JPH0333187A - Phosphor exhibiting accelerated phosphorescence and its manufacture - Google Patents

Phosphor exhibiting accelerated phosphorescence and its manufacture

Info

Publication number
JPH0333187A
JPH0333187A JP16785489A JP16785489A JPH0333187A JP H0333187 A JPH0333187 A JP H0333187A JP 16785489 A JP16785489 A JP 16785489A JP 16785489 A JP16785489 A JP 16785489A JP H0333187 A JPH0333187 A JP H0333187A
Authority
JP
Japan
Prior art keywords
phosphor
range
photostimulable
raw materials
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16785489A
Other languages
Japanese (ja)
Inventor
Nagaaki Etsuno
越野 長明
Hiroshi Kano
博司 鹿野
Nobuhiro Iwase
信博 岩瀬
Shinji Tadaki
進二 只木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16785489A priority Critical patent/JPH0333187A/en
Publication of JPH0333187A publication Critical patent/JPH0333187A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a phosphor exhibiting accelerated phosphorescence with improved luminous sensitivity by mixing raw materials of phosphor so as to provide the proportions corresponding to a specified constitutional formula and sintering the mixture in a reducing atmosphere. CONSTITUTION:Raw materials of phosphor are mixed so as to provide the proportions corresponding to a constitution of formula I (wherein MA and MB are each Mg, Ca, Sr or Ba; MC is Li, Na, K or Rb; MD is Sc, Y, La, Gd or Lu; XA to XD are each Cl, Br or I except for the case where XA and XB are the same; 0.4<x<0.6: 0<y<0.2; -0.5<delta<0.5; 0.001<z<0.05), and the mixture is sintered in a reducing atmosphere, thus giving a phosphor exhibiting accelerat ed phosphorescence which consists of crystals having a constitution of the formu la, stores energy in the crystals when irradiated with a radiation, emits light with accelerated phosphorescence when excited with light, and has improved luminous sensitivity.

Description

【発明の詳細な説明】 〔概要〕 輝尽性の発光を示す螢光体に関し、 発光感度を向上することを目的とし、 ((1−x)M’  XAz  ・xM”  X” t
 )(1−y)(MCXc −(1+δ)  M”  
X” s ) y/2  : zEu!+で表わされる
結晶を用いて、放射線の照射により該結晶中にエネルギ
ーを蓄積し、光励起により輝尽性の発光をすることを特
徴とする輝尽性螢光体を構成する。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to improve the luminescence sensitivity of a phosphor that exhibits photostimulable luminescence.
)(1-y)(MCXc-(1+δ)M”
A photostimulable firefly characterized by using a crystal represented by zEu!+, storing energy in the crystal by irradiation with radiation, and emitting photostimulable light by photoexcitation. Constitutes a light body.

〔産業上の利用分野〕[Industrial application field]

本発明は発光感度を向上した輝尽性螢光体とその製造方
法に関する。
The present invention relates to a photostimulable phosphor with improved luminescence sensitivity and a method for producing the same.

輝尽性螢光体を用いてなるX線画像変換シートはデジタ
ル画像処理装置と組み合わせてX線写真システムを構成
している。
An X-ray image conversion sheet using a photostimulable phosphor is combined with a digital image processing device to constitute an X-ray photography system.

すなわち、X線は人体の診断や材料の鑑識など広い分野
で使用されているが、最大の用途はX線診断である。
That is, although X-rays are used in a wide range of fields such as human body diagnosis and material forensics, their greatest use is in X-ray diagnosis.

そして、X線写真の撮影や透視により診断が行われてい
るが、X線は放射線であって人体に有害なことから被爆
線量がなるべく少ないことが必要で、X線装置の改良と
X線フィルム感度向上の面から改良が行われており、昔
と較べて圧絞にならない程少量のX線で検査が行われる
ようになっている。
Diagnosis is performed by taking X-ray photographs and fluoroscopy, but since X-rays are radiation and are harmful to the human body, it is necessary to reduce the exposure dose as much as possible. Improvements have been made to improve sensitivity, and compared to the past, inspections can now be performed using a smaller amount of X-rays without causing compression.

然し、フィルムの感度を上げようとすると画質が低下す
ることは避けられない。
However, if you try to increase the sensitivity of the film, it is inevitable that the image quality will deteriorate.

一方、最近開発されたX線写真システムはX線画像変換
シートと電算機とを用いて画像処理を行うもので、具体
的には従来のフィルムに代わってX線画像変換シートを
用いて撮影し、シートに写し込まれたX線画像をレーザ
光を使用して電気信号に変換して後、この信号を電算機
で画像処理を行い、この情報をレーザ光の強弱に変換し
て通常の写真フィルムに写し変えることによりX線写真
を形成している。
On the other hand, recently developed X-ray photography systems use an X-ray image conversion sheet and a computer to process images. Specifically, they use an X-ray image conversion sheet instead of conventional film to take images. , the X-ray image imprinted on the sheet is converted into an electrical signal using a laser beam, and then this signal is processed by a computer, and this information is converted into the intensity of the laser beam to create a normal photograph. An X-ray photograph is formed by transferring it to film.

このような方法によると従来に較べて数10分のl以下
の線量で鮮明な画像を得ることができる。
According to such a method, a clear image can be obtained with a dose less than several tenths of a liter compared to the conventional method.

こ覧で、X線画像変換シートは放射線エネルギーを一旦
蓄積でき、あとで熱や光の励起によって再び螢光を発す
る輝尽性螢光体を感光材料とするシートである。
As you can see, the X-ray image conversion sheet is a sheet that uses a photostimulable phosphor as a photosensitive material, which can temporarily store radiation energy and then emit fluorescence again when excited by heat or light.

本発明はか\るX線画像変換シートを構成する輝尽性螢
光体とその製造方法に関するものである。
The present invention relates to a photostimulable phosphor constituting such an X-ray image conversion sheet and a method for producing the same.

〔従来の技術〕[Conventional technology]

X線画像変換シートはポリエチレンテレフタレートフィ
ルム(以下略して通称のマイラー)などの透明樹脂膜の
上に、アルカリ土類金属のハロゲン化物とハロゲン化ユ
ーロピウム(Eu)との混合物を還元性ガス中で焼成し
て二価のユーロピウム賦活ハロゲン化アルカリ土類金属
螢光体を作り、か\る輝尽性螢光体をバインダと混合し
て基材フィルム上に塗布し、この上に接着剤を用いてマ
イラーの薄膜を貼着してシート状として使用されている
X-ray image conversion sheets are made by baking a mixture of alkaline earth metal halides and europium halides (Eu) on a transparent resin film such as polyethylene terephthalate film (hereinafter commonly referred to as Mylar) in a reducing gas. A divalent europium-activated alkaline earth metal halide phosphor is prepared, the stimulable phosphor is mixed with a binder and applied onto a base film, and an adhesive is applied on top of this. It is used in sheet form by pasting a thin film of Mylar.

このような輝尽性螢光体についてはすでに各種の研究が
行われており、特性の優れた輝尽性螢光体として二価の
ユーロピウム賦活塩化臭化バリウム(BaCI Br 
: nu”″)が発表されている。例えば(特開昭6l
−78892)。
Various studies have already been conducted on such photostimulable phosphors, and divalent europium-activated barium chloride bromide (BaCI Br) is a photostimulable phosphor with excellent properties.
: nu"") has been announced. For example (JP-A-6L
-78892).

こ覧で、輝尽性螢光発光の原理は螢光体結晶にX線が照
射されると、価電子帯にある電子が伝導電子帯に励起さ
れるが、直ちに禁止帯にある不純物準位に落ち込んで安
定化する。
The principle of photostimulable fluorescence is that when a phosphor crystal is irradiated with X-rays, electrons in the valence band are excited to the conduction band, but the impurity level in the forbidden band is immediately excited. It becomes depressed and stabilizes.

これがX線エネルギーの蓄積記録に対応する。This corresponds to the accumulation record of X-ray energy.

次に、読み取りのためにレーザ光を照射すると不純物準
位にある電子はレーザ光のエネルギーを吸収して伝導電
子帯に励起された後、元の価電子帯に落ちるが、この際
に螢光体は螢光を発生し、その明るさは不純物単位の捕
獲電子量に比例する。
Next, when a laser beam is irradiated for reading, the electrons in the impurity level absorb the energy of the laser beam and are excited to the conduction electron band, and then fall back to the valence band, but at this time, the fluorescence is emitted. The body emits fluorescence, and its brightness is proportional to the amount of captured electrons per impurity unit.

以上のことからX線画像変換シートの表面を微小スポッ
ト(直径100μm)のレーザ光で走査し、各画素毎の
螢光発光を干渉フィルタを用いて検出し、光電子増倍管
で電子信号に変換して記録するものである。
Based on the above, the surface of the X-ray image conversion sheet is scanned with a tiny spot (100 μm in diameter) of laser light, the fluorescence emission of each pixel is detected using an interference filter, and then converted into an electronic signal using a photomultiplier tube. It is to be recorded.

か−る輝尽性螢光体においてEu”は発光中心形成に当
たって効果的な元素であり、Eu化合物例えば臭化ユー
ロピウム(EuBr+)の還元により作られている。
In such stimulable phosphors, Eu" is an effective element in forming luminescent centers, and is produced by reduction of Eu compounds such as europium bromide (EuBr+).

具体的には塩化バリウム(BaCl りと臭化バリウム
(BaBrz)とBaBr2とを蒸溜水に溶解させた後
に蒸発乾固を行い、この混合物を水素(Hりと窒素(N
t)の混合ガス流中で800〜900°Cの温度で還元
焼成することによりBaCI Or : Eu”からな
る輝尽性螢光体が形成されている。
Specifically, barium chloride (BaCl), barium bromide (BaBrz), and BaBr2 are dissolved in distilled water, then evaporated to dryness, and this mixture is dissolved into hydrogen (H) and nitrogen (N).
A photostimulable phosphor made of BaCI Or :Eu'' is formed by reduction firing at a temperature of 800 to 900° C. in a mixed gas flow of step t).

次に、この螢光体を粉砕した後、この粉体とバインダ(
例えばポリメチルメタクリレート略称PMMA)と溶剤
(例えばトルエン)とを混練して塗布液を作り、これを
樹脂フィルムの上に均一に塗布し、溶剤を乾燥させた後
、この上に樹脂フィルム(例えばマイラー)を貼着する
ことによりX線画像変換シートが作られている。
Next, after crushing this phosphor, this powder and binder (
For example, make a coating liquid by kneading polymethyl methacrylate (PMMA) and a solvent (e.g. toluene), apply this uniformly on a resin film, dry the solvent, and then apply a resin film (e.g. mylar) on top of this. ) is attached to make an X-ray image conversion sheet.

然し、照射X線量を更に減少させたいと云う要望は大き
く、この改良が求められている。
However, there is a strong desire to further reduce the amount of irradiated X-rays, and improvements are being sought.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

医療診断や材料の!1M!ItなどでX線画像シートの
使用頻度が増すに従って、照射X線量を更に少なくした
いと云う要求は大きい。
Medical diagnosis and materials! 1M! As the frequency of use of X-ray image sheets increases, there is a growing demand to further reduce the amount of X-rays irradiated.

そこで、更に高感度化した輝尽性螢光体を実用化するこ
とが課題である。
Therefore, the challenge is to put into practical use a photostimulable phosphor with even higher sensitivity.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は ((1−x)MAXA□ ・xM” X”□) (1−
y)(MCXC・(1+δ) ” XD:l ) y/
2  : zEu2+(1) 但し、 MAとMlはマグネシウム(Mg) 、カルシウム(C
a)MAとMBはマグネシウム(Mg),カルシウム(
Ca)のうちの何れか\らなる元素、 MCはリチウム(Li)或いはバリウム(Ba) 、M
Cはリチウム(Li),ナトリウム(Na)のうちの何
れか\らなる元素、 Meはスカンジウム(Sc) 、  イツトリウム(Y
)。
The above problem is ((1-x)MAXA□ ・xM”X”□) (1-
y) (MCXC・(1+δ) ”XD:l) y/
2: zEu2+ (1) However, MA and Ml are magnesium (Mg), calcium (C
a) MA and MB are magnesium (Mg), calcium (
MC is lithium (Li) or barium (Ba), M
C is an element consisting of either lithium (Li) or sodium (Na), and Me is an element consisting of scandium (Sc) or yttrium (Y
).

ランタン(La) 、ガドリニウム(Gd)或いはルテ
シランタン(La)のうちの何れか覧らなる元素、XA
 、Xll 、XC、XDは塩素(Clfi ) 、臭
素(Br)或いは沃素(1)の何れかからなるハロゲン
元素であって、XAとXlが同じの場合はない。
An element consisting of lanthanum (La), gadolinium (Gd) or lutesilanthane (La), XA
, Xll, XC, and XD are halogen elements consisting of chlorine (Clfi), bromine (Br), or iodine (1), and there is no case where XA and Xl are the same.

Xは 0.4 <x <0.6の範囲、yは  O< 
y <0.2の範囲、 δは −0,5<δ<0.5の範囲、 2は 0.0001<z <0.05の範囲、で表わさ
れる結晶を用いて、放射線の照射によりこの結晶中にエ
ネルギーを蓄積し、光励起により輝尽性の発光をするこ
とを特徴とする輝尽性螢光体を構威し、この製法として
は組成式(1)に対応する組成比となるように螢光体原
料を混合した後、この混合物を還元性雰囲気中で焼結し
、輝尽性の発光を示す螢光体を得る製造方法をとること
により解決することができる。
X is in the range of 0.4 < x < 0.6, y is in the range of O <
Using a crystal in the range of y < 0.2, δ in the range -0.5 < δ < 0.5, and 2 in the range 0.0001 < z < 0.05, this is achieved by irradiation with radiation. It is a photostimulable phosphor that stores energy in a crystal and emits photostimulable light upon photoexcitation, and the manufacturing method is such that the composition ratio corresponds to the composition formula (1). This problem can be solved by a method of manufacturing a phosphor that exhibits stimulable luminescence by mixing phosphor raw materials and sintering the mixture in a reducing atmosphere.

〔作用〕[Effect]

本発明はBaCI Br : tiu”を基本&1lt
cとする従来の輝尽性螢光体を高感度化する方法として
、構成元素の一部を同族の元素で置き換えると共に、原
子価制御を行うものである。
The present invention is based on "BaCI Br: tiu"& 1lt
As a method of increasing the sensitivity of the conventional photostimulable phosphor (c), some of the constituent elements are replaced with elements of the same group, and valence control is performed.

その方法は次のようである。The method is as follows.

■、構成元素の一部置き換え、 If)Baの一部を周期率表で同じIIa族のMg。■, Partial replacement of constituent elements, If) A part of Ba is Mg, which belongs to the same group IIa in the periodic table.

Ca、Srの何れかと置換を行う。Replace with either Ca or Sr.

か\る元素を(1)式ではMAとM″として示した。In formula (1), these elements are shown as MA and M''.

1 2) Br、Cm!からなるハロゲン元素に■を加
え部分的に置換を行う。
1 2) Br, Cm! Partial substitution is performed by adding ■ to the halogen element consisting of.

か\る元素を(1)式ではXA 、  XB 、  X
Cとして示した。
In formula (1), the elements are XA , XB , X
Shown as C.

■、原子価制御、 1l−1)2価であるBaを1価の元素と3価の元素と
で置換を行う。
(2) Valency control, 1l-1) Replace divalent Ba with a monovalent element and a trivalent element.

こ\で、1価の元素としてはL t + Na + K
 +Rbが適しており、か覧る元素を(1)式ではMC
として示した。
Here, as a monovalent element, L t + Na + K
+Rb is suitable, and the element to be detected is MC in formula (1).
It was shown as

また、3価の元素としてはSc、  Y、 La。In addition, trivalent elements include Sc, Y, and La.

Gd、Luが適しており、か\る元素を(1)式ではM
Oとして示した。
Gd and Lu are suitable, and the element is M in formula (1).
Indicated as O.

次に1.このような原子価制御を行った構成体を中性に
するためには添加原子数の調整が必要であり、この数を
(1)式ではδとして表した。
Next 1. In order to make a construct with such valence control neutral, it is necessary to adjust the number of added atoms, and this number is expressed as δ in equation (1).

以上のようにして輝尽性螢光体を構成する原子のイオン
半径に変化をもたせ、また原子価制御を行うことによっ
て輝尽性螢光体を形成する不純物準位の数が増し、従っ
て放射線照射によりトラップされる電子数が増すことか
ら、高感度化が可能となる。
By changing the ionic radius of the atoms constituting the photostimulable phosphor as described above and controlling the valence, the number of impurity levels forming the photostimulable phosphor increases, and therefore the radiation Since the number of electrons trapped by irradiation increases, higher sensitivity becomes possible.

次に、か!る輝尽性螢光体の製造方法としては(1)式
で表す組゛成式のように螢光体原料を秤量し、各種ミキ
サー、■型ブレンダ、ポール貴ル、ロンド案ル等通常の
混合機を用いて混合を行う。
Next, huh! The method for producing the stimulable phosphor is to weigh the phosphor raw materials as shown in the composition formula shown in equation (1), and use a conventional mixer, type blender, Pall kil, Ronde kettle, etc. Mixing is performed using a mixer.

なお、螢光体原料は吸湿性があるために調整と混合は乾
燥雰囲気か不活性ガス雰囲気中で行うのが好ましい。
Incidentally, since the phosphor raw material is hygroscopic, it is preferable to carry out the adjustment and mixing in a dry atmosphere or an inert gas atmosphere.

次に、混合した螢光体原料をアルミナ坩堝2万英坩堝2
石英ボートなどの耐熱性容器に充填して焼成炉に入れて
焼成を行うが、本発明に係るEu賦活アルカリ土類複合
ハロゲン化物螢光体では2価のEuを賦活剤として使用
するため、原料として添加している3価のEuは2価に
還元する必要がある。
Next, the mixed phosphor raw materials were placed in a 20,000-inch alumina crucible.
The Eu-activated alkaline earth composite halide phosphor of the present invention uses divalent Eu as an activator, so it is filled in a heat-resistant container such as a quartz boat and placed in a firing furnace for firing. It is necessary to reduce the trivalent Eu added as divalent Eu.

そのため、還元性雰囲気の使用が必須であり、30容量
%以下の水素ガス(N2)を含む窒素ガス(N2)雰囲
気、−酸化炭素(CO)とN2との混合ガスなどが用い
られる。
Therefore, it is essential to use a reducing atmosphere, such as a nitrogen gas (N2) atmosphere containing 30% by volume or less of hydrogen gas (N2), a mixed gas of -carbon oxide (CO) and N2, etc.

次に焼成温度は螢光体原料の種類や組成などにより異な
るが従来と同じ<600〜1000°Cが用いられ、特
に700〜950°Cが適当である。
Next, the firing temperature varies depending on the type and composition of the phosphor raw material, but the same temperature as in the past is used, from <600 to 1000°C, and 700 to 950°C is particularly suitable.

また、焼成時間は螢光体原料の種類1組成、焼成温度、
容器への充填度などにより異なるがl〜12時間である
In addition, the firing time depends on the type and composition of the phosphor raw material, the firing temperature,
It takes 1 to 12 hours, although it varies depending on the degree of filling of the container.

また、焼結して得た螢光体は焼結しているので粉砕と分
級が必要であるが、この工程においても吸湿がおこるの
で、乾燥雰囲気中で行う必要がある。
Furthermore, since the phosphor obtained by sintering is sintered, it requires pulverization and classification, but since moisture absorption occurs in this process as well, it is necessary to carry out the process in a dry atmosphere.

〔実施例〕〔Example〕

実施例1 : ((BaC1z)o、4s(BaBrz
)o、5o(LiCI  5cC1z)o、ozs :
 O,0OZELI 〕(D製造例モル比で目標値のm
酸比となるようにそれぞれの原料を秤量し、ボールごル
で12時間に亙って混合した。
Example 1: ((BaC1z)o, 4s(BaBrz
) o, 5o (LiCI 5cC1z) o, ozs:
O,0OZELI] (D production example molar ratio, target value m
Each raw material was weighed so as to match the acid ratio, and mixed in a bowl for 12 hours.

こ\で、EuはEuCl3を原料として添加しである。Here, Eu is added from EuCl3 as a raw material.

このようにして作った螢光体原料を石英ボートに入れ、
これを882°Cに保ち、20容量%のN2を含むHe
ガスを流速101/分に流したチューブ炉に入れ、90
分に亙って焼成を行い、焼成が終わった後は同様な雰囲
気中で室温にまで冷却した。
The phosphor raw material made in this way was put into a quartz boat,
This was kept at 882°C, and He containing 20% by volume of N2 was heated.
Place the gas in a tube furnace with a flow rate of 101/min,
Firing was carried out for several minutes, and after the firing was completed, it was cooled to room temperature in the same atmosphere.

得られた螢光体は焼結しているので馬場製の乳鉢で粉砕
を行い、 (BaC1z)o、4s(BaBrz)o、5o(Li
C1−3cCI3)o、ozs  :。、 002EL
Iの組成比をした■の粉末を得た。
The obtained phosphor was sintered, so it was crushed in a Baba mortar to give (BaC1z)o, 4s(BaBrz)o, 5o(Li
C1-3cCI3) o, ozs:. , 002EL
A powder (■) having a composition ratio of I was obtained.

次に、この螢光体粉末にX線を照射し、これに波長が7
80nmの半導体レーザを照射し、それによって発生す
る波長400nmの輝尽光を光電子増倍管を用いて検出
した。
Next, this phosphor powder is irradiated with X-rays, which have a wavelength of 7
A semiconductor laser of 80 nm was irradiated, and the resulting stimulated light with a wavelength of 400 nm was detected using a photomultiplier tube.

実施例2〜11: 実施例1と同様に目標値の組成比となるように原料を秤
量し、実施例1と同様し焼成して■〜■の組成比をもつ
螢光体を作った。
Examples 2 to 11: Raw materials were weighed in the same manner as in Example 1 to achieve the target composition ratios, and fired in the same manner as in Example 1 to produce phosphors having composition ratios of ① to ②.

(BaC1z)o、as(BaBrz)o、5a(Na
C11,acls)o、ozs: o、 ooJu  
             ”’■(BaCIz)o、
4s(BaBrz)o、4s(K CI  5cC1t
)o、os: o、 oosEu          
     ・・・■(BaC1z)ols(BaBrz
)ols(K Br  −5cBr3)o、os: o
、 ootEu                  
・・・■(BaC1z)o、N5(BaBrz)o、5
o(RbCI  ・YCl3)0.025: o、 o
BEu                  ・・、■
(BaC1z)o、N5(BaBrz)o、5o(Rb
Br  −YBr3)o、ozs: o、 o6zEu
                  ・、、■(Ba
C1z) o、 so (BaBrz) 0.45 (
NaC16,q ・LuCl:+) 0.025: o
、 ooJLI                  
−(D(BaC1z)o、N5(BaBrz)o、5o
(LiC1−LuC1:+)o、ozs: o、 oo
Ju                  −@(Ba
C1z)o、4s(BaBrz)o、5o(RbC1−
LaC13)o、ozs: o、 (,6zEu   
               ・・―■(BaC1x
)o、4s(BaBrz)o、4s(RbC1−LaC
1:+)o、os: o、 oozBu       
           ”’(1!D(BaC1t)o
、4o(BaBrz)o、4s’(RbCI   La
C13)o、ots: o、 ooz、Eu     
             噂”@以上の螢光体粉末に
X線を照射し、これに波長が780n111の半導体レ
ーザを照射し、それによって発生する波長400nmの
輝尽光を光電子増倍管を用いて検出した。
(BaC1z)o, as(BaBrz)o, 5a(Na
C11, acls) o, ozs: o, ooJu
”'■(BaCIz)o,
4s(BaBrz)o, 4s(K CI 5cC1t
) o, os: o, oosEu
...■(BaC1z)ols(BaBrz
)ols(K Br -5cBr3)o, os: o
, ootEu
... ■ (BaC1z) o, N5 (BaBrz) o, 5
o(RbCI ・YCl3)0.025: o, o
BEu...,■
(BaC1z)o, N5(BaBrz)o, 5o(Rb
Br -YBr3) o, ozs: o, o6zEu
・,,■(Ba
C1z) o, so (BaBrz) 0.45 (
NaC16,q ・LuCl:+) 0.025: o
, ooJLI
-(D(BaC1z)o, N5(BaBrz)o, 5o
(LiC1-LuC1:+)o, ozs: o, oo
Ju-@(Ba
C1z)o, 4s(BaBrz)o, 5o(RbC1-
LaC13) o, ozs: o, (,6zEu
・・・――■(BaC1x
)o, 4s(BaBrz)o, 4s(RbC1-LaC
1:+) o, os: o, oozBu
”'(1!D(BaC1t)o
, 4o(BaBrz)o, 4s'(RbCI La
C13) o, ots: o, ooz, Eu
A phosphor powder with a phosphor size of 780n111 was irradiated with X-rays, and the resulting stimulated light with a wavelength of 400nm was detected using a photomultiplier tube.

比較例: ((BaC1z)o、5o(BaBrz)o
、so : O,0OIt!u )の製造例 実施例1と同様に目標値の組成比となるように原料を秤
量し、実施例1と同様し焼成した後に粉砕して従来の&
Il或比の螢光体を作った。
Comparative example: ((BaC1z)o, 5o(BaBrz)o
,so: O,0OIt! Production example of u) The raw materials were weighed so that the target composition ratio was obtained in the same manner as in Example 1, and the same method as in Example 1 was performed by baking and pulverizing.
I made a certain amount of phosphor.

第1表 次に、この螢光体粉末にX線を照射し、これに波長が7
80nmの半導体レーザを照射し、それによって発生す
る波長400nmの輝尽光を光電子増倍管を用いて検出
し、この感度を標準感度とした。
Table 1 Next, this phosphor powder was irradiated with X-rays, and the wavelength was 7.
A semiconductor laser of 80 nm was irradiated, and the resulting stimulated light with a wavelength of 400 nm was detected using a photomultiplier tube, and this sensitivity was defined as the standard sensitivity.

第1表はこの比較例の感度と実施例■〜■の感度とを比
較したものである。
Table 1 compares the sensitivity of this comparative example with the sensitivities of Examples (1) to (2).

この結果から判るよう 、組成によって従来よりも優れ
た感度のものが得られ、特にBaC1,とBaBr、を
RbClとLaCl3で置換したものは感度が向上して
おり、半導体レーザによる読み出しに有利であることが
判る。
As can be seen from this result, superior sensitivity can be obtained depending on the composition, and in particular, those in which BaCl and BaBr are replaced with RbCl and LaCl3 have improved sensitivity, which is advantageous for readout with a semiconductor laser. I understand that.

〔発明の効果〕〔Effect of the invention〕

本発明の実施により一1半導体レーザによる読み出しに
有利な波長780nmでの輝尽発光が向上したため、診
断用のX線照射量を減少させることができる。
By implementing the present invention, stimulated luminescence at a wavelength of 780 nm, which is advantageous for readout using an 11 semiconductor laser, has been improved, so the amount of X-ray irradiation for diagnosis can be reduced.

Claims (2)

【特許請求の範囲】[Claims] (1)次の組成式で表わされる結晶よりなり、放射線の
照射により該結晶中にエネルギーを蓄積し、光励起によ
り輝尽性の発光をすることを特徴とする輝尽性螢光体。 {(1−x)M^AX^A_2・xM^BX^B_2}
(1−y)・{M^CX^C・(1+δ)M^DX^D
_3}y/2:zEu^2^+(1)・・・(1)但し
、 M^AとM^Bはマグネシウム(Mg),カルシウム(
Ca),ストロンチウム(Sr)或いはバリウム(Ba
)のうちの何れかゝらなる元素、 M^Cはリチウム(Li),ナトリウム(Na),カリ
ウム(K)或いはルビジウム(Rb)のうちの何れかゝ
らなる元素、 M^bはスカンジウム(Sc),イットリウム(Y),
ランタン(La),ガドリニウム(Gd)或いはルテシ
ウム(Lu)のうちの何れかゝらなる元素、X^A,X
^B,X^C,X^Dは塩素(Cl),臭素(Br)或
いは沃素(I)の何れかからなるハロゲン元素であって
、X^AとX^Bが同じの場合はない。 xは0.4<x<0.6の範囲、 yは0<y<0.2の範囲、 δは−0.5<δ<0.5の範囲、 zは0.0001<z<0.05の範囲、 の値である。
(1) A photostimulable phosphor comprising a crystal represented by the following compositional formula, which stores energy in the crystal upon irradiation with radiation and emits stimulable light upon photoexcitation. {(1-x)M^AX^A_2・xM^BX^B_2}
(1-y)・{M^CX^C・(1+δ)M^DX^D
_3}y/2:zEu^2^+(1)...(1) However, M^A and M^B are magnesium (Mg), calcium (
Ca), strontium (Sr) or barium (Ba)
), M^C is an element consisting of lithium (Li), sodium (Na), potassium (K), or rubidium (Rb), M^b is scandium ( Sc), Yttrium (Y),
An element consisting of lanthanum (La), gadolinium (Gd) or lutetium (Lu), X^A,
^B, X^C, and X^D are halogen elements consisting of chlorine (Cl), bromine (Br), or iodine (I), and there is no case where X^A and X^B are the same. x is in the range 0.4<x<0.6, y is in the range 0<y<0.2, δ is in the range -0.5<δ<0.5, z is 0.0001<z<0 In the range of .05, the value of .
(2)請求項(1)記載の組成式(1)に対応する組成
比となるように螢光体原料を混合した後、該混合物を還
元性雰囲気中で焼結し、輝尽性の発光を示す螢光体を得
ることを特徴とする螢光体の製造方法。
(2) After mixing the phosphor raw materials so as to have a composition ratio corresponding to the composition formula (1) described in claim (1), the mixture is sintered in a reducing atmosphere to produce photostimulable luminescence. 1. A method for producing a phosphor, characterized by obtaining a phosphor exhibiting .
JP16785489A 1989-06-29 1989-06-29 Phosphor exhibiting accelerated phosphorescence and its manufacture Pending JPH0333187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16785489A JPH0333187A (en) 1989-06-29 1989-06-29 Phosphor exhibiting accelerated phosphorescence and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16785489A JPH0333187A (en) 1989-06-29 1989-06-29 Phosphor exhibiting accelerated phosphorescence and its manufacture

Publications (1)

Publication Number Publication Date
JPH0333187A true JPH0333187A (en) 1991-02-13

Family

ID=15857322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16785489A Pending JPH0333187A (en) 1989-06-29 1989-06-29 Phosphor exhibiting accelerated phosphorescence and its manufacture

Country Status (1)

Country Link
JP (1) JPH0333187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864395B2 (en) 1999-05-04 2005-03-08 Air Products And Chemicals, Inc. Acetylenic diol ethylene oxide/propylene oxide adducts and processes for their manufacture
JP2011208433A (en) * 2010-03-30 2011-10-20 Takashi Takeda Frame member for louver blade, method for manufacturing the same, and framework structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864395B2 (en) 1999-05-04 2005-03-08 Air Products And Chemicals, Inc. Acetylenic diol ethylene oxide/propylene oxide adducts and processes for their manufacture
JP2011208433A (en) * 2010-03-30 2011-10-20 Takashi Takeda Frame member for louver blade, method for manufacturing the same, and framework structure

Similar Documents

Publication Publication Date Title
JP3258183B2 (en) Tetrahedral rare earth activated alkaline earth metal fluorohalide-based stimulable phosphor, method for producing the same, and radiation image conversion panel
JPS5956479A (en) Radiation image conversion
US7053385B2 (en) Radiographic image conversion panel and method for manufacturing the same
JPH0214394B2 (en)
JP2002212550A (en) Method for producing rare earth-activated alkaline earth metal fluoride halide-based phosphorescent particle, and rare earth-activated alkaline earth metal fluoride halide-based phosphorescent particle
JPH0333187A (en) Phosphor exhibiting accelerated phosphorescence and its manufacture
US20040091410A1 (en) Preparation method of inorganic compound
JPS5822063B2 (en) Phosphor for X-ray enhanced screens
JPH0784591B2 (en) Radiation image conversion method
JPH0341187A (en) Phosphor with accelerated phosphorescence and its preparation
JP2727273B2 (en) Phosphor and radiation image conversion panel
JP2004285160A (en) Photostimulable phosphor, its preparation method, and radiation-image conversion panel
JPH0514751B2 (en)
JPH0341186A (en) Phosphor with accelerated phosphorescence and its preparation
JP3938820B2 (en) Method for producing rare earth activated alkaline earth metal fluoride halide phosphor, and radiation image conversion panel using rare earth activated alkaline earth metal fluoride halide phosphor obtained by the production method
JPH058754B2 (en)
JPH0629404B2 (en) Fluorescent body and its manufacturing method
JPH09291278A (en) Rare earth-activated barium fluoride halide-based fluorescent substance powder and its production
JP2657595B2 (en) Phosphor and radiation image conversion panel
JPH09291277A (en) Cerium-activated barium fluoride halide-based fluorescent substance and radiation image-converting panel
JPH05230452A (en) Production of halide phosphor, phosphor produced thereby and x-ray image-converting sheet prepared by using same
JPH10239499A (en) Radiation image converting panel and manufacture of stimulable phosphor used therefor
JPH0427534B2 (en)
JPH02294386A (en) Stimulating fluorescent substance, composition for producing same substance and production of same substance
JPH07110944B2 (en) Composite oxide phosphor and method for producing the same