
を表−3に示す。なお表−3の中に示した50%
FATTとは衝撃試験した後試験破面において延
性破面が50℃をしめる温度のことでこの温度が低
いほど靭性が優れており、蒸気タービンロータと
して好ましいと言える。
Next, tensile test pieces, impact test pieces, and creep rupture test pieces were prepared from each of the prepared alloy samples, and tests were conducted on each of them. The results of these tests are shown in Table 3. The 50% shown in Table 3
FATT is the temperature at which the ductile fracture surface reaches 50°C after an impact test.The lower this temperature is, the better the toughness is, and it can be said to be preferable for steam turbine rotors.

表−3より明らかなように、本発明のタービン
ロータは従来使用されている11Cr−1Mo−0.25V
ロータ(比較例2)および比較例3、4に比べク
リープ破断強さおよび靭性ははるかに優れ、特に
比較例1のものに比べても靭性ははるかに優れて
いる。
As is clear from Table 3, the turbine rotor of the present invention is different from the conventionally used 11Cr-1Mo-0.25V.
The creep rupture strength and toughness are far superior to that of the rotor (Comparative Example 2) and Comparative Examples 3 and 4, and especially the toughness is far superior to that of Comparative Example 1.

[発明の効果] 以上説明したように本発明によれば高温のクリ
ープ強さに優れ、かつ低温での靭性にも優れたタ
ービンロータを得ることができ、工業上すこぶる
有効であるといえる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a turbine rotor that has excellent creep strength at high temperatures and excellent toughness at low temperatures, and can be said to be extremely effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を説明するための火力蒸気タービン
中圧部の構成例を示す一部切欠断面図である。
The figure is a partially cutaway sectional view showing a configuration example of a thermal steam turbine intermediate pressure section for explaining the present invention.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 原料合金を溶解後真空カーボン脱酸を行な
い、鋳造・鍛造の後、加熱によりオーステナイト
組織に変態させ、その後急冷によりマルテンサイ
ト組織に変態させ、次いで焼戻しを行なうことに
より、化学組成が重量パーセントでクロム10%以
上11%未満、マンガン0.3〜1.0%、モリブデン0.5
〜2.0%、シリコン0.2%以下、ニツケル0.1〜1.5
%、ニオブ0.01〜0.5%、バナジウム0.1〜0.5%、
タングステン0.5〜2.0%、炭素0.05〜0.3%、窒素
0.01〜0.1%、残部鉄および付随的不純物よりな
り、実質的に焼戻しマルテンサイト組織である鉄
基合金で構成されるタービンロータを得ることを
特徴とするタービンロータの製造方法。 2 オーステナイト化の加熱温度は1000〜1150℃
であることを特徴とする特許請求の範囲第1項記
載のタービンロータの製造方法。 3 焼戻しの温度は550〜700℃であることを特徴
とする特許請求の範囲第1項記載のタービンロー
タの製造方法。
[Claims] 1. After melting the raw material alloy, vacuum carbon deoxidation is performed, and after casting and forging, it is transformed into an austenitic structure by heating, then transformed into a martensitic structure by rapid cooling, and then tempered. Chemical composition is chromium 10% or more and less than 11% by weight, manganese 0.3-1.0%, molybdenum 0.5
~2.0%, Silicon 0.2% or less, Nickel 0.1~1.5
%, niobium 0.01-0.5%, vanadium 0.1-0.5%,
Tungsten 0.5-2.0%, carbon 0.05-0.3%, nitrogen
1. A method for manufacturing a turbine rotor, comprising obtaining a turbine rotor made of an iron-based alloy containing 0.01 to 0.1%, the balance being iron and incidental impurities, and having a substantially tempered martensitic structure. 2 Heating temperature for austenitization is 1000-1150℃
A method for manufacturing a turbine rotor according to claim 1, characterized in that: 3. The method for manufacturing a turbine rotor according to claim 1, wherein the tempering temperature is 550 to 700°C.
JP15793687A 1987-06-26 1987-06-26 Production of turbine rotor Granted JPS63121622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15793687A JPS63121622A (en) 1987-06-26 1987-06-26 Production of turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15793687A JPS63121622A (en) 1987-06-26 1987-06-26 Production of turbine rotor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55019201A Division JPS6054385B2 (en) 1980-02-20 1980-02-20 heat resistant steel

Publications (2)

Publication Number Publication Date
JPS63121622A JPS63121622A (en) 1988-05-25
JPH0333765B2 true JPH0333765B2 (en) 1991-05-20

Family

ID=15660717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15793687A Granted JPS63121622A (en) 1987-06-26 1987-06-26 Production of turbine rotor

Country Status (1)

Country Link
JP (1) JPS63121622A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680663B (en) * 2020-12-11 2021-12-03 钢铁研究总院 9% Ni steel oversized rotor forging for ultralow temperature engineering and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767390A (en) * 1972-02-01 1973-10-23 Allegheny Ludlum Ind Inc Martensitic stainless steel for high temperature applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767390A (en) * 1972-02-01 1973-10-23 Allegheny Ludlum Ind Inc Martensitic stainless steel for high temperature applications

Also Published As

Publication number Publication date
JPS63121622A (en) 1988-05-25

Similar Documents

Publication Publication Date Title
US4850187A (en) Gas turbine having components composed of heat resistant steel
CA2203299C (en) Heat resisting steel and steam turbine rotor shaft
JP4542490B2 (en) High-strength martensitic heat-resistant steel, its production method and its use
US20060216145A1 (en) Heat resisting steel, steam turbine rotor shaft using the steel, steam turbine, and steam turbine power plant
JPH10265909A (en) Heat resistant steel with high toughness, turbine rotor, and their production
JPH08176671A (en) Production of high-and low-pressure integral type turbine rotor
JPS6054385B2 (en) heat resistant steel
JPH10251809A (en) High toughness ferritic heat resistant steel
JP3492969B2 (en) Rotor shaft for steam turbine
JPH0532463B2 (en)
JPS616256A (en) 12% cr heat resisting steel
JPH0333765B2 (en)
JPS5813608B2 (en) Manufacturing method of high/low pressure type steam turbine rotor
JPS6031898B2 (en) Turbine rotor material
JPS6338420B2 (en)
JP4519722B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method, and high and low pressure integrated steam turbine and its manufacturing method
JPS5811504B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method
JP2001049398A (en) High toughness heat resistant steel, and manufacture of turbine rotor
JPS60165358A (en) High strength and high toughness steel for high and medium pressure rotor of steam turbine
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
JPS58120764A (en) Moving vane of steam turbine with superior strength at high temperature and low creep crack propagating speed
JPH0219425A (en) Manufacture of turbine rotor
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPH1018003A (en) Gas turbine, gas turbine disk, and their production
JPS6260447B2 (en)