JPS63121622A - Production of turbine rotor - Google Patents

Production of turbine rotor

Info

Publication number
JPS63121622A
JPS63121622A JP15793687A JP15793687A JPS63121622A JP S63121622 A JPS63121622 A JP S63121622A JP 15793687 A JP15793687 A JP 15793687A JP 15793687 A JP15793687 A JP 15793687A JP S63121622 A JPS63121622 A JP S63121622A
Authority
JP
Japan
Prior art keywords
turbine rotor
rotor
forging
iron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15793687A
Other languages
Japanese (ja)
Other versions
JPH0333765B2 (en
Inventor
Mitsuo Kawai
光雄 河合
Kanji Kawaguchi
川口 寛二
Osamu Watanabe
修 渡辺
Yoshio Nakayama
義夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15793687A priority Critical patent/JPS63121622A/en
Publication of JPS63121622A publication Critical patent/JPS63121622A/en
Publication of JPH0333765B2 publication Critical patent/JPH0333765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a turbine rotor having excellent creep strength at a high temp. and toughness at a low temp. by melting an iron-based alloy consisting of a specific compsn. and subjecting the melt thereof to vacuum carbon deoxidizing, casting and forging, then to heating and rapid cooling treatments, followed by tempering. CONSTITUTION:The iron-based raw material alloy consisting of the specific compsn. is melted and after the melt is subjected to the vacuum carbon deoxidizing and casting, the casting is forged to the shape of the rotor. The forging is then heated to about 1,000-1,150 deg.C and is thereby transformed to austenite structure; thereafter, the forging is transformed to martensite structure by rapid cooling. The forging is in succession thereof tempered at about 550-700 deg.C. The turbine rotor having the compsn. consisting, by weight %, 10-13% Cr, 0.3-1.0% Mn, 0.5-2.0% Mo, <=0.2% Si, 0.1-1.5% Ni, 0.01-0.5% Nb, 0.1-0.5% V, 0.5-2.0% W, 0.05-0.3% C, 0.01-0.1% N, and the balance Fe and inevitable impurities and having the substantially tempered martensite structure is obtd. by the above-mentioned method.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はタービンロータの製造方法に係り、特に高温で
優れたクリープ強さを有するとともに、低温においても
優れた靭性ををするタービンロータの製造方法に関する
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a turbine rotor, which has particularly excellent creep strength at high temperatures and excellent toughness at low temperatures. The present invention relates to a method for manufacturing a turbine rotor.

(従来の技術) 近年、」1記タービンは大容量化による熱効率の向上お
よび単位出力当たりの建設費の低減を目的として、年々
大形化し、また電力需要に応じて出力増減や起動停止と
いう機能が要求される中間負cj的運用もなされている
。このタービンの大容量化などに伴ないタービンの使用
温度は上昇し、現在蒸気タービンの最高蒸気温度は55
6℃となり、また軸受はスパンの長い複流型中圧ロータ
や高中圧一体型ロータの採用に伴ない高温で優れたクリ
−ブ強さを有する耐熱鋼の開発が一層要求されてきてい
る。また前述したようにタービンの大吉、ffi化に伴
ない一方ではロータ径が増加するとともにロータに埋め
込まれる動翼が長大化するのに加えてタービン起動停止
の頻繁化により起動時にタービンロータ中心部での低温
の靭性も優れたものが要求されている。
(Prior art) In recent years, turbines described in item 1 have become larger year by year with the aim of increasing thermal efficiency by increasing capacity and reducing construction costs per unit output. There is also an intermediate negative cj operation that requires . As the capacity of the turbine increases, the operating temperature of the turbine increases, and currently the maximum steam temperature of a steam turbine is 55%.
6°C, and with the adoption of long-span double-flow medium-pressure rotors and high-medium pressure integrated rotors, there is an increasing demand for the development of heat-resistant steels that have excellent cleaving strength at high temperatures. In addition, as mentioned above, with the shift to FFI turbines, the rotor diameter has increased and the rotor blades embedded in the rotor have become longer. Excellent low-temperature toughness is also required.

ところで従来の蒸気タービン用の耐熱鋼としては一般ニ
I%Cr−1%Mo−0,25%Vmと称セラレル材料
や、12%Cr系鋼で構成されている。添付図は中圧タ
ービンの構成例を示す一部切欠断面図であるが、蒸気人
口(1)の蒸気温度は566℃と高温化しており、かつ
cr−No−V 鋼或いは12%C「系鋼で構成されて
いる従来のロータを使用した場合には、ロータ軸受はス
パン(3)から(4)の間隔が長大化しているため、動
作時には高温強度の不足からロータ曲がりが発生する。
By the way, conventional heat-resistant steels for steam turbines are generally made of Cerarel material called 2%Cr-1%Mo-0.25%Vm or 12%Cr-based steel. The attached figure is a partially cutaway sectional view showing an example of the configuration of an intermediate pressure turbine, and the steam temperature of steam population (1) is as high as 566°C, and it is made of cr-No-V steel or 12% C When a conventional rotor made of steel is used, the rotor bearing has a long spacing between spans (3) and (4), which causes rotor bending during operation due to lack of high-temperature strength.

このためロータ表層(5)を冷却しているのが現状マあ
るがこれはタービン性能の低下およびタービンを複雑化
している。また高中圧−体型タービンにおいてもロータ
軸受はスパンが長くなるため高温強度のよりすぐれたー
夕が必要とされる。
For this reason, the rotor surface layer (5) is currently being cooled, but this reduces turbine performance and complicates the turbine. Further, even in high-medium pressure type turbines, rotor bearings with longer spans are required to have better high-temperature strength.

さらに中間負荷的運用による起動停止の頻繁化はタービ
ンの起動時にロータ中心部(G)にかかる応力を過酷化
しつつあり、このために低温靭性にもすぐれ、脆性破壊
に対しより安全なロータが必要である。
Furthermore, frequent startup and shutdown due to intermediate load operation is increasing the stress applied to the rotor center (G) when the turbine is started, which requires a rotor that has excellent low-temperature toughness and is safer against brittle fracture. It is.

なお添付図において、(2)は蒸気出口、(7)は動翼
、(8)は静翼、(9)はケーシングをそれぞれ示す。
In the attached drawings, (2) indicates a steam outlet, (7) a rotor blade, (8) a stator blade, and (9) a casing, respectively.

(発明が解決しようとする問題点) このように従来ロータでは高温のクリープ強さおよび低
温での靭性が不十分で蒸気タービンの大容量化および中
間負荷的運用には対処し得ない欠点を有している。
(Problems to be Solved by the Invention) As described above, conventional rotors have insufficient creep strength at high temperatures and toughness at low temperatures, making them incapable of coping with large-capacity steam turbines and medium-load operation. are doing.

本発明は上述の問題点を考慮してなされたものであり、
高温で優れたクリープ強さを有するとともに低温での靭
性が優れたタービンロータを得ることのできる製造方法
を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned problems,
It is an object of the present invention to provide a manufacturing method capable of obtaining a turbine rotor having excellent creep strength at high temperatures and excellent toughness at low temperatures.

[発明の構成J (問題点を解決するための手段および作用)本発明は、
原料合金を溶解後真空カーボン脱酸を行ない、鋳造・鍛
造の後、加熱によりオーステナイト組織に変態させ、そ
の後急冷によりマルテンサイト組織に変態させ、次いで
焼戻しを行なうことにより、化学組成が重量パーセント
でクロムlO〜13%、マンガン0.3〜1.0%、モ
リブデン0.5〜2.0%、シリコン0.2%以下、ニ
ッケル0.1〜1.5%、ニオブ0.01〜0.5%、
バナジウム0.1〜0.5%、 9 ングステン0.5
〜2.0%、炭素0.05〜0.3%、窒素0.01〜
0.1%、残部鉄および付随的不純物よりなり、実質的
に焼戻しマルテンサイト組織である鉄基合金で構成され
るタービンロータを得ることを特徴とするタービンロー
タの製造方法である。
[Structure of the invention J (Means and effects for solving the problems) The present invention includes:
After melting the raw material alloy, vacuum carbon deoxidation is performed, and after casting and forging, it is transformed into an austenitic structure by heating, then transformed into a martensitic structure by rapid cooling, and then tempered, so that the chemical composition becomes chromium in weight percent. lO~13%, manganese 0.3~1.0%, molybdenum 0.5~2.0%, silicon 0.2% or less, nickel 0.1~1.5%, niobium 0.01~0.5 %,
Vanadium 0.1-0.5%, 9 ngsten 0.5
~2.0%, carbon 0.05~0.3%, nitrogen 0.01~
A method for manufacturing a turbine rotor, characterized in that the turbine rotor is made of an iron-based alloy having a substantially tempered martensitic structure, with the remainder being iron and incidental impurities.

上述の製造方法で得た特定の組成・組織の鉄基合金で構
成されるタービンロータは、高温での優れたクリープ強
さと、低温での優れた靭性を有するものとなる。
A turbine rotor made of an iron-based alloy with a specific composition and structure obtained by the above manufacturing method has excellent creep strength at high temperatures and excellent toughness at low temperatures.

なお、本発明にかかる鉄基合金の化学組成は次りロム当
ニー40 X 0% −30X N%−2X MnX−
4X Nj%+Cr%+ 、4x No%+ OX S
1%+llX V%+5X Nb%+ 1.5X W%
においてクロム当量を11以下とすることが望ましい。
The chemical composition of the iron-based alloy according to the present invention is as follows:
4X Nj%+Cr%+, 4x No%+OX S
1%+llX V%+5X Nb%+1.5X W%
It is desirable that the chromium equivalent is 11 or less.

その理由としては本発明にかかる蒸気タービンロータの
ごとき大型鋼塊においてはクロム当量が11を越えると
局部的な合金成分のばらつきからフェライト組織が生成
し、クリープ強さの低下をきたす傾向が認められるから
である。
The reason for this is that in large steel ingots such as the steam turbine rotor according to the present invention, when the chromium equivalent exceeds 11, a ferrite structure is generated due to local variations in alloy composition, which tends to reduce creep strength. It is from.

本発明の製造方法を詳細に説明する。The manufacturing method of the present invention will be explained in detail.

まず所要量の元素を配合し溶解後、真空カーボン脱酸を
行なった後鋳造し、次いで例えば11oO〜1300℃
に加熱後さらに鍛造しロータの所定の形状にしてから、
例えば1000〜1150℃の温度で完全にオーステナ
イト組織に変態するのに十分な時間熱処理を行なう。か
くして合金組織を完全にオーステナイト組織に変態させ
た後、油中或いは水噴霧等で100℃程度まで急冷する
。この急冷により合金はγ−α−変態により実質的に均
一なマルテンサイト組織となる。しかるのち、このまま
100℃付近に数十時間維持し均質化する。
First, the required amount of elements are mixed, melted, vacuum carbon deoxidized, and then cast, for example at 11oO~1300℃.
After heating, it is further forged to the desired shape of the rotor, and then
For example, heat treatment is performed at a temperature of 1000 to 1150°C for a time sufficient to completely transform into an austenite structure. After the alloy structure is completely transformed into an austenite structure in this way, it is rapidly cooled to about 100° C. in oil or water spray. By this rapid cooling, the alloy becomes a substantially uniform martensitic structure due to γ-α transformation. Thereafter, the mixture is maintained at around 100° C. for several tens of hours to homogenize it.

さらに、例えば500〜700℃で数時間から数十時間
維持して焼戻しを行なうと合金組織は最終的に焼戻しマ
ルテンサイト組織となり、高温での優れたクリープ強さ
と低温での優れた靭性を有するタービンロータを得るこ
とができる。
Furthermore, if tempering is carried out by maintaining the temperature at 500 to 700°C for several hours to several tens of hours, the alloy structure will eventually become a tempered martensitic structure, resulting in a turbine with excellent creep strength at high temperatures and excellent toughness at low temperatures. You can get the rotor.

ここで本発明にかかる鉄基合金の組成の限定理由を説明
する。
Here, the reasons for limiting the composition of the iron-based alloy according to the present invention will be explained.

(1)クロム 10〜13%;クロムは鉄中に固溶し合
金の強度を向上させるとともに耐酸化性、耐食性を向」
ニさせるのに必要な元素で、10%未満では十分な強度
や耐酸化性、耐食性を得ることはできず、また13%を
越えると好ましくないフェライト組織を生成し高温のク
リープ強さを低下させる。実用上は10〜11.5%、
さらには11%未満とすることが好ましい。
(1) Chromium 10-13%; Chromium dissolves in iron and improves the strength of the alloy, as well as oxidation and corrosion resistance.
If it is less than 10%, sufficient strength, oxidation resistance, and corrosion resistance cannot be obtained, and if it exceeds 13%, an undesirable ferrite structure will be formed and the high temperature creep strength will be reduced. . Practically 10-11.5%,
Furthermore, it is preferably less than 11%.

(2)マンガン 0.3〜1.0%:マンガンは溶解時
の脱酸、脱硫剤として必要な元素であり、また合金のオ
ーステナイト相の範囲を拡げる元素で、少なくとも0.
3%は必要であり、1.0%を越えると高温のクリープ
強さを低下させる。さらに実用上は0.4〜0.7%と
することが好ましい。
(2) Manganese 0.3 to 1.0%: Manganese is an element necessary as a deoxidizing and desulfurizing agent during melting, and also an element that expands the range of the austenite phase of the alloy.
3% is necessary, and if it exceeds 1.0%, the high temperature creep strength will decrease. Further, in practical terms, the content is preferably 0.4 to 0.7%.

(3)モリブデン 0.5〜2.0%;モリブデンは合
金中に固溶体強化により低温および高温での強さを向上
させるとともに焼戻し脆性を防ぐのに必要な元素で0.
5%未満ではその効果が少なく、また2、0%を越える
と好ましくないフェライト相を生じ低温および高温強度
を低下させる。さらに実用上は0.8〜1.5%とする
ことが好ましい。
(3) Molybdenum 0.5-2.0%; Molybdenum is an element necessary for improving the strength at low and high temperatures through solid solution strengthening in the alloy and preventing temper brittleness.
If it is less than 5%, the effect will be small, and if it exceeds 2.0%, an undesirable ferrite phase will be produced and the low and high temperature strength will be reduced. Further, in practical terms, the content is preferably 0.8 to 1.5%.

(4)シリコン 0゜2%以下;シリコンはマンガンと
同様に溶解時の脱酸剤として必要な元素であるが多量の
含有は低温での靭性を害するためなるべく少ないほうが
望ましく0.2%までとする。
(4) Silicon 0°2% or less; Silicon, like manganese, is an element necessary as a deoxidizing agent during melting, but since a large amount of silicon impairs the toughness at low temperatures, it is desirable to keep it as low as possible, up to 0.2%. do.

0.2%以下という少量のS1含宵によりタービンロー
タのごとき大型鍛造品での偏析が防止され、均質で靭性
に優れたタービンロータを得ることができる。
By containing a small amount of S1 of 0.2% or less, segregation in large forged products such as turbine rotors can be prevented, and turbine rotors that are homogeneous and have excellent toughness can be obtained.

(5)ニッケル 0.1〜1.5%;ニッケルは本発明
にかかる鉄基合金を高温でオーステナイト化組織とする
のに必要な元素で、ニッケルが存在しない場合は好まし
くないフェライト相が生成し易くなるので、これを防止
するためには少なくとも0..1%は必要であり、1.
5%を越えると高温での強さが低下する。さらに実用上
は0.4〜162%とすることが好ましい。
(5) Nickel 0.1-1.5%; Nickel is an element necessary to form an austenitized structure in the iron-based alloy according to the present invention at high temperatures, and in the absence of nickel, an undesirable ferrite phase will form. To prevent this, at least 0. .. 1% is necessary and 1.
If it exceeds 5%, the strength at high temperatures will decrease. Further, in practical terms, it is preferably 0.4 to 162%.

(6)ニオブ 0.01〜0−596 ;ニオブは合金
中の炭素および窒素と化合してNb(CN)を生成し合
金の素地中に微細に析出分散し高温のクリープ強さを向
上させるとともに、鍛造時および熱処理時の結晶粒の粗
大化を防止し低温での靭性を向上させるのに必要な元素
で、少なくとも0.01%は必要である。
(6) Niobium 0.01 to 0-596; Niobium combines with carbon and nitrogen in the alloy to form Nb (CN), which is finely precipitated and dispersed in the matrix of the alloy, improving the creep strength at high temperatures. , is an element necessary to prevent coarsening of crystal grains during forging and heat treatment and to improve toughness at low temperatures, and is necessary in an amount of at least 0.01%.

しかし一方ではフェライト相の生成を促進させ高温のク
リープ強さを低下させるとともに過量の炭窒化物を生成
して靭性の低下をきたすので0.5%までとした。さら
に実用上は0.04〜0.1%とすることが好ましい。
However, on the other hand, it promotes the formation of ferrite phase, lowers the creep strength at high temperatures, and also generates an excessive amount of carbonitrides, resulting in a decrease in toughness, so it is limited to 0.5%. Further, in practical terms, it is preferably 0.04 to 0.1%.

(7)バナジウム 0.1〜0.5%;バナジウムは高
温のクリープ強さを向上させるために必要な元素で0.
1%未満ではその効果が十分ではなく、また0、5%を
越えるとフェライトが生成して高温のクリープ強さが低
下する。さらに実用上は0.18〜0.25%とするこ
とが好ましい。
(7) Vanadium 0.1-0.5%; Vanadium is an element necessary to improve high-temperature creep strength.
If it is less than 1%, the effect will not be sufficient, and if it exceeds 0.5%, ferrite will be produced and the high temperature creep strength will be reduced. Further, in practical terms, it is preferably 0.18 to 0.25%.

(8)タングステン 0.5〜2.0%;タングステン
はモリブデンと同様に固溶体強化により低温および高温
での強度を向上させる元素で0.5%未満ではその効果
が顕著ではなく、また2、0%を越えると靭性を低下さ
せるのでこの範囲とする。さらに実用上は0.7〜1.
6%とすることが好ましい。
(8) Tungsten 0.5-2.0%; Like molybdenum, tungsten is an element that improves strength at low and high temperatures through solid solution strengthening, and if it is less than 0.5%, the effect is not significant; If it exceeds %, the toughness decreases, so it is set within this range. Furthermore, in practical terms, it is 0.7 to 1.
It is preferably 6%.

(9)炭素 0.05〜0.3%;炭素は高温で鉄中に
固溶してオーステナイト組織を作り、急冷によりγ−α
′変態を起こさせ低温および高温での強さを向上させる
とともにニオブやクロムなどの元素と炭化物を形成して
高温のクリープつよさを向上させるのに必要なもので、
0.05%未満ではその効果が小さく、また0、3%を
越えると低温での靭性が低下する。さらに実用上は0.
11〜0.17%とすることが好ましい。
(9) Carbon 0.05-0.3%; Carbon forms a solid solution in iron at high temperatures to form an austenitic structure, and when rapidly cooled, γ-α
'It is necessary to cause transformation to improve strength at low and high temperatures, and to form carbides with elements such as niobium and chromium to improve creep strength at high temperatures.
If it is less than 0.05%, the effect will be small, and if it exceeds 0.3%, the toughness at low temperatures will decrease. Furthermore, in practice it is 0.
It is preferable to set it as 11-0.17%.

(lO)窒素 o、oi〜0.1%;窒素はオーステナ
イト生成元素で焼入時のオーステナイト相を安定にし好
ましくないフェライト相の生成を抑制するとともに、他
の元素と化合して窒化物や炭窒化物を形成して高温のク
リープ強さを向上させるのに6要な元素で、0.01%
未満ではその効果が充分でなく、また0、1%を越える
と巣やミクロポアの発生を増加させるのでこの範囲とす
る。さらに実用上は0゜04〜0.08%とすることが
好ましい。
(lO) Nitrogen o, oi ~ 0.1%; Nitrogen is an austenite-forming element that stabilizes the austenite phase during quenching and suppresses the formation of undesirable ferrite phases, and also combines with other elements to form nitrides and carbons. Six elements necessary to form nitrides and improve high-temperature creep strength, 0.01%
If it is less than 0.1%, the effect will not be sufficient, and if it exceeds 0.1%, the occurrence of nests and micropores will increase, so this range is set. Further, in practical terms, it is preferably 0.04 to 0.08%.

(実施例) 次に本発明について実施例をもって詳細に説明する。(Example) Next, the present invention will be explained in detail using examples.

高周波真空溶解炉を用いて表−1に示す化学組成のロー
タモデル素体を溶解、鋳造した。なお真空カーボン脱酸
は鋳造前に実施した。
A rotor model body having the chemical composition shown in Table 1 was melted and cast using a high frequency vacuum melting furnace. Note that vacuum carbon deoxidation was performed before casting.

次に鋳造したロータ素体を1200℃に加熱し鍛造しロ
ータ形状化した後、各試験素材を切り出し調質熱処理を
施した。表−2に熱処理条件を示す。
Next, the cast rotor body was heated to 1200° C. and forged to form a rotor shape, and then each test material was cut out and subjected to tempering heat treatment. Table 2 shows the heat treatment conditions.

なお表中のAおよびCはロータ材の表層部をシミュレー
トしたものであり、またB、Dは同じく中心部をシミュ
レートしたものである。
Note that A and C in the table are simulations of the surface layer portion of the rotor material, and B and D are simulations of the center portion.

次にこれら準備した各合金試料から引張試験片、衝撃試
験片およびクリープ破断試験片を作製し、それぞれ試験
を行なった。これらのv、論結果を表−3に示す。なお
表−3の中に示した50%FATTとは衝撃試験した後
試験破面において延性破面が50%をしめる温度のこと
でこの温度が低いほど靭性が優れており、蒸気タービン
ロータとして好ましいと言える。
Next, tensile test pieces, impact test pieces, and creep rupture test pieces were prepared from each of the prepared alloy samples, and tests were conducted on each of them. These results are shown in Table 3. The 50% FATT shown in Table 3 is the temperature at which 50% of the test fracture surface is ductile after an impact test.The lower this temperature is, the better the toughness is, which is preferable for steam turbine rotors. I can say that.

表−3より明らかなように、本発明のタービンロータは
従来使用されている11cr−IMo−0,25Vロー
タ(比較例2)および比較例3,4に比ベクリープ破断
強さおよび靭性ははるかに優れ、特に比較例1のものに
比べても靭性ははるかに優れている。
As is clear from Table 3, the turbine rotor of the present invention has much higher creep rupture strength and toughness than the conventionally used 11cr-IMo-0.25V rotor (Comparative Example 2) and Comparative Examples 3 and 4. The toughness is excellent, especially compared to that of Comparative Example 1.

[発明の効果] 以上説明したように本発明によれば高温のクリープ強さ
に優れ、かつ低温での靭性にも優れたタービンロータを
得ることができ、工業上すこぶる有効であるといえる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a turbine rotor that has excellent creep strength at high temperatures and excellent toughness at low temperatures, and can be said to be extremely effective industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を説明するための火力蒸気タービン中圧部の
構成例を示す一部切欠断面図である。 代理人弁理士 則近フLf、 (Jj 同  松出光之
The figure is a partially cutaway sectional view showing a configuration example of a thermal steam turbine intermediate pressure section for explaining the present invention. Representative patent attorney Norichika Lf, (Jj same Mitsuyuki Matsude)

Claims (3)

【特許請求の範囲】[Claims] (1)原料合金を溶解後真空カーボン脱酸を行ない、鋳
造・鍛造の後、加熱によりオーステナイト組織に変態さ
せ、その後急冷によりマルテンサイト組織に変態させ、
次いで焼戻しを行なうことにより、化学組成が重量パー
セントでクロム10〜13%、マンガン0.3〜1.0
%、モリブデン0.5〜2.0%、シリコン0.2%以
下、ニッケル0.1〜1.5%、ニオブ0.01〜0.
5%、バナジウム0.1〜0.5%、タングステン0.
5〜2.0%、炭素0.05〜0.3%、窒素0.01
〜0.1%、残部鉄および付随的不純物よりなり、実質
的に焼戻しマルテンサイト組織である鉄基合金で構成さ
れるタービンロータを得ることを特徴とするタービンロ
ータの製造方法。
(1) After melting the raw material alloy, vacuum carbon deoxidation is performed, and after casting and forging, it is transformed into an austenitic structure by heating, and then transformed into a martensitic structure by rapid cooling,
Then, by tempering, the chemical composition becomes 10 to 13% chromium and 0.3 to 1.0% manganese in weight percent.
%, molybdenum 0.5-2.0%, silicon 0.2% or less, nickel 0.1-1.5%, niobium 0.01-0.
5%, vanadium 0.1-0.5%, tungsten 0.
5-2.0%, carbon 0.05-0.3%, nitrogen 0.01
1. A method for manufacturing a turbine rotor, comprising obtaining a turbine rotor composed of an iron-based alloy having a substantially tempered martensitic structure, the balance being iron and incidental impurities.
(2)オーステナイト化の加熱温度は1000〜115
0℃であることを特徴とする特許請求の範囲第1項記載
のタービンロータの製造方法。
(2) Heating temperature for austenitization is 1000-115
The method for manufacturing a turbine rotor according to claim 1, wherein the temperature is 0°C.
(3)焼戻しの温度は550〜700℃であることを特
徴とする特許請求の範囲第1項記載のタービンロータの
製造方法。
(3) The method for manufacturing a turbine rotor according to claim 1, wherein the tempering temperature is 550 to 700°C.
JP15793687A 1987-06-26 1987-06-26 Production of turbine rotor Granted JPS63121622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15793687A JPS63121622A (en) 1987-06-26 1987-06-26 Production of turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15793687A JPS63121622A (en) 1987-06-26 1987-06-26 Production of turbine rotor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55019201A Division JPS6054385B2 (en) 1980-02-20 1980-02-20 heat resistant steel

Publications (2)

Publication Number Publication Date
JPS63121622A true JPS63121622A (en) 1988-05-25
JPH0333765B2 JPH0333765B2 (en) 1991-05-20

Family

ID=15660717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15793687A Granted JPS63121622A (en) 1987-06-26 1987-06-26 Production of turbine rotor

Country Status (1)

Country Link
JP (1) JPS63121622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680663A (en) * 2020-12-11 2021-04-20 钢铁研究总院 9% Ni steel oversized rotor forging for ultralow temperature engineering and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767390A (en) * 1972-02-01 1973-10-23 Allegheny Ludlum Ind Inc Martensitic stainless steel for high temperature applications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767390A (en) * 1972-02-01 1973-10-23 Allegheny Ludlum Ind Inc Martensitic stainless steel for high temperature applications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680663A (en) * 2020-12-11 2021-04-20 钢铁研究总院 9% Ni steel oversized rotor forging for ultralow temperature engineering and preparation method thereof

Also Published As

Publication number Publication date
JPH0333765B2 (en) 1991-05-20

Similar Documents

Publication Publication Date Title
US5779821A (en) Rotor for steam turbine and manufacturing method thereof
KR100353300B1 (en) Manufacturing method of high and low pressure integrated turbine rotor
CA2203299C (en) Heat resisting steel and steam turbine rotor shaft
US6030469A (en) Fully martensitic steel alloy
JPH10265909A (en) Heat resistant steel with high toughness, turbine rotor, and their production
JPS6054385B2 (en) heat resistant steel
JP2001247942A (en) Rotor shaft for steam turbine
JPS616256A (en) 12% cr heat resisting steel
JPS63121622A (en) Production of turbine rotor
JPS6031898B2 (en) Turbine rotor material
JPS6338420B2 (en)
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JP2001049398A (en) High toughness heat resistant steel, and manufacture of turbine rotor
JPS60165358A (en) High strength and high toughness steel for high and medium pressure rotor of steam turbine
JP3546127B2 (en) High-strength heat-resistant steel and turbine rotor for high-low pressure integrated rotor
JPS5811504B2 (en) High and low pressure integrated steam turbine rotor and its manufacturing method
JPH0219425A (en) Manufacture of turbine rotor
JPH02145749A (en) Turbine rotor
JPS60128250A (en) Heat-resistant high-chromium cast steel
JPH01230723A (en) Manufacture of turbine rotor
JPH02101143A (en) Structural material for turbine
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
JPH1018003A (en) Gas turbine, gas turbine disk, and their production
JPH11217655A (en) High strength heat resistant steel and its production
JPS60165360A (en) High strength and high toughness steam turbine rotor