JPH0333062A - Oxidation-resistant carbon material and its manufacture - Google Patents

Oxidation-resistant carbon material and its manufacture

Info

Publication number
JPH0333062A
JPH0333062A JP1164027A JP16402789A JPH0333062A JP H0333062 A JPH0333062 A JP H0333062A JP 1164027 A JP1164027 A JP 1164027A JP 16402789 A JP16402789 A JP 16402789A JP H0333062 A JPH0333062 A JP H0333062A
Authority
JP
Japan
Prior art keywords
carbon material
oxidation
boron oxide
sol
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1164027A
Other languages
Japanese (ja)
Inventor
Tomoji Oishi
知司 大石
Shigeru Kikuchi
茂 菊地
Sumitaka Goto
後藤 純孝
Ken Takahashi
研 高橋
Tetsuo Nakazawa
哲夫 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1164027A priority Critical patent/JPH0333062A/en
Publication of JPH0333062A publication Critical patent/JPH0333062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a lightweight surface tile having high strength and useful for space shuttles or the like by incorporating the material with B2O3 so that the amt. of the material to be oxidized and corroded in the air is regulated to the prescribed one or below. CONSTITUTION:A sol-gel reacting stage of which a carbon material is impregnated into a sol soln. obtd. by hydrolyzing boron alkoxide in the formula (R denotes alkyl) in the presence of water, which is them discharged and dried is repeatedly executed. Next, the stage is repeated for about 10 times to produce a B2O3- contg. oxidation-resistant carbon material having >=95% surface coating rate of B2O3 onto the carbon material and having <=1.8X10<-3>cm<2>.h oxidized and corroded amt. at 800 deg.C in the air. According to necessary, the carbon material is incorporated to manufacture the surface tile for space shuttles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸化ホウ素を含む耐酸化性炭素材料に係り、
特に、宇宙往還機等の構成部品として好適な耐酸化性炭
素材料に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxidation-resistant carbon material containing boron oxide,
In particular, the present invention relates to oxidation-resistant carbon materials suitable as components of spacecraft and the like.

〔従来の技術〕[Conventional technology]

これまで炭素材料に耐酸化性を付与した材料としては、
カーボン、第22巻、6号(1984年)第507頁〜
第511頁(Carbon、 vo Q 22 、 N
(1f3 (1984)、pp507〜511)に記載
の材料がある。この材料は、炭素材料にアンモニウムボ
レイト(Ammonium borate)、 n−ア
ミルボレイト(n −a+iyl borate)、 
トリブチルボレイト(tri−buthyl bora
te)等の有機ホウ素化合物を含浸させたものである。
Until now, materials that have added oxidation resistance to carbon materials include:
Carbon, Vol. 22, No. 6 (1984), p. 507~
Page 511 (Carbon, vo Q 22, N
(1f3 (1984), pp507-511). This material contains ammonium borate, n-amyl borate (n-a+iyl borate), and carbon material.
Tri-butyl borate
It is impregnated with an organic boron compound such as te).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記技術は、有機ホウ素化合物を炭素材料上に
コーティングしたものであり、常温付近では、炭素材料
への耐酸化性付与に有効な酸化ホウ素は生成していない
。酸化ホウ素は、コーテイング材を温度上昇していく過
程で生成する。この際、有機ホウ素化合物上の有機置換
基が分解した後、酸素と反応し、酸化ホウ素が生成する
。しかし、表面被覆された有機ホウ素化合物より有機置
換基が分解離脱する際、被覆膜には無数のピンホール等
が生成し、表面コーティングの効果が低下する。このた
め、耐酸化性は空気中、800℃での酸化耐食量が2.
lX10−3g/−・hと低いものであった。
However, the above technique involves coating a carbon material with an organic boron compound, and boron oxide, which is effective in imparting oxidation resistance to the carbon material, is not produced at around room temperature. Boron oxide is produced during the process of increasing the temperature of the coating material. At this time, after the organic substituent on the organic boron compound is decomposed, it reacts with oxygen to generate boron oxide. However, when the organic substituent group decomposes and leaves the surface-coated organic boron compound, numerous pinholes and the like are generated in the coating film, reducing the effectiveness of the surface coating. Therefore, the oxidation resistance in air at 800°C is 2.
It was as low as 1×10−3 g/−·h.

本発明の目的は、炭素材料上への酸化ホウ素の表面被覆
効果を高め、耐酸化性の良好な炭素材料を得ることにあ
る。また、耐酸化性の良好な宇宙往還機用表面タイルを
得ることにある。
An object of the present invention is to enhance the surface coating effect of boron oxide on a carbon material and to obtain a carbon material with good oxidation resistance. Another object of the present invention is to obtain a surface tile for a spacecraft with good oxidation resistance.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的をゾル・ゲル法を用いて酸化ホウ素
を合成し、炭素材料に含浸被覆し、炭素材料上への酸化
ホウ素の表面被覆効果を高めることにより遠戚したもの
である。本発明により空気中、800℃での酸化浸食量
が1.8 X 10−3g/a(−h以下の炭素材料を
得ることができる。この炭素材料の作製方法は、ボロン
アルコキシドを加水分解する工程を含み、ゾル・ゲル法
によって合成されたゾル溶液中に炭素材料を真空中で含
浸した後、乾燥するという工程で処理することを特徴と
するものである。これにより、酸化ホウ素の炭素材料上
への表面被覆率を95%以上としたものである。また、
上記製法により作製した炭素材料を宇宙往還機用表面タ
イルとしたものである。
The present invention is a distant relative of the above object by synthesizing boron oxide using a sol-gel method, impregnating and coating it on a carbon material, and enhancing the surface coating effect of boron oxide on the carbon material. According to the present invention, it is possible to obtain a carbon material with an oxidative erosion amount of 1.8 x 10-3 g/a (-h or less) in air at 800°C.The method for producing this carbon material involves hydrolyzing boron alkoxide. It is characterized by a process of impregnating a carbon material in a sol solution synthesized by the sol-gel method in a vacuum and then drying it.Thus, the carbon material of boron oxide The upper surface coverage is 95% or more.Also,
The carbon material produced by the above method was used as a surface tile for a spacecraft.

〔作用〕[Effect]

本発明に用いられるボロンアルコキシドは一般弐B (
OR)3(R:アルキル基)で表わされる化合物である
。ボロンアルコキシドは、水の存在下に速やかに加水分
解して(ROhBOHで表わされるアルコキシ基の一部
が水酸基で置換された構造を持つ化合物を生成する。こ
のように部分的に加水分解して生成した中間体は、さら
に、他のボロンアルコキシド分子と反応し、 なる酸化ホウ素の縮合生成物となって成長していく。本
発明はこのような縮合生成物を炭素材料に含浸被覆する
ことにより耐酸化性炭素材料を得るものである。
The boron alkoxide used in the present invention is general 2B (
OR) 3 (R: alkyl group). Boron alkoxide rapidly hydrolyzes in the presence of water (ROhBOH), producing a compound with a structure in which a portion of the alkoxy group is substituted with a hydroxyl group. The intermediate further reacts with other boron alkoxide molecules and grows into a condensation product of boron oxide.The present invention provides acid-resistant coating by impregnating a carbon material with such a condensation product. This is to obtain a carbonaceous material.

ここで酸化ホウ素を用いると耐酸化性向上に効果がある
のは次のように説明される。通常、炭素材料には表面に
結合が欠けているダングリングボンドが存在する。この
ダングリングボンドは反応活性であり酸素と反応し易い
。このため、炭素材料を空気中で熱すると燃焼し、CO
zとCOが生成してしまう。酸化ホウ素は、このダング
リングボンド間の距離とほぼ等しい間隔を持つホウ素結
合酸素を持つため、炭素材料上に表面被覆した時、この
ダングリングボンドを押え、a索との反応を抑制するこ
とができる(第1図)。
The reason why boron oxide is effective in improving oxidation resistance is explained as follows. Usually, carbon materials have dangling bonds, which are missing bonds on the surface. This dangling bond is reactive and easily reacts with oxygen. For this reason, when carbon materials are heated in the air, they burn and CO
z and CO will be generated. Since boron oxide has boron-bonded oxygen with a distance approximately equal to the distance between these dangling bonds, when it is coated on the surface of a carbon material, it can hold down these dangling bonds and suppress the reaction with a-cords. Yes (Figure 1).

また、ゾル・ゲル法によって作製した酸化ホウ素のゾル
溶液はすでに溶液中に酸化ホウ素の無機重合体を含むた
め、炭素材料上に、直接、酸化ホウ素の被覆膜を作製す
ることができる。このため、有機ホウ素化合物を被覆し
た場合と異なり、ホウ素結合有機物が温度上昇の過程で
分解飛散することもないため、被覆膜上のピンホール等
を減少させ表面コーティング効果を増加させることがで
きる。
Furthermore, since the sol solution of boron oxide prepared by the sol-gel method already contains an inorganic polymer of boron oxide in the solution, a coating film of boron oxide can be directly formed on the carbon material. Therefore, unlike when coating with an organic boron compound, the boron-bonded organic substance does not decompose and scatter during the temperature rise process, reducing pinholes on the coating film and increasing the surface coating effect. .

ゾル溶液を被覆する際、真空含浸、乾燥の工程をくり返
すことにより、特に酸化ホウ素の表面被覆率をより高め
ることができる。これによって、得られた炭素材料への
酸化ホウ素の表面被覆率は95%以上になる。こうして
1作製した炭素材料は、空気中、800℃での酸化浸食
量が1.8×10−3g/aJ−h以下のものを作製す
ることができる。従って1本炭素材料は宇宙往還機等の
軽量。
When coating with a sol solution, by repeating the steps of vacuum impregnation and drying, it is possible to further increase the surface coverage, especially of boron oxide. As a result, the surface coverage of boron oxide on the obtained carbon material becomes 95% or more. One carbon material thus produced can have an oxidative erosion amount of 1.8×10 −3 g/aJ−h or less at 800° C. in air. Therefore, a single carbon material is lightweight for spacecraft, etc.

高強度表面タイルとして好適である。Suitable as a high-strength surface tile.

従来の有機ホウ素化合物を被覆したものでは、被覆を繰
り返す過程で熱処理が必要なため、下地の炭素材料の酸
化侵食が進んでしまう。従って、被覆を繰り返して被覆
率を増加させることはできない。
Conventional materials coated with organic boron compounds require heat treatment during the repeated coating process, resulting in accelerated oxidation erosion of the underlying carbon material. Therefore, it is not possible to increase the coverage by repeating coating.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

〈実施例1〉 ボロンブトキシドの1moQ/11  エタノール溶液
を作製した。この溶液200mflに水の1.5rao
Q/Qのエタノール溶液200mQを三時間かけて添加
した。ついで、この溶液を70℃で三時間、反応撹拌し
た。得られたこの溶液中に立方体形に作製した炭素材料
ブロック(1o X 10 X10m)を入れ、真空デ
シケータ中で真空含浸を行なった。ついでこの炭素材料
を取り出し、100℃で乾燥した。この真空含浸、乾燥
の工程を十回くり返した。この材料の空気中、800℃
での耐酸化性試験結果を第1図に示す。本材料の酸化浸
食量は1.6 X 10−3g/cJ−hと有機ホウ素
化合物を含浸したもの(2,↓X 10−”g /aJ
−h ) 。
<Example 1> A 1moQ/11 ethanol solution of boron butoxide was prepared. 1.5 rao of water to 200 mfl of this solution
200 mQ of Q/Q ethanol solution was added over 3 hours. This solution was then reacted and stirred at 70°C for 3 hours. A cube-shaped carbon material block (10 x 10 x 10 m) was placed in the resulting solution, and vacuum impregnation was performed in a vacuum desiccator. This carbon material was then taken out and dried at 100°C. This process of vacuum impregnation and drying was repeated ten times. This material in air at 800℃
The results of the oxidation resistance test are shown in Figure 1. The amount of oxidative erosion of this material is 1.6 x 10-3g/cJ-h and that of the material impregnated with an organic boron compound (2,↓X 10-”g/aJ-h)
-h).

及び、コーティングしないもの(28X 10−’g/
crj−11)に比べ、耐酸化性が向上している。
and uncoated (28X 10-'g/
oxidation resistance is improved compared to crj-11).

ゾル・ゲル法で酸化ホウ素を炭素材料上に表面被瑣した
材料の酸化ホウ素の表面被覆率は96%であった6一方
、有機ホウ素化合物を表面被覆した材料では、酸化ホウ
素の表面被覆率は40%程度であった。ゾル・ゲル法で
作製した耐酸化性炭素材料は、酸化ホウ素の表面波rr
I率が高いため、有機ホウ素化合物を含浸したものより
も耐酸化性が向上したと考えられる。
The surface coverage of boron oxide in a material whose surface was coated with boron oxide on a carbon material using the sol-gel method was 96%.6 On the other hand, in the case of a material whose surface was coated with an organic boron compound, the surface coverage of boron oxide was 96%. It was about 40%. The oxidation-resistant carbon material produced by the sol-gel method has surface waves of boron oxide.
It is thought that because the I ratio is high, the oxidation resistance is improved compared to that impregnated with an organic boron compound.

〈実施例2〉 ボロンブトキシド1moQ/Qのエタノール溶液を作製
した。この溶液200mQに水の1.5moQ/aのエ
タノール溶液200mffを三時間かけて添加した。つ
いでこの溶液を70℃で三時間反応撹拌した。得られた
この溶液をパレット(400X400X30m)に移し
、この中に直方体形炭素材料(300x300XIOn
n)を入れ、直空デシケータ中で真空含浸を行なった。
<Example 2> An ethanol solution of 1 moQ/Q of boron butoxide was prepared. To 200 mQ of this solution, 200 mff of an ethanol solution containing 1.5 moQ/a of water was added over 3 hours. This solution was then reacted and stirred at 70°C for 3 hours. The obtained solution was transferred to a pallet (400 x 400 x 30 m), and a rectangular parallelepiped carbon material (300 x 300 x ION
n) and vacuum impregnation was performed in a direct air desiccator.

ついで、この炭素材料を取り出し、100℃で30分間
乾燥させた。この真空含浸、乾燥の工程を十回くり返し
て得られた炭素材料は実施例1で示したものと同様な性
質を示し、宇宙柱i!!n用表面タイルとして好適であ
る。
Then, this carbon material was taken out and dried at 100° C. for 30 minutes. The carbon material obtained by repeating this vacuum impregnation and drying process ten times exhibited properties similar to those shown in Example 1, and the space column i! ! Suitable as a surface tile for n.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゾル・ゲル法を用いて酸化ホウ素の炭
素材料への表面被覆率95%以上の耐酸化性炭素材料を
作製す′ることかできる。本炭素材料は、宇宙往還機等
に使用される軽量、高強度な表面タイルに好適である。
According to the present invention, it is possible to produce an oxidation-resistant carbon material having a surface coverage of 95% or more of boron oxide on the carbon material using the sol-gel method. This carbon material is suitable for lightweight, high-strength surface tiles used in spacecraft and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、酸化ホウ素を含浸させた炭素材料の耐酸化性
試験結果(空気中、800℃)を示す特性図、第2図は
、炭素材料上への酸化ホウ素の被覆の説明図である。 将 第 図 CA) /θ
Figure 1 is a characteristic diagram showing the oxidation resistance test results (in air, 800°C) of a carbon material impregnated with boron oxide, and Figure 2 is an explanatory diagram of the coating of boron oxide on the carbon material. . General chart CA) /θ

Claims (5)

【特許請求の範囲】[Claims] 1.酸化ホウ素を含み、空気中、800℃での酸化侵食
量が1.8×10^−^3g/cm^2・h以下である
ことを特徴とする耐酸化性炭素材料。
1. An oxidation-resistant carbon material containing boron oxide and having an oxidative erosion amount of 1.8 x 10^-^3 g/cm^2.h or less at 800°C in air.
2.ゾル・ゲル反応を用いて作製した酸化ホウ素を含む
ことを特徴とする耐酸化性炭素材料。
2. An oxidation-resistant carbon material characterized by containing boron oxide produced using a sol-gel reaction.
3.酸化ホウ素を含む耐酸化性炭素材料において、酸化
ホウ素の炭素材料への表面被覆率が95%以上であるこ
とを特徴とする耐酸化性炭素材料。
3. An oxidation-resistant carbon material containing boron oxide, characterized in that the surface coverage of boron oxide on the carbon material is 95% or more.
4.ボロンアルコキシドの加水分解工程と、これにより
作製したゾル溶液を炭素材料に真空中で含浸、ついで乾
燥する工程とを含むことを特徴とする耐酸化性炭素材料
の製造方法。
4. A method for producing an oxidation-resistant carbon material, comprising a step of hydrolyzing boron alkoxide, a step of impregnating a carbon material with the sol solution prepared thereby in a vacuum, and then drying the material.
5.請求項第1項,第2項または第3項に記載の耐酸化
性材料を含むことを特徴とする宇宙往還機用表面タイル
5. A surface tile for a spacecraft, comprising the oxidation-resistant material according to claim 1, 2, or 3.
JP1164027A 1989-06-28 1989-06-28 Oxidation-resistant carbon material and its manufacture Pending JPH0333062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1164027A JPH0333062A (en) 1989-06-28 1989-06-28 Oxidation-resistant carbon material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1164027A JPH0333062A (en) 1989-06-28 1989-06-28 Oxidation-resistant carbon material and its manufacture

Publications (1)

Publication Number Publication Date
JPH0333062A true JPH0333062A (en) 1991-02-13

Family

ID=15785412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1164027A Pending JPH0333062A (en) 1989-06-28 1989-06-28 Oxidation-resistant carbon material and its manufacture

Country Status (1)

Country Link
JP (1) JPH0333062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681064A1 (en) * 1991-09-06 1993-03-12 Daimler Benz Ag PROCESS FOR IMPREGNATING POROUS CARBON PARTS TO PROTECT THEM AGAINST OXIDATION
JPH06249997A (en) * 1993-02-27 1994-09-09 Kenzo Ishida Neutron capturing body and building
EP0633234A1 (en) * 1993-07-08 1995-01-11 Societe Des Terres Refractaires Du Boulonnais Agent for protecting carbon containing refractories against oxidation, comprising a mixture of a borate compound and an amine derivative as well as process of manufacturing of said refractories

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681064A1 (en) * 1991-09-06 1993-03-12 Daimler Benz Ag PROCESS FOR IMPREGNATING POROUS CARBON PARTS TO PROTECT THEM AGAINST OXIDATION
JPH06249997A (en) * 1993-02-27 1994-09-09 Kenzo Ishida Neutron capturing body and building
EP0633234A1 (en) * 1993-07-08 1995-01-11 Societe Des Terres Refractaires Du Boulonnais Agent for protecting carbon containing refractories against oxidation, comprising a mixture of a borate compound and an amine derivative as well as process of manufacturing of said refractories

Similar Documents

Publication Publication Date Title
US4123591A (en) Process for forming an optical black surface and surface formed thereby
US5234712A (en) Method of making moisture resistant aluminum nitride powder and powder produced thereby
JP2004506584A5 (en)
EP0587667A1 (en) Coating compositions based on fluorine-containing anorganic polycondensates, their production and their use.
CN105543776B (en) A kind of last penetration enhancer of aluminium zinc silicon rare earth composite powder and its technique for applying
JPS61192735A (en) Novel process for manufacturing polymer from metal alkoxide
JPH0333062A (en) Oxidation-resistant carbon material and its manufacture
Mondelaers et al. Chemical solution deposition of ZnO thin films by an aqueous solution gel precursor route
JPH0647862A (en) Steel sheet and steel sheet molding material having coating of ceramic or its precursor, and their manufacture
JP5339321B2 (en) Oxidation-resistant graphite material and method for producing the same
JP3379027B2 (en) Coating agent for forming a coating on grain-oriented electrical steel sheets
JP2749175B2 (en) Heat-resistant and oxidation-resistant carbon material and method for producing the same
JPS61192771A (en) Ceramic coating agent mainly composed of silicon carbide
CN109852156A (en) A kind of high aluminum-carbon refractory material and preparation method thereof can be improved corrosion resistance
EP0335350B1 (en) Temporary rust resisting coating composition
JPH08239770A (en) Coating agent for forming insulating film on silicon steel sheet and grain-oriented silicon steel sheet
KR910003743B1 (en) Sheet steel member coated with insulating phosphate
JPS55167130A (en) Metal oxide thin film forming method
CN115806698B (en) Glass bead for coating and preparation method and application thereof
SU1190169A1 (en) Method of thermal insulation of rotating furnace body
KR102586692B1 (en) Method for manufacturing high heat resistance insulating paint and its composition
CN118290120B (en) Environment-friendly wear-resistant ceramic and preparation method thereof
CN111286216B (en) Improve Ce3+In hollow mesoporous SiO2Method for loading in microspheres
JPS59141441A (en) Method for producing glass coated with titanium oxide film
JP2501068B2 (en) Coating agent