JPH0333221B2 - - Google Patents

Info

Publication number
JPH0333221B2
JPH0333221B2 JP58084183A JP8418383A JPH0333221B2 JP H0333221 B2 JPH0333221 B2 JP H0333221B2 JP 58084183 A JP58084183 A JP 58084183A JP 8418383 A JP8418383 A JP 8418383A JP H0333221 B2 JPH0333221 B2 JP H0333221B2
Authority
JP
Japan
Prior art keywords
laser beam
measured
change
thermal conductivity
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58084183A
Other languages
Japanese (ja)
Other versions
JPS59210352A (en
Inventor
Susumu Fujimori
Hironori Yamazaki
Yoshihiro Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8418383A priority Critical patent/JPS59210352A/en
Publication of JPS59210352A publication Critical patent/JPS59210352A/en
Publication of JPH0333221B2 publication Critical patent/JPH0333221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は物質の熱伝導率の測定法に関するもの
で、特に、集積回路等の薄膜電子素子の最適設計
を行なう際に必要な薄膜の熱伝導率または熱拡散
率を、精度よく、簡便にかつ迅速に測定すること
を図つたものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for measuring the thermal conductivity of a substance, and in particular to a method for measuring the thermal conductivity of a thin film, which is necessary for optimally designing thin film electronic devices such as integrated circuits. The purpose is to measure the thermal diffusivity or thermal diffusivity with high accuracy, simply, and quickly.

〔発明の背景〕[Background of the invention]

従来、物質の熱伝導率の評価法として、試料に
熱源として連続発振のレーザ光を照射し、その部
分の温度変化を熱電対で測定する方法が用いられ
てきた。この方法は、レーザ照射部と非照射部の
温度差の変化を、熱拡散の理論式に代入し、その
方程式中に物質固有の定数として含まれる熱伝導
率を求めるものである。この方法によれば、十分
厚い試料に対しては良い精度で測定できるが、基
板上に形成した薄膜状試料に対しては、測定結果
が基板の熱伝導率の影響を強くうけるため、正確
な測定を期待することができないという欠点があ
つた。
Conventionally, as a method for evaluating the thermal conductivity of a substance, a method has been used in which a sample is irradiated with a continuous wave laser beam as a heat source and the temperature change in that area is measured with a thermocouple. In this method, the change in temperature difference between the laser irradiated area and the non-irradiated area is substituted into a theoretical equation for thermal diffusion, and the thermal conductivity included in the equation as a constant specific to the material is determined. According to this method, sufficiently thick samples can be measured with good accuracy, but for thin film samples formed on a substrate, the measurement results are strongly influenced by the thermal conductivity of the substrate, so it is not accurate. The drawback was that measurements could not be expected.

例えば、基板の厚さが1mm、薄膜の厚さが1μ
mのとき、薄膜は1000倍も厚い基板と接している
ため、熱伝達の速さは、基板の熱伝導率によつて
支配され、薄膜の熱伝導率は測定結果(レーザ照
射部と非照射部との温度差)にほとんど影響しな
い。即ち、測定対象の薄膜が基板よりはるかに薄
いということが、この方法の適用を難しくてい
た。また、従来の方法では温度を測定するのに試
料に熱電対を設置せねばならないというわずらわ
しさがあり、さらに、この熱電対の熱容量が試料
の熱容量に対して無視できないことから、測定の
精度が一層悪くなるという欠点があつた。
For example, the substrate thickness is 1mm and the thin film thickness is 1μ.
Since the thin film is in contact with a substrate 1000 times thicker when m temperature difference). That is, the fact that the thin film to be measured is much thinner than the substrate makes it difficult to apply this method. In addition, with conventional methods, it is troublesome to have to install a thermocouple on the sample to measure temperature.Furthermore, the heat capacity of this thermocouple cannot be ignored relative to the heat capacity of the sample, so the accuracy of measurement is reduced. The drawback was that it got even worse.

これに対処して、測定対象の薄膜表面に融点既
知の物質を膜状に付着し、パルス・レーザ光照射
によるその物質の溶融変形を観察することにより
温度の特定を行なう薄膜の熱伝導率測定法が提案
された(特願昭55−148209)。即ち、測定対象の
薄膜表面に付着した融点既知物質がその融点に達
するのに要するレーザ光のエネルギー値から、測
定対象薄膜の熱伝導率が算出されるわけである。
しかし、この提案方法では、パルス・レーザ光の
試料への照射1回ごとに試料表面の状態を顕微鏡
観察する必要があることから測定に時間を要し、
また、融点既知物質が溶融変形を起こしているか
否かの認知にかなりのばらつきがあり、それが、
溶融変形を生ずるためのパルス・レーザ光のエネ
ルギーしきい値の誤差に直接結びつ付くことから
測定誤差を生じやすいという問題点があつた。
To deal with this, thermal conductivity measurement of thin films is carried out by attaching a film of a substance with a known melting point to the surface of the thin film to be measured, and then observing the melting and deformation of the material by irradiation with pulsed laser light to determine the temperature. A law was proposed (Japanese Patent Application No. 55-148209). That is, the thermal conductivity of the thin film to be measured is calculated from the energy value of the laser beam required for a substance with a known melting point attached to the surface of the thin film to be measured to reach its melting point.
However, in this proposed method, it is necessary to observe the state of the sample surface with a microscope each time the sample is irradiated with pulsed laser light, which takes time for measurement.
In addition, there is considerable variation in the recognition of whether or not a substance with a known melting point undergoes melting deformation.
There was a problem in that measurement errors were likely to occur because they were directly linked to errors in the energy threshold of the pulsed laser beam for producing melting deformation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した諸問題
点を解決し、より簡便、容易で測定精度の良い温
度特定法を備えた熱伝導率測定法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a thermal conductivity measurement method that is simpler, easier, and has a temperature identification method with better measurement accuracy.

〔発明の概要〕[Summary of the invention]

本発明においては、上記目的を達成するため
に、まず、第1の発明においては、光学的性質に
変化が生じる温度が既知の物質を薄膜状に測定対
象物表面に付着し、この測定対象物にレーザ光を
照射し、レーザ光吸収により測定対象物表面が加
熱されて特定温度に達したことを上記薄膜物質の
光学的性質の変化から検知し、その時のレーザ光
のエネルギー値を求めて熱伝導率を算出する方法
において、加熱用レーザ光としてパルス幅調整可
能のパルス・レーザ光とその前後に射出させた弱
出力の連続発振レーザ光とを用い、このパルス・
レーザ光照射前後での上記連続発振レーザ光の上
記薄膜物質からの反射光または透過光の強度差を
求めるとともに強度差が生じた時のパルス・レー
ザ光のパルス幅を求めて熱伝導率を算出する方法
とする。また、第2の発明においては、加熱用レ
ーザ光としてパルス幅調整可能のパルス・レーザ
光を用い、光学的性質の変化として上記薄膜物質
からの反射レーザ光または透過レーザ光の波形変
化を用い、この波形変化が生じる時点までのレー
ザ光照射時間を求めて熱伝導率を算出する方法と
する。
In the present invention, in order to achieve the above object, firstly, in the first invention, a substance whose temperature at which the optical properties change is known is attached in a thin film form to the surface of the measurement object, and The surface of the object to be measured is heated by absorption of the laser beam, and when it reaches a specific temperature is detected from the change in the optical properties of the thin film material.The energy value of the laser beam at that time is determined and the temperature In the method of calculating conductivity, a pulsed laser beam with an adjustable pulse width is used as a heating laser beam, and a continuous wave laser beam with a weak output is emitted before and after the pulsed laser beam.
Calculate the thermal conductivity by determining the intensity difference between the reflected light or transmitted light from the thin film material of the continuous wave laser beam before and after laser beam irradiation, and by determining the pulse width of the pulse and laser beam when the intensity difference occurs. This is the method to do so. Further, in the second invention, a pulsed laser beam with adjustable pulse width is used as the heating laser beam, and a waveform change of the reflected laser beam or transmitted laser beam from the thin film material is used as the change in optical properties, The method is to calculate the thermal conductivity by determining the laser beam irradiation time up to the point at which this waveform change occurs.

即ち、本発明による熱伝導率測定では、測定対
象物表面に、光学的性質が変化する温度が既知の
物質を膜状に付着させ、これを測定用試料とし、
これにレーザ光を照射し、レーザ加熱による光学
的性質の変化を検知することにより、測定対象物
表面の温度を特定する。ここで、光学的性質の変
化とは、付着させた膜状物質の溶融穿孔による光
学反射率の変化、あるいは結晶化ないし構造変化
に基づく光学反射率の変化等をさす。このような
光学的性質の変化の生ずる温度が既知であれば、
反射率等の光学測定から、測定対象物表面の温度
が特定される。特に、反射光強度は、通常、電気
信号号に変換して測定されることから、顕微鏡観
察による溶融変形の認知に比べて、測定が簡便で
迅速、かつ高精度であり、自動化も容易である。
That is, in the thermal conductivity measurement according to the present invention, a substance whose temperature at which the optical properties change is known is adhered to the surface of the object to be measured in the form of a film, and this is used as a measurement sample.
By irradiating this with laser light and detecting changes in optical properties due to laser heating, the temperature of the surface of the object to be measured is determined. Here, the change in optical properties refers to a change in optical reflectance due to melt perforation of the attached film-like material, or a change in optical reflectance due to crystallization or structural change. If the temperature at which such a change in optical properties occurs is known,
The temperature of the surface of the object to be measured is determined from optical measurements such as reflectance. In particular, since the reflected light intensity is usually measured by converting it into an electrical signal, the measurement is simpler, faster, more accurate, and easier to automate than recognizing melt deformation through microscopic observation. .

試料に照射するパルス・レーザ光のエネルギー
値と、測定対象物表面の温度との関係が得られれ
ば、熱伝導率Kは、従来方法と同じように、熱拡
散方程式 K∂2T/∂x2−cρ∂T/∂t=F …………(1) から算出される。ただし、Tは温度、xはレーザ
光照射部の深さ方向の位置、cは比熱、ρは密
度、tは時間、Fは吸収されるレーザ光のパワー
密度である。ここでは、測定対象物表面に付着さ
せた膜状物質は、厚さ数百Åと非常に薄く、パル
ス・レーザ光の吸収体の役割と、温度特定のため
の検知器の役割とを担つている。そして、パル
ス・レーザ光のパルス幅が、数十から数百nsecで
あるとき、熱伝導による温度変化を表面近傍に限
定できるため、測定対象物の厚さが数千Å以上あ
れば、その熱伝導率Kは近似的に K=t0/πcρ(2F/T02 …………(2) で算出される。ただし、t0はパルス・レーザ光の
パルス幅、T0は膜状物質に光学的性質の変化が
生ずる温度である。測定対象物表面に付着させた
膜状物質の光学的性質の変化の測定に当つては、
パルス・レーザ光の試料への照射の前後に、出力
の弱い連続発振のレーザ光を試料に照射し、その
反射光強度の差を測定してもよいが、パルス・レ
ーザ光そのものの試料から反射光の波形をオシロ
スコープで観察する方法が、より迅速で測定精度
も高い。
Once the relationship between the energy value of the pulsed laser beam irradiated to the sample and the temperature of the surface of the object to be measured is obtained, the thermal conductivity K can be calculated using the thermal diffusion equation K∂ 2 T/∂x, as in the conventional method. 2 −cρ∂T/∂t=F ………(1) Calculated from. Here, T is the temperature, x is the position in the depth direction of the laser beam irradiation part, c is the specific heat, ρ is the density, t is the time, and F is the power density of the absorbed laser beam. Here, the film-like substance attached to the surface of the object to be measured is extremely thin, with a thickness of several hundred angstroms, and plays the role of an absorber for pulsed laser light and a detector for temperature identification. There is. When the pulse width of the pulsed laser beam is several tens to hundreds of nanoseconds, the temperature change due to heat conduction can be limited to the vicinity of the surface, so if the thickness of the object to be measured is several thousand Å or more, the The conductivity K is approximately calculated as K=t 0 /πcρ(2F/T 0 ) 2 …(2). Here, t 0 is the pulse width of the pulsed laser beam, and T 0 is the temperature at which a change in optical properties occurs in the film-like material. When measuring changes in the optical properties of a film-like substance attached to the surface of an object to be measured,
Before and after irradiating the sample with pulsed laser light, the sample may be irradiated with low-output continuous wave laser light and the difference in reflected light intensity may be measured. Observing the light waveform with an oscilloscope is faster and has higher measurement accuracy.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により説明する。
まず、第1図は、上記の光学的性質の変化の測定
にあたつて連続発振のレーザ光を用い、その反射
光強度の差を検知する方式に対応するものであ
る。ここではレーザ光の光源として、GaAlAs半
導体レーザ1を用いた。この半導体レーザは小
型、低廉で、かつレーザ駆動用電源7によつて連
続発振も、パルス発振も可能であり、そのパルス
幅も電源7からのパルス電流により自由に変えら
れる。このレーザから射出した光は、ハーフ・ミ
ラー4を通過して試料5の表面に照射される。試
料5はマニピユレータ6を操作することにより精
度3μmで移動でき、レーザ照射位置を変えられ
るようになつている。レーザ1から、パルス幅を
かえて何回か、パルス・レーザ光2を試料5に照
射する。そしてその前後に、レーザ1を連続発振
で動作させ試料5からの連続発振レーザ光3の反
射光をハーフ・ミラー4により光路を変えて、ホ
ト・デイテクタ8で検出する。ホト・デイテクタ
には電流計9が接続され、この電流から、試料5
からの反射光強度を読み取ることができる。パル
ス光照射前後での、この反射光強度の差を求める
ことにより、試料表面の膜状物質に変化が生じた
か否かの判定ができるわけである。言いかえれ
ば、膜状物質からの反射光強度に差の生ずる現象
のおこる温度と、差の生じたときのパルス光のパ
ルス幅から、試料、即ち測定対象の物質の熱伝導
率が算出される。
Embodiments of the present invention will be described below with reference to the drawings.
First, FIG. 1 corresponds to a method in which a continuous wave laser beam is used to measure the change in the optical properties described above, and a difference in the intensity of the reflected light is detected. Here, a GaAlAs semiconductor laser 1 was used as a laser light source. This semiconductor laser is small and inexpensive, and is capable of continuous oscillation or pulse oscillation using a laser driving power source 7, and its pulse width can also be freely changed by changing the pulse current from the power source 7. The light emitted from this laser passes through the half mirror 4 and is irradiated onto the surface of the sample 5. The sample 5 can be moved with an accuracy of 3 μm by operating the manipulator 6, and the laser irradiation position can be changed. A sample 5 is irradiated with pulsed laser light 2 from a laser 1 several times with different pulse widths. Before and after that, the laser 1 is operated in continuous wave mode, and the optical path of the reflected light of the continuous wave laser beam 3 from the sample 5 is changed by the half mirror 4 and detected by the photodetector 8. An ammeter 9 is connected to the photodetector, and from this current, the sample 5
The intensity of the reflected light can be read. By determining the difference in intensity of reflected light before and after irradiation with pulsed light, it is possible to determine whether or not a change has occurred in the film-like substance on the surface of the sample. In other words, the thermal conductivity of the sample, that is, the substance to be measured, is calculated from the temperature at which the phenomenon that causes a difference in the intensity of reflected light from the film-like substance occurs and the pulse width of the pulsed light when the difference occurs. .

次に、第2図は、光学的性質の変化の測定にあ
たり、パルス光そのものの反射光の波形を観察す
る方式に対応する。この場合の測定装置の構成で
第1図と異なるのは、パルス・レーザ光2の試料
5からの反射光10そのものが、ハーフ・ミラー
4で光路をかえられた後、ホト・デイテクタ8で
検知される点にある。ホト・デイテクタには、高
速オシロスコープ11が接続され、時間軸に対し
て反射光の波形が描かれるようになつている。こ
の反射波形を観察し、試料表面の膜状物質に光学
的変化が生じた時間が求められる。第2図の装置
では、第1図の装置のように、パルス幅の異なる
複数個のパルスを照射しなくても、単一の、比較
的長いパルスを照射するだけでよく、またパルス
発振の都度、連続発振のレーザ光で試料の反射率
を測定する必要もないので、測定が簡便かつ迅速
である。さらに、反射波形を詳細に観察すること
により、試料表面の膜状物質に光学的性質の変化
をきたすのに要するレーザ照射時間を決定できる
ので、高精度の測定が可能である。
Next, FIG. 2 corresponds to a method of observing the waveform of the reflected light of the pulsed light itself in measuring changes in optical properties. The configuration of the measuring device in this case differs from that in Fig. 1 because the reflected light 10 of the pulsed laser beam 2 from the sample 5 itself is detected by the photodetector 8 after its optical path is changed by the half mirror 4. It is at the point where it is done. A high-speed oscilloscope 11 is connected to the photodetector, and the waveform of the reflected light is drawn with respect to the time axis. By observing this reflected waveform, the time at which an optical change occurs in the film-like substance on the sample surface is determined. The device in Figure 2 only needs to irradiate a single, relatively long pulse, instead of multiple pulses with different pulse widths as in the device in Figure 1, and the pulse oscillation Since there is no need to measure the reflectance of the sample each time using a continuous wave laser beam, the measurement is simple and quick. Furthermore, by observing the reflected waveform in detail, it is possible to determine the laser irradiation time required to cause a change in the optical properties of the film-like substance on the sample surface, making it possible to perform highly accurate measurements.

以下、具体的な実施例について述べる。 Specific examples will be described below.

実施例 1 ガラス基板上にスピナー・コート方式で塗布し
た厚さ1μmのポリメチルメタクリレート膜を測
定対象物とし、その上に、光学的性質の変化する
温度が既知の物質として、厚さ300ÅのTe膜を高
周波スパツタリング法により形成して試料とし
た。この試料を第1図の構成を有する熱伝導率測
定装置に設置した。そして、GaAlAs半導体レー
ザ1により、試料上での直径2mm、出力6mVの
パルス・レーザ光を、パルス幅を変えて試料に照
射した。そして各パルス・レーザ光の前後に、半
導体レーザの出力を0.2mVに低下し、連続発振の
レーザ光を射出させて、それぞれの試料からの反
射光強度を測定した。その結果を第3図に示す。
第3図の横軸は6mVのパルス・レーザ光のパル
ス幅、縦軸は0.2mVのレーザ光の反射光強度の、
6mVのパルス・レーザ光の照射前後での差を示
したものである。ここでは、パルス幅50nsecで、
反射光強度が減少しはじめている。従つてパルス
幅50nsecのレーザ光の照射によりTe膜が融点に
達し、溶融穿孔がなされたことがわかる。この結
果から前述の数式(2)を用いて、測定対象の薄膜の
熱伝導率として7×10-4cal/sec・cm・degの値が得
られた。(ただし、下の値は入射エネルギーでな
く、実際にTeに吸収されたエネルギーに補正し
て換算した。)これは、ポリメタクリレートの熱
伝導率の文献値5×10-4cal/sec・cm・degに近い値
である。
Example 1 The object to be measured was a polymethyl methacrylate film with a thickness of 1 μm coated on a glass substrate using a spinner coating method. A film was formed by high frequency sputtering method and used as a sample. This sample was placed in a thermal conductivity measuring device having the configuration shown in FIG. Then, a GaAlAs semiconductor laser 1 was used to irradiate the sample with pulsed laser light having a diameter of 2 mm and an output of 6 mV with varying pulse widths. Then, before and after each pulsed laser beam, the output of the semiconductor laser was lowered to 0.2 mV, continuous wave laser beam was emitted, and the intensity of reflected light from each sample was measured. The results are shown in FIG.
In Figure 3, the horizontal axis is the pulse width of the 6 mV pulsed laser beam, and the vertical axis is the reflected light intensity of the 0.2 mV laser beam.
This shows the difference before and after irradiation with 6mV pulsed laser light. Here, the pulse width is 50nsec,
The reflected light intensity is starting to decrease. Therefore, it can be seen that the Te film reached its melting point by irradiation with laser light with a pulse width of 50 nsec, and melt perforation was performed. From this result, a value of 7×10 −4 cal/sec·cm·deg was obtained as the thermal conductivity of the thin film to be measured using the above-mentioned formula (2). (However, the values below are not the incident energy, but are corrected and converted to the energy actually absorbed by Te.) This is the literature value of the thermal conductivity of polymethacrylate, 5×10 -4 cal/sec・cm・The value is close to deg.

実施例 2 実施例1と同じ条件で作製した試料を第2図の
構成を有する装置に設置した。出力6mVのパル
ス・レーザ光をパルス幅を変えて試料に照射する
ことは実施例1と同じであるが、第2図による実
施例2では、そのパルス・レーザ光の反射光を照
射と同時に測定し、波形を高速オシロスコープの
画面に描かせた。パルス幅150nsecの場合の結果
を第4図に示す。反射波形は照射時間が40nsecと
70nsecの、2つの変曲点を持つている。第1の変
曲点の時は、Te膜が融点に達して溶融を開始し
たため反射率が減少しはじめ、次いで第2の変曲
点の時は、Te膜の溶融が十分に進行し、穿孔が
はじまつたため、さらに反射率が減少すること
が、前もつて確認されている。そこで、反射波形
の2つの変曲点のうち、照射時間の短かい方、即
ち40nsecの時が、表面がTeの融点450℃に達した
時間となり、前述の数式(2)から、測定対象の薄膜
の熱伝導率として5.5×10-4cal/sec・cm・degの値
が求められた。これは実施例1の結果よりさらに
文献値に近く、高精度の測定値が得られたことに
なる。
Example 2 A sample prepared under the same conditions as in Example 1 was placed in an apparatus having the configuration shown in FIG. Irradiating the sample with a pulsed laser beam with an output of 6 mV while changing the pulse width is the same as in Example 1, but in Example 2 shown in Figure 2, the reflected light of the pulsed laser beam is measured at the same time as the irradiation. Then, the waveform was drawn on the screen of a high-speed oscilloscope. Figure 4 shows the results when the pulse width was 150 nsec. The reflected waveform has an irradiation time of 40nsec.
It has two inflection points of 70nsec. At the first inflection point, the Te film has reached its melting point and started melting, so the reflectance begins to decrease, and at the second inflection point, the Te film has sufficiently melted and the perforation is formed. It has been previously confirmed that the reflectance decreases further due to the onset of Therefore, of the two inflection points of the reflected waveform, the shorter irradiation time, that is, 40 nsec, is the time when the surface reaches the melting point of Te, 450°C. The thermal conductivity of the thin film was determined to be 5.5×10 -4 cal/sec・cm・deg. This is even closer to the literature value than the result of Example 1, which means that highly accurate measured values were obtained.

このように、試料に照射するパルス・レーザ光
の反射波形をオシロスコープで測定し、反射波形
に変化の生ずる時間を求めることにより、薄膜の
熱伝導率を簡便、迅速かつ高精度で得ることが可
能となる。
In this way, by measuring the reflected waveform of the pulsed laser beam irradiated onto the sample with an oscilloscope and determining the time at which the reflected waveform changes, it is possible to easily, quickly, and accurately obtain the thermal conductivity of a thin film. becomes.

以上述べた実施例1と実施例2では、熱伝導率
測定装置としてレーザと試料台の中間にハーフ・
ミラーを設置してある。これは試料から反射した
光をホト・デイテクタへ誘導するため設けたもの
であるが、しかし、試料へ入射するレーザ光を試
料に対して垂直に入射するのでなく、傾けて入射
すれば、その反射光はハーフ・ミラーを介在させ
ることなく直接ホト・デイテクタで受光すること
ができる。この場合の装置は第5図のような構成
になる。この装置で実施例と同様の測定をなした
ところ、レーザ・ビームを試料に対して傾けて入
射することによるビーム径の変化の補正をおこな
うだけで、ほぼ同じ精度で、熱伝導率を求めるこ
とができた。
In Examples 1 and 2 described above, a half-circle was installed between the laser and the sample stage as a thermal conductivity measuring device.
A mirror has been installed. This is provided to guide the light reflected from the sample to the photodetector. However, if the laser light that is incident on the sample is not incident perpendicularly to the sample but is incident at an angle, the reflected light will be Light can be directly received by the photodetector without intervening a half mirror. The apparatus in this case has a configuration as shown in FIG. When we performed measurements similar to those in the example using this device, we were able to obtain thermal conductivity with almost the same accuracy by simply correcting for the change in beam diameter due to the laser beam being incident on the sample at an angle. was completed.

これまで述べた測定例では、いずれも試料から
の反射光強度を計測している。しかし、試料自体
が透過性のものであれば、反射光のかわりに透過
光の強度を測定することにより熱伝導率を評価す
ることができる。この場合、装置は第6図の構成
となる。試料表面に付着させた膜状物質が溶融穿
孔あるいは構造変化等により光学的性質が変化す
れば当然反射率ばかりでなく、光学透過率も変化
するのであるから、測定対象の試料そのものが光
を透過する物質であれば熱伝導率を評価するのに
透過光強度の測定で十分である。実施例2では、
測定対象物がガラス基板上に塗布したポリメチル
メタクリレート膜で透光性のものであるため、同
じ試料を第6図の構成をもつ装置により測定を試
みた。その結果、透過光強度が変化するのに要す
るレーザ光のパルス幅は、実施例2に示した反射
光強度が変化したときのレーザ光のパルス幅と全
く同じであり、結果として得られる熱伝導率も実
施例2の場合と同じ値であつた。
In all of the measurement examples described so far, the intensity of reflected light from the sample is measured. However, if the sample itself is transparent, thermal conductivity can be evaluated by measuring the intensity of transmitted light instead of reflected light. In this case, the apparatus has the configuration shown in FIG. If the optical properties of the film-like substance attached to the sample surface change due to melt perforation or structural changes, not only the reflectance but also the optical transmittance will change, so the sample itself to be measured will transmit light. Measuring the intensity of transmitted light is sufficient to evaluate the thermal conductivity of the material. In Example 2,
Since the object to be measured was a translucent polymethyl methacrylate film coated on a glass substrate, an attempt was made to measure the same sample using an apparatus having the configuration shown in FIG. As a result, the pulse width of the laser light required to change the transmitted light intensity is exactly the same as the pulse width of the laser light when the reflected light intensity changes as shown in Example 2, and the resulting heat conduction The ratio was also the same as in Example 2.

これらの実施例では、表面の膜状物質Teが融
点に達するまでのパルス・レーザ光のパルス幅を
求めている。膜状物質としてはTeのみならず、
Bi、In、Pb、Sn等の低融点金属膜ならいずれ使
用できる。さらに、膜状物質による温度の特定
は、ある一定の温度に加熱することにより光学的
性質に明確な変化の生ずる現象なら何でもよく、
溶融に限らない。例えば、測定対象物の表面に付
着する膜状物質の膜が非晶質ならば、加熱により
結晶化温度をこえることによる反射率の増大、あ
るいは、磁気的な効果を有する磁性物質ならば、
加熱により磁気的相転移温度をこえることによる
反射光の偏光面の変化を検出して温度の特定をな
すことも原理的に可能である。
In these examples, the pulse width of the pulsed laser beam until the film-like material Te on the surface reaches its melting point is determined. As a film-like substance, not only Te but also
Any low melting point metal film such as Bi, In, Pb, Sn, etc. can be used. Furthermore, the temperature can be determined using a film-like substance as long as it causes a clear change in optical properties when heated to a certain temperature.
Not limited to melting. For example, if the film of a film-like substance attached to the surface of the measurement object is amorphous, the reflectance increases due to heating to exceed the crystallization temperature, or if the film is a magnetic substance that has a magnetic effect,
In principle, it is also possible to identify the temperature by detecting the change in the polarization plane of the reflected light due to the magnetic phase transition temperature being exceeded by heating.

また、上述した2つの実施例では、測定対象物
として厚さ1μm程度の薄膜を選んでいる。光源
にパルス・レーザ光を用いれば、厚さ10μm以下
の薄膜でも精度よく熱伝導率を評価できること
は、特願昭55−148209に述べたとおりである。し
かし、測定対象物が薄膜でなく十分の厚さをもつ
場合でも、本発明の方法で高精度の熱伝導率測定
をおこなうことも、測定原理からみてもちろん可
能である。この場合、従来の方法で必要であつた
熱電対の設置等の細かい操作がなく、測定が簡便
で迅速となる。またレーザ光は極短パルス・レー
ザ光でなくても比較的長いレーザ・パルス光ある
いは連続発振のレーザ光でよい。
Furthermore, in the two embodiments described above, a thin film with a thickness of about 1 μm is selected as the object to be measured. As stated in Japanese Patent Application No. 55-148209, if a pulsed laser beam is used as a light source, the thermal conductivity of even a thin film with a thickness of 10 μm or less can be accurately evaluated. However, even if the object to be measured is not a thin film but has a sufficient thickness, it is of course possible to measure thermal conductivity with high precision using the method of the present invention, considering the measurement principle. In this case, there is no need for detailed operations such as the installation of thermocouples, which were required in the conventional method, making the measurement simple and quick. Further, the laser light does not have to be an extremely short pulsed laser beam, but may be a relatively long laser pulsed beam or a continuous wave laser beam.

さらに、第1図および第2図において、測定試
料を電気炉内に設置したり、あるいはヒータを取
り付けたり、あるいは冷却槽内に設置したりする
ことにより試料の温度を可変に調整してやれば、
各温度において上記実施例と同様の測定を行な
い、その差分を取るようにデータを処理すること
により熱伝導率の温度変化を求めることが可能で
ある。
Furthermore, in FIGS. 1 and 2, if the temperature of the sample is variably adjusted by placing the measurement sample in an electric furnace, attaching a heater, or placing it in a cooling tank,
It is possible to determine the temperature change in thermal conductivity by performing measurements similar to those in the above example at each temperature and processing the data to take the difference.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、従来、
困難とされてきた厚さ数千Åから数μmの薄膜の
熱伝導率を、簡便、迅速かつ高精度で評価するこ
とを可能にし、その場合に用いる装置は、半導体
レーザ、高速オシロスコープ等からなるもので、
比較的容易に入手でき、構成も簡潔である。特
に、近年、薄膜電子素子の最適設計や集積回路素
子の放熱用伝熱体の設計等を行なう上に、薄膜物
質の熱伝導率測定が重要になりつつある情勢をみ
るとき、本発明の熱伝導率測定法は非常に有効で
あり、その効果はきわめて大きい。また本発明、
薄膜に限らず、十分厚い物質の熱伝導率を測定す
ることも可能であり、この場合従来の測定法よ
り、迅速、簡便かつ高精度で、熱伝導率を評価で
きるという利点がある。
As explained above, according to the present invention, conventionally,
It is now possible to easily, quickly, and highly accurately evaluate the thermal conductivity of thin films with thicknesses of several thousand Å to several micrometers, which has been considered difficult. The equipment used in this case consists of semiconductor lasers, high-speed oscilloscopes, etc. Something,
It is relatively easily available and has a simple configuration. In particular, in recent years, the measurement of thermal conductivity of thin film materials has become important in the optimal design of thin film electronic devices and the design of heat transfer bodies for heat dissipation in integrated circuit devices. The conductivity measurement method is very effective and its effects are extremely large. Moreover, the present invention,
It is possible to measure the thermal conductivity of not only thin films but also sufficiently thick materials, and in this case, it has the advantage of being able to evaluate thermal conductivity more quickly, simply, and with higher precision than conventional measurement methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパルス・レーザ光照射前後の試料の反
射率の変化を検知することにより温度を特定する
方式に使用する本発明実施例構成図、第2図はパ
ルス・レーザ光の試料からの反射波形から温度を
特定する方式の本発明実施例構成図、第3図は第
1図方式によるパルス・レーザ光のパルス幅と照
射前後の反射光強度の差との関係を示す図、第4
図は第2図方式による試料からの反射パルス・レ
ーザ光の波形の模式図、第5図は第1図方式に対
する他の実施例構成図、第6図は第2図方式に対
する他の実施例構成図である。 符号の説明 1…半導体レーザ、2…パルス・
レーザ光、3…連続発振レーザ光、4…ハーフ・
ミラー、5…試料、6…マニピユレータ、7…レ
ーザ駆動用電源、8…ホト・デイテクタ、9…電
流計、10…反射パルス・レーザ光、11…高速
オシロスコープ。
Figure 1 is a configuration diagram of an embodiment of the present invention used in a method for determining temperature by detecting changes in the reflectance of a sample before and after irradiation with pulsed laser light, and Figure 2 shows the reflection of pulsed laser light from the sample. FIG. 3 is a diagram showing the configuration of an embodiment of the present invention using a method for determining temperature from a waveform. FIG.
The figure is a schematic diagram of the waveform of the pulsed laser beam reflected from the sample according to the Figure 2 method, Figure 5 is a configuration diagram of another embodiment of the Figure 1 method, and Figure 6 is another example of the Figure 2 method. FIG. Explanation of symbols 1... Semiconductor laser, 2... Pulse/
Laser light, 3...Continuous wave laser light, 4...Half・
Mirror, 5... Sample, 6... Manipulator, 7... Laser drive power supply, 8... Photo detector, 9... Ammeter, 10... Reflected pulse laser beam, 11... High speed oscilloscope.

Claims (1)

【特許請求の範囲】 1 光学的性質に変化が生じる温度が既知の物質
を薄膜状に測定対象物表面に付着し、この測定対
象物にレーザ光を照射し、レーザ光吸収により測
定対象物表面が加熱されて特定温度に達したこと
を上記薄膜物質の光学的性質の変化から検知し、
その時のレーザ光のエネルギー値を求めて熱伝導
率を算出する方法において、加熱用レーザ光とし
てパルス幅調整可能のパルス・レーザ光とその前
後に射出させた弱出力の連続発振レーザ光とを用
い、このパルス・レーザ光照射前後での上記連続
発振レーザ光の上記薄膜物質からの反射光または
透過光の強度差を求めるとともに強度差が生じた
時のパルス・レーザ光のパルス幅を求めて熱伝導
率を算出することを特徴とする熱伝導率測定法。 2 光学的性質に変化が生じる温度が既知の物質
を薄膜状に測定対象物表面に付着し、この測定対
象物にレーザ光を照射し、レーザ光吸収により測
定対象物表面が加熱されて特定温度に達したこと
を上記薄膜物質の光学的性質の変化から検知し、
その時のレーザ光のエネルギー値を求めて熱伝導
率を算出する方法において、加熱用レーザ光とし
てパルス幅調整可能のパルス・レーザ光を用い、
光学的性質の変化として上記薄膜物質からの反射
レーザ光または透過レーザ光の波形変化を用い、
この波形変化が生じる時点までのレーザ光照射時
間を求めて熱伝導率を算出することを特徴とする
熱伝導率測定法。
[Claims] 1. A thin film of a substance whose temperature at which the optical properties change is known is attached to the surface of the object to be measured, and the object to be measured is irradiated with a laser beam, and the surface of the object to be measured is changed by absorption of the laser beam. detecting from a change in the optical properties of the thin film material that the film has been heated to a specific temperature;
In the method of calculating the thermal conductivity by determining the energy value of the laser beam at that time, a pulsed laser beam with an adjustable pulse width and a weak output continuous wave laser beam emitted before and after the heating laser beam are used. , find the intensity difference between the reflected light or the transmitted light from the thin film material of the continuous wave laser light before and after the pulsed laser light irradiation, and find the pulse width of the pulsed laser light when the intensity difference occurs, and calculate the temperature. A thermal conductivity measuring method characterized by calculating conductivity. 2 A substance whose temperature at which the optical properties change is known is attached in the form of a thin film to the surface of the object to be measured, and the object to be measured is irradiated with laser light, and the surface of the object to be measured is heated by absorption of the laser light until it reaches a specific temperature. Detecting that this has been reached from a change in the optical properties of the thin film material,
In the method of calculating thermal conductivity by determining the energy value of the laser beam at that time, a pulsed laser beam with adjustable pulse width is used as the heating laser beam,
Using a waveform change of reflected or transmitted laser light from the thin film material as a change in optical properties,
A thermal conductivity measuring method characterized by calculating thermal conductivity by determining the laser beam irradiation time up to the point at which this waveform change occurs.
JP8418383A 1983-05-16 1983-05-16 Method and device for measuring thermal conductivity Granted JPS59210352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8418383A JPS59210352A (en) 1983-05-16 1983-05-16 Method and device for measuring thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8418383A JPS59210352A (en) 1983-05-16 1983-05-16 Method and device for measuring thermal conductivity

Publications (2)

Publication Number Publication Date
JPS59210352A JPS59210352A (en) 1984-11-29
JPH0333221B2 true JPH0333221B2 (en) 1991-05-16

Family

ID=13823363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8418383A Granted JPS59210352A (en) 1983-05-16 1983-05-16 Method and device for measuring thermal conductivity

Country Status (1)

Country Link
JP (1) JPS59210352A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250652A (en) * 1985-08-30 1987-03-05 Res Dev Corp Of Japan Method and instrument for measuring thermal diffusivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387783A (en) * 1977-01-12 1978-08-02 Nippon Telegr & Teleph Corp <Ntt> Minute temperature detecting system
JPS5772052A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Measuring method for heat transmission factor of thin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313420Y2 (en) * 1973-11-26 1978-04-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387783A (en) * 1977-01-12 1978-08-02 Nippon Telegr & Teleph Corp <Ntt> Minute temperature detecting system
JPS5772052A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Measuring method for heat transmission factor of thin film

Also Published As

Publication number Publication date
JPS59210352A (en) 1984-11-29

Similar Documents

Publication Publication Date Title
US6211961B1 (en) Optical method for the characterization of the electrical properties of semiconductors and insulating films
US6563591B2 (en) Optical method for the determination of grain orientation in films
US5748317A (en) Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector
US6175416B1 (en) Optical stress generator and detector
US6208418B1 (en) Apparatus and method for measurement of the mechanical properties and electromigration of thin films
Taketoshi et al. Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique
Thomsen et al. Picosecond acoustics as a non-destructive tool for the characterization of very thin films
Welsch et al. Investigation of the absorption induced damage in ultraviolet dielectric thin films
JP2008191123A (en) Crystallinity measuring instrument for thin film semiconductor, and method therefor
JP2009526983A (en) Method and apparatus for characterizing a thin layer material constructed on a substrate using active pyrometry
JP3252155B2 (en) Thermal diffusivity measurement method by thermoreflectance method
US20070024871A1 (en) Method and apparatus for measuring thickness of thin films via transient thermoreflectance
JP2007333640A (en) Apparatus and method for measuring semiconductor electrical characteristic
CN106441124A (en) Novel method for measuring film thickness by time response based on laser-induced thermoelectricity voltage
US4755049A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
US20050002436A1 (en) Method for measuring thermophysical property of thin film and apparatus therefor
JP2007170960A (en) Apparatus and method for measuring thermoelastic property
JPH0333221B2 (en)
Diez et al. Time-Resolved Reflectivity and Temperature Measurements During Laser Irradiation of Crystalline Silicon.
WO1999013318A1 (en) Optical method for the characterization of the electrical properties of semiconductors and insulating films
Trappe et al. Recrystallization dynamics of phase change optical disks with a nitrogen interface layer
JP2006524813A (en) Thin film evaluation method
JPH1038856A (en) Light absorptance measuring instrument and measuring method
JPS637618B2 (en)
Dieckmann et al. Measurement of thermal conductivity in dielectric films by the thermal pulse method