JPH0332743Y2 - - Google Patents
Info
- Publication number
- JPH0332743Y2 JPH0332743Y2 JP1985157644U JP15764485U JPH0332743Y2 JP H0332743 Y2 JPH0332743 Y2 JP H0332743Y2 JP 1985157644 U JP1985157644 U JP 1985157644U JP 15764485 U JP15764485 U JP 15764485U JP H0332743 Y2 JPH0332743 Y2 JP H0332743Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- exhaust
- water
- heat
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Exhaust Silencers (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、排気と水との熱交換を行なう熱交換
器を設けて排気熱を回収するようにしたエンジン
の排気系構造に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to an engine exhaust system structure in which a heat exchanger for exchanging heat between exhaust gas and water is provided to recover exhaust heat.
(従来技術)
エンジンの排気熱を回収して暖房あるいはヒー
トポンプ回路の熱源として利用する装置におい
て、排気熱回収用熱交換器を設けたエンジンの排
気系構造としては、従来から例えば実開昭60−
1911号公報に示されるごとく、排気マニホールド
をウオータジヤケツトで囲んだ構成のもの、すな
わち、排気マニホールドをその内部の気体の流通
を妨げることなく、熱交換用ケースにて包囲して
密閉空間を形成し、この密閉空間に熱媒流体を流
入および流出させるように構成したものが知られ
ている。(Prior art) In a device that recovers engine exhaust heat and uses it as a heat source for heating or a heat pump circuit, the engine exhaust system structure equipped with a heat exchanger for exhaust heat recovery has conventionally been used, for example, in the 1980s.
As shown in Publication No. 1911, the exhaust manifold is surrounded by a water jacket, that is, the exhaust manifold is surrounded by a heat exchange case to form a sealed space without interfering with the flow of gas inside the exhaust manifold. However, there is known a structure in which a heat transfer fluid is allowed to flow into and out of this closed space.
ところで、熱回収効果を高めるために、排気マ
ニホールドの排気下流側にさらに熱交換器を設け
ることが提案されているが、上記のごとき熱交換
器としての排気マニホールドやその下流に設けた
熱交換器においては、排気が冷却され排気中の水
分が凝縮し易く、その場合、酸性度の高い凝縮水
が発生するために排気マニホールドや熱交換器の
内壁は腐蝕を受け易く壁に穴が開き易い。また、
特に熱交換器の入口部と出口部では熱回収の結
果、温度勾配が大きいことから、内部の熱交換器
コアにはクラツクが発生し易い。 By the way, in order to improve the heat recovery effect, it has been proposed to further install a heat exchanger on the exhaust downstream side of the exhaust manifold. In this case, the exhaust gas is cooled and the moisture in the exhaust gas tends to condense, and in that case, highly acidic condensed water is generated, so the inner walls of the exhaust manifold and heat exchanger are susceptible to corrosion and holes are easily formed in the walls. Also,
In particular, since there is a large temperature gradient as a result of heat recovery at the inlet and outlet sections of the heat exchanger, cracks are likely to occur in the internal heat exchanger core.
このように排気マニホールドあるいは熱交換器
の壁に穴が開いたりクラツクが発生すると、熱交
換用の水が排気マニホールドを介してエンジン内
に流入したり、あるいは排気が水回路に混入する
ことになる。 If a hole or crack occurs in the wall of the exhaust manifold or heat exchanger, water for heat exchange may flow into the engine through the exhaust manifold, or the exhaust gas may enter the water circuit. .
また、熱回収効率を高めるためにはできるだ
け、排気が外部の大気と接触する面積を少なくす
るとともに熱交換される水との接触面積を拡大す
ることが必要であるが、上記従来装置では排気と
水との熱交換面積を十分に拡大したものとなつて
いない。さらには、排気マニホールドや熱交換器
の表面温度はできるだけ低く保たれることが望ま
しい。 In addition, in order to increase heat recovery efficiency, it is necessary to reduce the area where the exhaust gas comes into contact with the outside atmosphere and expand the area where the exhaust gas comes into contact with the water that undergoes heat exchange. The heat exchange area with water has not been sufficiently expanded. Furthermore, it is desirable to keep the surface temperatures of the exhaust manifold and heat exchanger as low as possible.
(考案の目的)
本考案は、上記従来の問題点に鑑みてなされた
もので、エンジンの排気通路に設けた熱交換器に
凝縮水が溜まることを抑制し得る構成として、熱
交換器の壁が腐蝕するようなことを未然に防止
し、さらに熱回収率の向上を図り、その上、排気
マニホールド側への水の流通性等も良好にするこ
とができるエンジンの排気系構造を提供すること
を目的とする。(Purpose of the invention) The present invention was devised in view of the above-mentioned conventional problems. To provide an engine exhaust system structure capable of preventing corrosion of the engine, improving the heat recovery rate, and also improving the flow of water to the exhaust manifold side. With the goal.
(考案の構成)
本考案は、排気熱を回収する熱交換器を設けて
なるエンジンの排気マニホールドの下流に位置す
る排気通路に排気と水との熱交換を行なう熱交換
器を設け、この熱交換器を、水が内部を流通する
熱交換機コアと、この熱交換器コアの外周を囲ん
で形成した排気通路と、この排気通路の外周をさ
らに囲んで形成した水通路とからなる三層構造と
するとともに、上記熱交換器コア内部に水を流入
させる水入口を熱交換器の排気上流側に設け、熱
交換器コア内部から上記水通路へ水を流通させる
連通部を熱交換器の排気下流側に設け、上記水通
路から水を流出させる水出口を熱交換器上流端部
外周に排気マニホールド外周部へ向けて設けたも
のである。(Structure of the invention) The present invention provides a heat exchanger for exchanging heat between the exhaust gas and water in the exhaust passage located downstream of the exhaust manifold of an engine equipped with a heat exchanger for recovering exhaust heat. The exchanger has a three-layer structure consisting of a heat exchanger core through which water circulates, an exhaust passage formed around the outer periphery of this heat exchanger core, and a water passage formed further around the outer periphery of this exhaust passage. At the same time, a water inlet for flowing water into the heat exchanger core is provided on the upstream side of the exhaust gas of the heat exchanger, and a communication section for flowing water from the inside of the heat exchanger core to the water passage is provided on the exhaust gas side of the heat exchanger. A water outlet, which is provided on the downstream side and allows water to flow out from the water passage, is provided on the outer periphery of the upstream end of the heat exchanger toward the outer periphery of the exhaust manifold.
この構成により、熱交換器内で排気と水とが効
果的に熱交換されるとともに、複雑な形状の熱交
換器コア内は冷却水を流すため、コア内に排ガス
を流す構造に比べ凝縮水が溜まりにくく、また熱
回収率が向上し、かつ熱交換器の表面温度を低く
保つことができるものである。 With this configuration, the exhaust gas and water can effectively exchange heat within the heat exchanger, and since cooling water flows through the complex-shaped heat exchanger core, condensed water is is less likely to accumulate, the heat recovery rate is improved, and the surface temperature of the heat exchanger can be kept low.
(実施例)
まず、第4図、第5図および第6図を用いて本
考案を実施したエンジンの排気系構造の全体構成
を説明する。(Example) First, the overall configuration of the exhaust system structure of an engine in which the present invention is implemented will be described using FIGS. 4, 5, and 6.
第4図、第5図および第6図はそれぞれエンジ
ンの後面、上面、および側面を示し、1はエンジ
ン本体、2はエンジン本体1の側面上方に設けら
れ排気マニホールドの外周を水通路で囲む構成と
し排気と冷却水とが対向流として流れる排気マニ
ホールド熱交換器、3は上記排気マニホールド熱
交換器2の排気下流側に設けられ排気と水との熱
交換を行なう熱交換器で、この熱交換器3は、そ
の構造については後述するが、エンジン本体1の
後面であつて排気マニホールド熱交換器2の高さ
位置よりも低い位置に設けられ、しかもこの熱交
換器3と排気マニホールド熱交換器2との接続部
4を熱交換器3の上方に位置させるとともに、熱
交換器3の排気下流側部分を下方に傾斜させてい
る。上記接続部4は排気マニホールド熱交換器2
および熱交換器3のそれぞれに設けたフランジ4
a,4bをボルト5にて締結することにより構成
されている。また、上記熱交換器3の傾斜下端部
に設けられた排気出口3cには下方に延びる排気
管6aが接続され、さらにこの排気管6aの途中
から分岐して排気管路6bが接続されている。7
は上記排気管6aの下端に連結された凝縮水ドレ
ン機構で、8は上記熱交換器3の上方に設けられ
上記排気管路6bを通つて排気が流入するサイレ
ンサである。 Figures 4, 5, and 6 show the rear, top, and side surfaces of the engine, respectively, where 1 is the engine body, and 2 is a configuration in which a water passage is provided above the side of the engine body 1 and surrounds the outer periphery of the exhaust manifold. An exhaust manifold heat exchanger in which the exhaust gas and cooling water flow in countercurrent flow; 3 is a heat exchanger installed on the exhaust downstream side of the exhaust manifold heat exchanger 2 to exchange heat between the exhaust gas and water; The structure of the heat exchanger 3 will be described later, but it is provided on the rear surface of the engine body 1 at a position lower than the height of the exhaust manifold heat exchanger 2. 2 is located above the heat exchanger 3, and the exhaust downstream side portion of the heat exchanger 3 is inclined downward. The connection part 4 is the exhaust manifold heat exchanger 2
and a flange 4 provided on each of the heat exchanger 3
It is constructed by fastening a and 4b with bolts 5. Further, an exhaust pipe 6a extending downward is connected to the exhaust outlet 3c provided at the inclined lower end of the heat exchanger 3, and an exhaust pipe line 6b is further connected to the exhaust pipe 6a branching from the middle of the exhaust pipe 6a. . 7
8 is a condensed water drain mechanism connected to the lower end of the exhaust pipe 6a, and 8 is a silencer provided above the heat exchanger 3 through which exhaust gas flows through the exhaust pipe 6b.
次に熱交換器3の構造について第1図〜第3図
により説明する。 Next, the structure of the heat exchanger 3 will be explained with reference to FIGS. 1 to 3.
熱交換器3は、排気通路として排気入口3a、
排気通路3b、排気出口3cを有し、また冷却水
通路として水入口3d、水が内部を流通する熱交
換器コア3e、戻り水通路3fおよび水出口3g
を有する。そして熱交換器コア3eの外周に、こ
れを囲んで排気通路3bが形成され、またこの排
気通路3bのさらに外周に、これを囲んで戻り水
通路3fが形成され、排気と水とは三層構造にて
熱交換し得る構成とされている。熱交換器コア3
e内部に水を流入させる上記水入口3dは、熱交
換器3の排気上流側の端部近傍の側部に設けら
れ、熱交換器コア3内部から戻り水通路(排気通
路外周の水通路)3fへ水を流通させる連通部は
熱交換器3の排気下流側に設けられ、また上記戻
り水通路3fから水を流出させる上記水出口3g
は、熱交換器3の上流端部外周に排気マニホール
ド外周部へ向けて設けられている。そして熱交換
器コア3eの材質としてはステンレス鋼、戻り水
通路6fを構成する外ケースの材質としてはアル
ミニウム材が適している。また、排気入口3aと
水出口3gとは共にフランジ4b部分に設けられ
排気マニホールド熱交換器2側のフランジ4aに
連結されている。 The heat exchanger 3 includes an exhaust inlet 3a as an exhaust passage;
It has an exhaust passage 3b, an exhaust outlet 3c, a water inlet 3d as a cooling water passage, a heat exchanger core 3e through which water flows, a return water passage 3f, and a water outlet 3g.
has. Then, an exhaust passage 3b is formed around the outer periphery of the heat exchanger core 3e, and a return water passage 3f is formed further around the outer periphery of the exhaust passage 3b, so that the exhaust gas and water are separated into three layers. The structure allows for heat exchange. Heat exchanger core 3
e The water inlet 3d that allows water to flow into the interior is provided on the side near the end on the upstream side of the exhaust gas of the heat exchanger 3, and is connected to the return water passage (water passage on the outer periphery of the exhaust passage) from the inside of the heat exchanger core 3. A communication section that allows water to flow to 3f is provided on the exhaust downstream side of the heat exchanger 3, and the water outlet 3g that allows water to flow out from the return water passage 3f.
is provided on the outer periphery of the upstream end of the heat exchanger 3 toward the outer periphery of the exhaust manifold. Stainless steel is suitable as the material for the heat exchanger core 3e, and aluminum is suitable as the material for the outer case constituting the return water passage 6f. Further, both the exhaust inlet 3a and the water outlet 3g are provided on the flange 4b and connected to the flange 4a on the exhaust manifold heat exchanger 2 side.
そして、排気の流れは、排気マニホールド熱交
換器2から接続部4を介して熱交換器3の排気入
口3a、排気通路3b、排気出口3cを経て排気
管6a、排気管路6bを通過し、サイレンサ8の
入口8aより排気口8bに至るものとなる。ま
た、冷却水は、熱交換器3の排気上流側に位置す
る水入口3dから熱交換コアeを通り、排気下流
側で戻り水通路3fに流れて排気上流側へ向い、
熱交換器3の上流側端部の水出口3gより、接続
部4を介して排気マニホールド熱交換器2に流入
する。さらにこの排気マニホールド熱交換器2か
ら水管路9a(第6図)、ウオータポンプ10を経
てエンジン本体1の内部のウオータジヤケツトに
流入し、さらにサーモスタツトおよび水管路9b
を経て水出口9cに至るものである。 Then, the flow of exhaust gas passes from the exhaust manifold heat exchanger 2 through the connection part 4, through the exhaust inlet 3a, exhaust passage 3b, and exhaust outlet 3c of the heat exchanger 3, and then through the exhaust pipe 6a and exhaust pipe line 6b, The silencer 8 extends from the inlet 8a to the exhaust port 8b. In addition, the cooling water passes through the heat exchange core e from the water inlet 3d located on the exhaust upstream side of the heat exchanger 3, flows into the return water passage 3f on the exhaust downstream side, and heads toward the exhaust upstream side,
From the water outlet 3g at the upstream end of the heat exchanger 3, it flows into the exhaust manifold heat exchanger 2 via the connection part 4. Furthermore, it flows from the exhaust manifold heat exchanger 2 through the water pipe 9a (FIG. 6) and the water pump 10 into the water jacket inside the engine body 1, and further flows into the thermostat and the water pipe 9b.
and then reaches the water outlet 9c.
次に上記構成の作用を説明する。 Next, the operation of the above configuration will be explained.
冷却水は熱交換器3の水入口3dより流入し、
熱交換器3および排気マニホールド熱交換器2に
て排気と熱交換し、排気熱を回収するとともに、
エンジン本体1内のウオータジヤケツト内に流入
してエンジンを冷却し、高温となつた水が水出口
9cより流出する。この温水をエンジンとは別に
設けた放熱器に送り室内の暖房用の熱源として利
用し、あるいは図示していないが、エンジン本体
1の出力軸にて駆動されるヒートポンプ冷媒回路
における冷媒加圧用コンプレツサを駆動し、この
ヒートポンプ冷媒回路における室外側の熱交換器
の熱源として利用する。このように温水が熱源と
して利用され、冷却された水が再び熱交換器3の
水入口3dに流入するようになつている。 Cooling water flows in from the water inlet 3d of the heat exchanger 3,
The heat exchanger 3 and the exhaust manifold heat exchanger 2 exchange heat with the exhaust gas and recover the exhaust heat,
The water flows into the water jacket in the engine body 1 to cool the engine, and the high-temperature water flows out from the water outlet 9c. This hot water is sent to a radiator installed separately from the engine and used as a heat source for indoor heating, or, although not shown, is used in a compressor for pressurizing refrigerant in a heat pump refrigerant circuit driven by the output shaft of the engine body 1. It is used as a heat source for the outdoor heat exchanger in this heat pump refrigerant circuit. In this way, the hot water is used as a heat source, and the cooled water flows into the water inlet 3d of the heat exchanger 3 again.
ここに熱交換器3において、高温の排ガスは排
気入口3aより流入し、排気通路3bを通過し、
熱交換器コア3eおよび戻り水通路3fを流通す
る水との熱交換がなされる。このとき、排ガスが
熱交換器コア3e内を通過する冷却水により冷却
されることにより、凝縮水が発生し易いが、本考
案では、複雑な通路形状の熱交換器コア3e内は
冷却水を、外側の単純な通路3bに排ガスを通す
構造のため凝縮水が溜まりにくい。したがつて、
酸性凝縮水の発生により熱交換器コア3eが腐蝕
を受けて穴が開き、冷却水が排気通路3b中に漏
出し、あるいは排ガスが水回路に流入するといつ
たことは防止される。これに加えて本実施例では
熱交換器3と排気マニホールド熱交換器2との接
続部4をエンジン本体1の上方に位置させるとと
もに、熱交換器3を排気下流側すなわち排気出口
3c側を下方に傾斜さてて設けているので、万
一、冷却水が排気通路3b中に漏出するようなこ
とがあつても、この冷却水が排気マニホールド熱
交換器2側に流入し、エンジンの燃焼室内に逆流
するようなことが防止できる構成とされている。 Here, in the heat exchanger 3, high-temperature exhaust gas flows in from the exhaust inlet 3a, passes through the exhaust passage 3b,
Heat exchange is performed with water flowing through the heat exchanger core 3e and the return water passage 3f. At this time, condensed water is likely to be generated as the exhaust gas is cooled by the cooling water passing through the heat exchanger core 3e, but in the present invention, the cooling water is not allowed to flow inside the heat exchanger core 3e, which has a complicated passage shape. Since the exhaust gas is passed through the simple passage 3b on the outside, it is difficult for condensed water to accumulate. Therefore,
This prevents the heat exchanger core 3e from corroding and forming holes due to the generation of acidic condensed water, thereby preventing cooling water from leaking into the exhaust passage 3b or exhaust gas from flowing into the water circuit. In addition, in this embodiment, the connection part 4 between the heat exchanger 3 and the exhaust manifold heat exchanger 2 is located above the engine body 1, and the heat exchanger 3 is positioned so that the downstream side of the exhaust gas, that is, the side of the exhaust outlet 3c, is positioned downward. Since the cooling water is installed at an angle, even if cooling water were to leak into the exhaust passage 3b, this cooling water would flow into the exhaust manifold heat exchanger 2 side and enter the combustion chamber of the engine. It is designed to prevent backflow.
また、本考案では熱交換器3が排気と冷却水と
の三層構造であり、かつ、冷却水が排気上流側の
水入口3dから熱交換器コア3e、排気下流側の
連通部、戻り水通路3fを通り熱交換器3の略全
体を往復してから水出口3gに達するので、熱回
収効率が高くなる。しかも、水出口3gが熱交換
器上流端部外周に排気マニホールド外周部へ向け
て設けられているので、この熱交換器3を通つた
冷却水がスムーズに排気マニホールド熱交換器2
に送られ、水の流通性も良好になる。また、排気
通路3bの外周を戻り水通路3fで包囲している
ので、熱交換器の表面温度を低下させることがで
きる。 In addition, in the present invention, the heat exchanger 3 has a three-layer structure of exhaust gas and cooling water, and the cooling water flows from the water inlet 3d on the upstream side of the exhaust gas, to the heat exchanger core 3e, to the communication part on the downstream side of the exhaust gas, and to the return water. Since the heat reaches the water outlet 3g after passing through the passage 3f and reciprocating almost the entire heat exchanger 3, the heat recovery efficiency becomes high. Moreover, since the water outlet 3g is provided on the outer periphery of the upstream end of the heat exchanger toward the outer periphery of the exhaust manifold, the cooling water that has passed through the heat exchanger 3 can smoothly flow to the exhaust manifold heat exchanger 2.
This improves water circulation. Further, since the outer periphery of the exhaust passage 3b is surrounded by the return water passage 3f, the surface temperature of the heat exchanger can be lowered.
(考案の効果)
以上のように本考案によれば、エンジンの排気
系に設けた排気と水との熱交換を行なう熱交換器
を、水が流通する熱交換器コアと、この熱交換器
コアの外周を囲んで形成した排気通路と、この排
気通路の外周をさらに囲んで形成した水通路とか
らなる三層構造としたことにより、熱交換器内の
排ガス温度低下が抑制され、したがつて凝縮水の
溜まりによる熱交換器コア等の腐蝕を低減するこ
とができる。また、上記三層構造とするとともに
冷却水が熱交換器の略全体を往復する構造とした
ことにより熱回収率を大幅に高め、その上、水出
口を熱交換器の排気上流端部外周に排気マニホー
ルド外周部へ向けて設けたことにより、この熱交
換器を通つて排気マニホールドに向かう冷却水の
流れをスムーズにすることができる。しかも、こ
のような熱回収率および冷却水流通性の向上を図
る構造として合理的であり、簡単でコンパクトな
構造とすることができる。さらに、熱交換器の表
面温度を低下することができ、安全性の向上に寄
与し得る。(Effects of the invention) As described above, according to the invention, a heat exchanger for exchanging heat between the exhaust gas and water provided in the exhaust system of an engine is connected to a heat exchanger core through which water flows, and a heat exchanger core through which water flows, By adopting a three-layer structure consisting of an exhaust passage formed around the outer periphery of the core and a water passage formed further surrounding the outer periphery of this exhaust passage, a decrease in the temperature of the exhaust gas inside the heat exchanger is suppressed. Corrosion of the heat exchanger core etc. due to accumulation of condensed water can therefore be reduced. In addition to the above-mentioned three-layer structure, the cooling water reciprocates almost the entire length of the heat exchanger, greatly increasing the heat recovery rate. By providing it toward the outer periphery of the exhaust manifold, the flow of cooling water toward the exhaust manifold through this heat exchanger can be made smooth. Moreover, it is a reasonable structure for improving the heat recovery rate and cooling water circulation, and can be a simple and compact structure. Furthermore, the surface temperature of the heat exchanger can be lowered, contributing to improved safety.
第1図は本考案のエンジンの排気系構造におけ
る熱交換器の一実施例を示す上面図、第2図は第
1図−線断面図、第3図は第1図の−線
断面図、第4図は本考案の排気系構造を実施した
エンジンの後面図、第5図は同エンジンの上面
図、第6図は側面図である。
1……エンジン本体、2……排気マニホールド
熱交換器、3……熱交換器、3b……排気通路、
3e……熱交換器コア、3f……戻り水通路。
FIG. 1 is a top view showing an embodiment of a heat exchanger in the exhaust system structure of an engine according to the present invention, FIG. 2 is a cross-sectional view taken along the line - FIG. FIG. 4 is a rear view of an engine implementing the exhaust system structure of the present invention, FIG. 5 is a top view of the same engine, and FIG. 6 is a side view of the same engine. 1...Engine body, 2...Exhaust manifold heat exchanger, 3...Heat exchanger, 3b...Exhaust passage,
3e... Heat exchanger core, 3f... Return water passage.
Claims (1)
ンの排気系構造において、エンジンの排気マニホ
ールドの下流に位置する排気通路に排気と水との
熱交換を行なう熱交換器を設け、この熱交換器
を、水が内部を流通する熱交換機コアと、この熱
交換器コアの外周を囲んで形成した排気通路と、
この排気通路の外周をさらに囲んで形成した水通
路とからなる三層構造とするとともに、上記熱交
換器コア内部に水を流入させる水入口を熱交換器
の排気上流側に設け、熱交換器コア内部から上記
水通路へ水を流通させる連通部を熱交換器の排気
下流側に設け、上記水通路から水を流出させる水
出口を熱交換器の排気上流端部外周に排気マニホ
ールド外周部へ向けて設けたことを特徴とするエ
ンジンの排気系構造。 In an engine exhaust system structure that is equipped with a heat exchanger that recovers exhaust heat, a heat exchanger that exchanges heat between the exhaust gas and water is installed in the exhaust passage located downstream of the exhaust manifold of the engine, and this heat exchanger a heat exchanger core through which water circulates; an exhaust passage formed around the outer periphery of the heat exchanger core;
It has a three-layer structure consisting of a water passage formed by further surrounding the outer periphery of this exhaust passage, and a water inlet for flowing water into the heat exchanger core is provided on the exhaust upstream side of the heat exchanger. A communication part for flowing water from inside the core to the water passage is provided on the downstream side of the exhaust gas of the heat exchanger, and a water outlet for flowing water from the water passage is provided on the outer periphery of the upstream end of the exhaust gas of the heat exchanger and to the outer periphery of the exhaust manifold. An engine exhaust system structure characterized by being provided towards the engine.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1985157644U JPH0332743Y2 (en) | 1985-10-14 | 1985-10-14 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1985157644U JPH0332743Y2 (en) | 1985-10-14 | 1985-10-14 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS6264813U JPS6264813U (en) | 1987-04-22 |
| JPH0332743Y2 true JPH0332743Y2 (en) | 1991-07-11 |
Family
ID=31080385
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1985157644U Expired JPH0332743Y2 (en) | 1985-10-14 | 1985-10-14 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0332743Y2 (en) |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6026115A (en) * | 1983-07-20 | 1985-02-09 | Kogata Gas Reibou Gijutsu Kenkyu Kumiai | Heat exchanger |
-
1985
- 1985-10-14 JP JP1985157644U patent/JPH0332743Y2/ja not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6264813U (en) | 1987-04-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101072329B1 (en) | Heat exchanger | |
| KR101266917B1 (en) | Super heater using the wavy fin | |
| JP2001248448A (en) | Intake air cooling device of internal combustion engine | |
| CN109555595B (en) | Water-cooled charge air cooler | |
| JPH0332743Y2 (en) | ||
| JP2000356419A5 (en) | ||
| JPH0573894B2 (en) | ||
| KR100256515B1 (en) | EGR gas cooling system | |
| JPH0540254Y2 (en) | ||
| JP2609649B2 (en) | Engine cooling device with exhaust heat recovery device | |
| JPH0545806Y2 (en) | ||
| CN216157790U (en) | EGR cooler and engine having the same | |
| JPH0341043Y2 (en) | ||
| JPH0573893B2 (en) | ||
| JPH0141884Y2 (en) | ||
| CN223018706U (en) | Device for preventing breather air outlet chamber from icing and engine closed cycle breathing system | |
| JPS6135697Y2 (en) | ||
| JP4222526B2 (en) | EGR system | |
| CN216143972U (en) | Cooler with reinforced structure for air conditioner | |
| CN218862730U (en) | Gas-liquid two-phase double-path combined type internal combustion engine generator set heat exchanger | |
| JPH0526248Y2 (en) | ||
| JPH068263Y2 (en) | Exhaust heat recovery device for engine | |
| CN106593688B (en) | A kind of four highly integrated cylinder Stirling engine body structures | |
| JP3461857B2 (en) | High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas | |
| JPS6042305Y2 (en) | Heat exchanger |