JP3461857B2 - High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas - Google Patents

High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas

Info

Publication number
JP3461857B2
JP3461857B2 JP07521493A JP7521493A JP3461857B2 JP 3461857 B2 JP3461857 B2 JP 3461857B2 JP 07521493 A JP07521493 A JP 07521493A JP 7521493 A JP7521493 A JP 7521493A JP 3461857 B2 JP3461857 B2 JP 3461857B2
Authority
JP
Japan
Prior art keywords
temperature regenerator
high temperature
pipe
exhaust gas
outer row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07521493A
Other languages
Japanese (ja)
Other versions
JPH06257891A (en
Inventor
才延 犬伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP07521493A priority Critical patent/JP3461857B2/en
Publication of JPH06257891A publication Critical patent/JPH06257891A/en
Application granted granted Critical
Publication of JP3461857B2 publication Critical patent/JP3461857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温再生器の排ガスを
用いて低温再生器の加熱を別個の独立した部分で行な
い、簡単な構造で排熱回収が優れた高温再生器と一体構
造をなす低温再生器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an exhaust gas of a high temperature regenerator to heat a low temperature regenerator in separate and independent parts, and has an integrated structure with a high temperature regenerator excellent in exhaust heat recovery with a simple structure. It relates to a low temperature regenerator.

【0002】[0002]

【従来の技術】従来、吸収剤として例えば、臭化リチウ
ムを用い、冷媒として例えば、水を用いる吸収冷温水機
が一般に知られている。従来の吸収冷温水機は、一例と
して、図6に示すような構成である。1は上部低温胴
で、低温再生器2及び凝縮器3から構成され、さらに凝
縮器3内の下部には冷媒溜り4が設けられる。5は下部
低温胴で、蒸発器6及び吸収器7で構成される。8は高
温再生器で、燃焼室9、熱回収器10、気液分離器1
1、排気筒12及び燃焼装置13から構成される。その
他に、低温熱交換器14、高温熱交換器15などが構成
機器となる。吸収器7内の下部の液溜り16の希液は、
低温ポンプ17により管路18、19、低温熱交換器1
4、管路20を経て、低温再生器2に送られる。この希
液は管路21から流入してきた高温の冷媒蒸気によって
加熱され、中間濃度まで濃縮される。
2. Description of the Related Art Conventionally, an absorption chiller-heater using, for example, lithium bromide as an absorbent and water as a refrigerant is generally known. The conventional absorption chiller-heater has, for example, a configuration as shown in FIG. Reference numeral 1 denotes an upper low temperature cylinder, which is composed of a low temperature regenerator 2 and a condenser 3, and a refrigerant reservoir 4 is provided in the lower portion of the condenser 3. Reference numeral 5 denotes a lower cold cylinder, which is composed of an evaporator 6 and an absorber 7. 8 is a high temperature regenerator, which is a combustion chamber 9, a heat recovery device 10, a gas-liquid separator 1.
1, an exhaust stack 12 and a combustion device 13. In addition, the low temperature heat exchanger 14, the high temperature heat exchanger 15 and the like are constituent devices. The dilute liquid in the lower liquid pool 16 in the absorber 7 is
Pipes 18, 19 by the low-temperature pump 17, low-temperature heat exchanger 1
4, sent to the low temperature regenerator 2 via the pipe 20. This dilute liquid is heated by the high temperature refrigerant vapor flowing from the pipe 21 and concentrated to an intermediate concentration.

【0003】この中間濃度の液は二分される。二分され
た液の一方は、高温ポンプ22により管路23、24、
高温熱交換器15、管路25を経て高温再生器8に送ら
れる。この中間濃度液は燃焼装置13によって加熱さ
れ、熱回収器10を上昇し、気液分離器11に入り、冷
媒蒸気と濃液とに分離される。この濃液は高温再生器8
内の圧力約650mmHgと、下部低温胴5の内部の圧力約
6mmHgとの差圧により、濃液管路26、高温熱交換器1
5、管路27を経て、先に分流してきた管路28からの
中間液(二分された液の他方)と混合し、混合濃液にな
って低温熱交換器14に入り、管路29を通り散布装置
30により、吸収器7の伝熱管上に散布され、液溜り1
6に戻る循環がなされる。
The liquid having this intermediate concentration is divided into two. One of the two halves of the liquid is supplied by the high temperature pump 22 to the pipe lines 23, 24,
It is sent to the high temperature regenerator 8 via the high temperature heat exchanger 15 and the pipe 25. The intermediate concentration liquid is heated by the combustion device 13, rises in the heat recovery device 10, enters the gas-liquid separator 11, and is separated into a refrigerant vapor and a concentrated liquid. This concentrated liquid is a high temperature regenerator 8
Due to the pressure difference between the internal pressure of approximately 650 mmHg and the internal pressure of the lower low temperature cylinder 5 of approximately 6 mmHg, the concentrated liquid pipe line 26 and the high temperature heat exchanger 1
5. After passing through the pipe line 27, it is mixed with the intermediate liquid (the other of the two divided liquids) from the pipe line 28 which has been previously branched, and becomes a mixed concentrated liquid and enters the low temperature heat exchanger 14, and the pipe line 29 is passed. The passing spraying device 30 sprays the heat transfer tubes of the absorber 7 to form the liquid pool 1
The circulation returning to 6 is made.

【0004】一方、気液分離器11で分離された冷媒蒸
気は、管路21を経て低温再生器2に入り、液を加熱し
て凝縮・液化し、管路46から凝縮器3に入る。また低
温再生器2において、希液が中間濃度液に濃縮されると
きに発生した冷媒蒸気は、上部空間から凝縮器3に入っ
て凝縮し、冷媒液となる。これらの凝縮した冷媒水は、
管路31を経て蒸発器6に入り、下部溜り32に蓄積さ
れる。この冷媒水は冷媒ポンプ33により管路34、3
5を経て、散布装置36により蒸発器6の伝熱管上に散
布される。
On the other hand, the refrigerant vapor separated in the gas-liquid separator 11 enters the low temperature regenerator 2 via the pipe 21, heats the liquid to condense and liquefy, and then enters the condenser 3 from the pipe 46. Further, in the low temperature regenerator 2, the refrigerant vapor generated when the dilute liquid is concentrated to the intermediate concentration liquid enters the condenser 3 from the upper space and is condensed to become the refrigerant liquid. These condensed refrigerant waters are
It enters the evaporator 6 via the pipe 31 and is accumulated in the lower pool 32. This refrigerant water is supplied to the pipelines 34 and 3 by the refrigerant pump 33.
After 5, the spraying device 36 sprays the heat on the heat transfer tubes of the evaporator 6.

【0005】冷房に供するための冷水は、管路37から
蒸発器6に入り、滴下する冷媒の蒸発潜熱により冷却さ
れ、管路38から流出する。冷却水は管路39、40、
41を経て流出し、途中の吸収器7では吸収熱を、凝縮
器3では凝縮熱を奪い系外に持ち出す。また、冷暖切替
弁60を開き、さらに管路39に供給する冷却水を止め
ることにより、管路38から温水を得ることができる。
Cold water to be used for cooling enters the evaporator 6 from the pipe 37, is cooled by the latent heat of vaporization of the dropping refrigerant, and flows out from the pipe 38. The cooling water is supplied to the pipes 39, 40,
After passing through 41, it flows out and the absorption heat in the absorber 7 and the condensation heat in the condenser 3 are taken away and taken out of the system. Further, by opening the cooling / heating switching valve 60 and stopping the cooling water supplied to the pipe 39, hot water can be obtained from the pipe 38.

【0006】例えば、臭化リチウム(LiBr)水溶液
を使用する吸収冷凍機や吸収冷温水機において、中間濃
度の吸収液を加熱して水分を蒸発させて濃縮する場合、
燃焼室の周囲に吸収液を導入し上昇させながら、燃焼排
ガスにより加熱・濃縮していた。従来の低温再生器は、
中間濃度溶液が高温再生器で濃縮されるときに発生する
冷媒蒸気を濃縮するために、吸収器を出た希釈溶液で熱
交換を行ない潜熱の回収を行なっていた。
[0006] For example, in an absorption refrigerator or an absorption chiller-heater using an aqueous solution of lithium bromide (LiBr), when an intermediate concentration of the absorption liquid is heated to evaporate water to concentrate it,
The absorption liquid was introduced around the combustion chamber and raised, while being heated and concentrated by the combustion exhaust gas. Conventional low temperature regenerator
In order to concentrate the refrigerant vapor generated when the intermediate-concentration solution is concentrated in the high temperature regenerator, heat is exchanged with the diluted solution discharged from the absorber to recover latent heat.

【0007】[0007]

【発明が解決しようとする課題】図6に示すような従来
の吸収冷温水機では、吸収器7から流出する希釈溶液
(希液)を、高温再生器8からの冷媒水蒸気と熱交換
し、主として冷媒水蒸気の潜熱で希液を濃縮し熱量を回
収していた。一方、高温再生器8の排気筒12から排出
される燃焼排ガスは、温度が高く白煙の原因となってい
た。また、大気温度が上昇するので、環境対策上、好ま
しくなかった。また、中間濃度の吸収液を燃焼排ガスに
より加熱・濃縮する場合は、熱効率があまり良くない上
に、耐火耐熱材の厚みが大となるという問題点があっ
た。さらに、吸収器を出た希釈溶液で熱交換を行ない潜
熱の回収を図る従来の低温再生器では、排熱回収が十分
に行なえなかった。
In the conventional absorption chiller-heater as shown in FIG. 6, the diluted solution (diluted liquid) flowing out from the absorber 7 is heat-exchanged with the refrigerant steam from the high temperature regenerator 8, The dilute liquid was concentrated mainly by the latent heat of the refrigerant vapor to recover the heat quantity. On the other hand, the combustion exhaust gas discharged from the exhaust stack 12 of the high temperature regenerator 8 has a high temperature and causes white smoke. In addition, the atmospheric temperature rises, which is not preferable in terms of environmental measures. Further, in the case of heating and concentrating the intermediate concentration of the absorption liquid by the combustion exhaust gas, there are problems that the thermal efficiency is not so good and the thickness of the refractory heat-resistant material becomes large. Furthermore, the conventional low-temperature regenerator, which aims to recover latent heat by exchanging heat with the diluted solution discharged from the absorber, cannot recover exhaust heat sufficiently.

【0008】以上の点から、大気へ放出する燃焼排ガス
温度を低くするとともに、冷凍サイクルの成績係数を良
くするために、高温再生器で発生した冷媒蒸気と、高温
再生器で使用された燃焼排ガスとの両方で、低温再生器
に流入してくる吸収器からの希釈溶液を濃縮するように
した装置を本発明者は既に開発し特許出願している(特
願平4−359883号)。本発明は上記の諸点に鑑み
なされたもので、従来の低温再生器と並列に、又は単独
に、高温再生器の排ガスを用いて、吸収器から流出する
希釈溶液を濃縮する装置として、高温再生器から排出さ
れる燃焼排ガスを利用して低温再生器の加熱源として用
い、簡単な構造で排熱回収が優れた高温再生器と一体化
した高温再生器排ガス利用の低温再生器を提供すること
を目的とするものである。
From the above points, in order to lower the temperature of the combustion exhaust gas discharged to the atmosphere and improve the coefficient of performance of the refrigeration cycle, the refrigerant vapor generated in the high temperature regenerator and the combustion exhaust gas used in the high temperature regenerator are improved. In both cases, the inventor of the present invention has already developed and applied for a device for concentrating the diluted solution from the absorber flowing into the low temperature regenerator (Japanese Patent Application No. 4-359883). The present invention has been made in view of the above points, in parallel with the conventional low temperature regenerator, or alone, using the exhaust gas of the high temperature regenerator, as a device for concentrating the diluted solution flowing out of the absorber, high temperature regeneration To provide a low temperature regenerator using high temperature regenerator exhaust gas that is integrated with a high temperature regenerator that has a simple structure and that uses combustion exhaust gas discharged from the regenerator as a heating source for the low temperature regenerator and has excellent exhaust heat recovery. The purpose is.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の高温再生器と一体化した高温再生器排ガ
ス利用の低温再生器は、図1及び図2に示すように、上
部に冷媒蒸気出口70を有し、下部に中間濃度液又は希
釈溶液を導入する液入口72を有し、上側部に濃液出口
74を有する高温再生器ケーシング76内の竪方向中央
部に燃焼室78を設け、この燃焼室78の周囲に、多数
の液上昇管を竪方向に、かつ、二列の同心円状に配置
し、内列管82と外列管84との間、及び外列管84と
高温再生器ケーシング壁との間に多数のフィン86を略
水平方向に多段に設け、燃焼室78で発生する燃焼ガス
を、内列管82と外列管84との間のガス通路88、及
び外列管84と高温再生器ケーシング壁との間のガス通
路90へ導入するようにし、高温再生器ケーシング76
に隣接して、ガス通路88、90と連通するように低温
再生器ケーシング110を設け、低温再生器ケーシング
110は希釈溶液入口112、中間濃度液出口114、
冷媒蒸気出口116及び排ガス出口118を有してお
り、低温再生器ケーシング110内に多数のフィン12
0を略水平方向に多段に有する希釈溶液加熱管122を
竪方向に設けたことを特徴としている。この場合、高温
再生器ケーシング76の内側を二重構造にして竪型ドラ
ム80を形成することが望ましい。
In order to achieve the above object, a high temperature regenerator integrated with a high temperature regenerator according to the present invention, a low temperature regenerator using exhaust gas, has an upper portion as shown in FIGS. Has a refrigerant vapor outlet 70 in the lower part, a liquid inlet 72 for introducing the intermediate concentration liquid or the diluted solution in the lower part, and a concentrated liquid outlet 74 in the upper part. 78 is provided, and a large number of liquid rising pipes are arranged in the vertical direction and in two rows of concentric circles around the combustion chamber 78, and between the inner row pipe 82 and the outer row pipe 84 and the outer row pipe. A large number of fins 86 are provided in a substantially horizontal direction in multiple stages between the high temperature regenerator casing wall 84 and the high temperature regenerator casing wall, and the combustion gas generated in the combustion chamber 78 is passed through the gas passage 88 between the inner row pipe 82 and the outer row pipe 84. , And the gas passage 90 between the outer row pipe 84 and the high temperature regenerator casing wall. The high-temperature regenerator casings 76
A low temperature regenerator casing 110 is provided so as to communicate with the gas passages 88 and 90. The low temperature regenerator casing 110 includes a dilute solution inlet 112, an intermediate concentration liquid outlet 114,
It has a refrigerant vapor outlet 116 and an exhaust gas outlet 118, and has a large number of fins 12 inside the low temperature regenerator casing 110.
It is characterized in that the diluted solution heating pipe 122 having 0 in a multi-stage in a substantially horizontal direction is provided in the vertical direction. In this case, it is preferable that the inside of the high temperature regenerator casing 76 has a double structure to form the vertical drum 80.

【0010】上記の発明において、図2〜図5に示すよ
うに、内列管82、外列管84及び希釈溶液加熱管12
2の横断面が、ガスの流動抵抗の少ない略楕円形又は複
数個の曲率を持つ曲面で形成された略卵形からなる略流
線形とするのが好ましい。また、図2〜図5に示すよう
に、内列管82、外列管84及び希釈溶液加熱管122
の内面を、波型表面92に形成するのが好ましい。ま
た、図2に示すように、外列管84が、ガス流れに対し
て一定の迎角を持つように、取付角を少しづつ変化させ
て配列されるようにするのが望ましい。また、図3に示
すように、希釈溶液加熱管122が、ガス流れに対して
一定の迎角を持つように、取付角を少しづつ変化させて
配列されるようにするのが望ましい。
In the above invention, as shown in FIGS. 2 to 5, the inner row pipe 82, the outer row pipe 84 and the diluted solution heating pipe 12 are provided.
It is preferable that the cross section of 2 has a substantially elliptical shape with a low gas flow resistance, or a substantially streamline shape composed of a substantially oval shape formed by a curved surface having a plurality of curvatures. In addition, as shown in FIGS. 2 to 5, the inner row pipe 82, the outer row pipe 84, and the diluted solution heating pipe 122.
Preferably, the inner surface of is formed into a corrugated surface 92. Further, as shown in FIG. 2, it is desirable that the outer row pipes 84 are arranged such that the mounting angle is changed little by little so that the outer row pipes 84 have a constant angle of attack with respect to the gas flow. Further, as shown in FIG. 3, it is desirable that the dilute solution heating pipes 122 are arranged such that the mounting angle is changed little by little so that the dilute solution heating pipe 122 has a constant angle of attack with respect to the gas flow.

【0011】[0011]

【実施例】以下、図面を参照して本発明の好適な実施例
を詳細に説明する。ただし、この実施例に記載されてい
る構成部材の形状、その相対配置などは、とくに特定的
な記載がない限りは、本発明の範囲をそれらのみに限定
する趣旨のものではなく、単なる説明例にすぎない。 実施例1 図1及び図2は、本発明の高温再生器と一体化した高温
再生器排ガス利用の低温再生器の一実施例を示してい
る。本実施例における高温再生器は、図1に示すよう
に、燃焼室78を高温再生器ケーシング76内の竪方向
中央部に設け、その周囲に多数の液上昇管を竪方向に、
かつ、二列の同心円状に配置し、多数のフィン86を内
列管82と外列管84との間、及び外列管84と高温再
生器ケーシング壁との間に、それぞれ略水平方向に多段
に設けている。70は冷媒蒸気出口、72は中間濃度液
又は希釈溶液を導入する液入口、74は濃液出口であ
る。燃焼室78で発生する燃焼ガスは、内列管82と外
列管84との間のガス通路88、及び外列管84と高温
再生器ケーシング壁との間のガス通路90へ導入され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. However, the shapes of the constituent members described in this embodiment, their relative arrangements, and the like are not intended to limit the scope of the present invention to them only unless otherwise specified, and are merely illustrative examples. Nothing more. Example 1 FIG. 1 and FIG. 2 show an example of a low temperature regenerator using exhaust gas of a high temperature regenerator integrated with the high temperature regenerator of the present invention. As shown in FIG. 1, in the high temperature regenerator of this embodiment, a combustion chamber 78 is provided in the vertical center of a high temperature regenerator casing 76, and a large number of liquid rising pipes are provided in the vertical direction around the combustion chamber 78.
In addition, the fins 86 are arranged in two rows of concentric circles, and a large number of fins 86 are arranged substantially horizontally between the inner row pipe 82 and the outer row pipe 84 and between the outer row pipe 84 and the high temperature regenerator casing wall. It is provided in multiple stages. 70 is a refrigerant vapor outlet, 72 is a liquid inlet for introducing an intermediate concentration liquid or a diluted solution, and 74 is a concentrated liquid outlet. The combustion gas generated in the combustion chamber 78 is introduced into a gas passage 88 between the inner row pipe 82 and the outer row pipe 84 and a gas passage 90 between the outer row pipe 84 and the high temperature regenerator casing wall.

【0012】なお、高温再生器ケーシング76の内側を
二重構造にして竪型ドラム80を形成する場合には、多
数のフィン86は外列管84と竪型ドラム80との間に
設けられ、ガス通路90は外列管84と竪型ドラム80
との間に設けられることになる。本実施例における低温
再生器は、図1に示すように、低温再生器ケーシング1
10が、高温再生器ケーシング76に隣接してガス通路
88、90と連通するように設けられており、低温再生
器ケーシング110内には、多数のフィン120を略水
平方向に多段に有する希釈溶液加熱管122が竪方向に
設けられている。112は希釈溶液入口、114は中間
濃度液出口、116は冷媒蒸気出口、118は排ガス出
口である。
When the inside of the high temperature regenerator casing 76 has a double structure to form the vertical drum 80, a large number of fins 86 are provided between the outer row pipes 84 and the vertical drum 80. The gas passage 90 includes an outer row pipe 84 and a vertical drum 80.
It will be provided between and. As shown in FIG. 1, the low temperature regenerator according to the present embodiment is a low temperature regenerator casing 1.
10 is provided adjacent to the high temperature regenerator casing 76 so as to communicate with the gas passages 88 and 90, and in the low temperature regenerator casing 110, a dilute solution having a large number of fins 120 in multiple stages in a substantially horizontal direction. The heating pipe 122 is provided in the vertical direction. 112 is a diluted solution inlet, 114 is an intermediate concentration liquid outlet, 116 is a refrigerant vapor outlet, and 118 is an exhaust gas outlet.

【0013】つぎに本実施例の作用について説明する。
まず、低温再生器において、希釈溶液は、希釈溶液入口
112から流入して希釈溶液加熱管122で高温再生器
からの排ガスにより加熱され、水蒸気を発生し、高温に
加熱された溶液は中間濃度液出口114から流出する。
一方、高温再生器において、中間濃度液又は希釈溶液
は、液入口72から下側の管寄せ(ヘッダー)73に流
入して内列管82と外列管84とからなる液上昇管で加
熱され、水蒸気を発生し、高温に加熱された濃縮溶液は
上側の管寄せ(ヘッダー)71に集められて、濃液出口
74から流出する。83は気水分離器、75はバーナで
ある。
Next, the operation of this embodiment will be described.
First, in the low temperature regenerator, the diluted solution flows in from the diluted solution inlet 112 and is heated by the exhaust gas from the high temperature regenerator in the diluted solution heating pipe 122 to generate steam, and the solution heated to a high temperature is an intermediate concentration liquid. It flows out from the outlet 114.
On the other hand, in the high temperature regenerator, the intermediate concentration liquid or the diluted solution flows into the lower header (header) 73 from the liquid inlet 72 and is heated by the liquid rising pipe including the inner row pipe 82 and the outer row pipe 84. The concentrated solution that generates steam and is heated to a high temperature is collected in the upper header (header) 71 and flows out from the concentrated liquid outlet 74. 83 is a steam separator, and 75 is a burner.

【0014】図2に示すように、内列管82同士は密接
して接続されているが、一個所に開口部96が設けられ
ており、この開口部96から燃焼ガスが内列管82と外
列管84との間のガス通路88、及び外列管84と竪型
ドラム80との間のガス通路90へ流入し、水平フィン
86及び管82、84を加熱した後、燃焼排ガス出口9
8から低温再生器へ送られる。加熱された濃縮溶液の大
部分は、濃液出口74から流出し、濃縮溶液の一部は竪
型ドラム80内を降下しつつ、水平フィン86及び外列
管84を加熱する。低温再生器に導入された排ガスは、
多数のフィン120及び希釈溶液加熱管122を加熱し
た後、排ガス出口118から放出される。加熱された中
間濃度の溶液は、中間濃度液出口114から流出する。
As shown in FIG. 2, the inner row pipes 82 are closely connected to each other, but an opening 96 is provided at one place, and combustion gas is discharged from the opening 96 to the inner row pipes 82. After flowing into the gas passage 88 between the outer row pipe 84 and the gas passage 90 between the outer row pipe 84 and the vertical drum 80 to heat the horizontal fins 86 and the pipes 82, 84, the combustion exhaust gas outlet 9
8 sent to low temperature regenerator. Most of the heated concentrated solution flows out from the concentrated liquid outlet 74, and a part of the concentrated solution descends in the vertical drum 80 while heating the horizontal fins 86 and the outer row pipes 84. The exhaust gas introduced into the low temperature regenerator is
After heating the large number of fins 120 and the diluted solution heating pipes 122, they are discharged from the exhaust gas outlet 118. The heated intermediate-concentration solution flows out from the intermediate-concentration liquid outlet 114.

【0015】実施例2 図2に示す場合では、本発明における高温再生器は、内
列管82及び外列管84を略楕円形又は複数個の曲率を
持つ曲面で形成された略卵形からなる略流線形としてい
るので、燃焼ガスが高速で流動する時に、抵抗が少な
く、風箱100(図1参照)に接続される空気押し込み
ファン(図示略)の電動機出力が少なくてすみ、かつ、
高温再生器をより小型にすることができるという利点が
ある。同様に、本発明における低温再生器は、希釈溶液
加熱管122を略楕円形又は複数個の曲率を持つ曲面で
形成された略卵形からなる略流線形としているので、燃
焼ガスが高速で流動する時に、抵抗が少なく、かつ、低
温再生器をより小型にすることができるという利点があ
る。
Embodiment 2 In the case shown in FIG. 2, in the high temperature regenerator of the present invention, the inner row pipe 82 and the outer row pipe 84 are formed in a substantially oval shape or a substantially oval shape formed by a curved surface having a plurality of curvatures. Since the combustion gas flows at a high speed, the resistance is small, and the motor output of an air pushing fan (not shown) connected to the wind box 100 (see FIG. 1) is small, and
There is an advantage that the high temperature regenerator can be made smaller. Similarly, in the low temperature regenerator of the present invention, the diluted solution heating pipe 122 has a substantially elliptical shape or a substantially streamline shape of a substantially oval shape formed by a curved surface having a plurality of curvatures, so that the combustion gas flows at a high speed. In this case, there is an advantage that the resistance is small and the low temperature regenerator can be made smaller.

【0016】なお、管の一例として横断面略楕円体を示
し、その長軸とガス流れとが略平行になるように配列し
ているが、他の形状、例えば横断面が複数個の曲率を持
つ曲面で形成された略卵形からなる略流線形のものでも
良い。また、図4に示すように、外列管84を間隔をあ
けずに円周上に配列する場合もある。さらに、図5に示
すように、外列管84を間隔をあけて円周上に配列する
場合もある。この場合は、燃焼排ガスが外列管84の内
外を自由に通過でき、熱伝達がより十分に行われるとい
う利点がある。他の構成及び作用は実施例1の場合と同
様である。
It should be noted that although a substantially ellipsoidal cross section is shown as an example of the pipe and the long axis and the gas flow are arranged so as to be substantially parallel to each other, other shapes, for example, the cross section has a plurality of curvatures. It may be a substantially streamlined one formed of a substantially oval shape having a curved surface. Further, as shown in FIG. 4, the outer row pipes 84 may be arranged on the circumference without a gap. Further, as shown in FIG. 5, the outer row pipes 84 may be arranged on the circumference at intervals. In this case, there is an advantage that the combustion exhaust gas can freely pass through the inside and outside of the outer row pipe 84, and the heat transfer can be more sufficiently performed. Other configurations and operations are similar to those of the first embodiment.

【0017】実施例3 また、図2に示すように、内列管82、外列管84及び
希釈溶液加熱管122の内面を、波型表面92に形成し
ている。この場合は、内面の表面積が増えるとともに、
液体の表面張力で液体が薄く均一に引き延ばされるの
で、きわめて効率よく熱伝達を行うことができる。波型
表面92としては、一定曲率半径表面(constan
t curvature surface,CCS)と
するのが好ましい。CCSにすれば、上記の効果が一層
発揮される。他の構成及び作用は実施例1の場合と同様
である。
Embodiment 3 Further, as shown in FIG. 2, the inner surfaces of the inner row pipe 82, the outer row pipe 84 and the diluted solution heating pipe 122 are formed on the corrugated surface 92. In this case, as the inner surface area increases,
Since the liquid is thinly and uniformly spread by the surface tension of the liquid, heat transfer can be performed very efficiently. As the corrugated surface 92, a surface having a constant radius of curvature (constan
t curve surface (CCS). If CCS is used, the above-mentioned effect is further exhibited. Other configurations and operations are similar to those of the first embodiment.

【0018】実施例4 図2に示すように、本実施例における高温再生器は、外
列管84が、ガス流れに対して適当な一定の迎角を持つ
ように、外列管84の取付角を少しづつ変化させて配列
されたもので、ガスは隣接する外列管84の間を通過し
て流れるように構成されている。他の構成及び作用は実
施例1の場合と同様である。
Embodiment 4 As shown in FIG. 2, in the high temperature regenerator of this embodiment, the outer row pipe 84 is attached so that the outer row pipe 84 has an appropriate constant angle of attack with respect to the gas flow. Arranged with the corners changed little by little, the gas is configured to flow between adjacent outer row tubes 84. Other configurations and operations are similar to those of the first embodiment.

【0019】実施例5 図3に示すように、本実施例における低温再生器は、希
釈溶液加熱管122が、ガス流れに対して適当な一定の
迎角を持つように、希釈溶液加熱管122の取付角を少
しづつ変化させて配列されたもので、ガスは隣接する希
釈溶液加熱管122の間を通過して流れるように構成さ
れている。他の構成及び作用は実施例1の場合と同様で
ある。
Embodiment 5 As shown in FIG. 3, in the low temperature regenerator of this embodiment, the dilute solution heating pipe 122 has a certain angle of attack appropriate for the gas flow. Are arranged so that the mounting angles thereof are changed little by little, and the gas is configured to flow between the adjacent dilute solution heating pipes 122. Other configurations and operations are similar to those of the first embodiment.

【0020】 本発明は上記のように構成されているの
で、つぎのような効果を奏する。 (1) 従来は利用されていなかった、高温再生器の排
ガスで低温再生器の加熱を別個の独立した部分で行なう
ので、簡単な構造で排熱回収が優れた装置が実現でき
る。また、大気へ放出する燃焼排ガス温度を低くすると
ともに、サイクルの成績係数を良くすることができる。 (2) 高温再生器の外周に竪型の降液ドラムを設ける
ように構成する場合は、熱効率が向上する上に、耐火耐
熱材の厚みを少なくして、高温再生器の小型化を図るこ
とができる。 (3) 内列管及び外列管が略楕円形又は複数個の曲率
を持つ曲面で形成された略卵形からなる略流線形である
場合は、燃焼ガスが高速で流動する時に抵抗が少なくて
すみ、空気押し込みフアンの電動機出力が少なくなり、
高温再生器のより小型化を図ることができる。 (4) 希釈溶液加熱管が略楕円形又は複数個の曲率を
持つ曲面で形成された略卵形からなる略流線形である場
合は、燃焼ガスが高速で流動する時に抵抗が少なくてす
み、低温再生器のより小型化を図ることができる。 (5) 内列管及び外列管の内面を波型表面に形成する
場合は、表面積が増えるとともに、液体の表面張力で液
体を管内面に薄く均一に引き延ばすので、熱伝達が大幅
に改善され、さらに、高温再生器のより小型化を図るこ
とができる。 (6) 希釈溶液加熱管の内面を波型表面に形成する場
合は、表面積が増えるとともに、液体の表面張力で液体
を管内面に薄く均一に引き延ばすので、熱伝達が大幅に
改善され、さらに、低温再生器のより小型化を図ること
ができる。 (7) 外列管がガス流れに対して一定の迎角を持つよ
うに配列される場合は、ガスの流れが円滑になり、熱交
換をより一層効率よく行うことができる。 (8) 希釈溶液加熱管がガス流れに対して一定の迎角
を持つように配列される場合は、ガスの流れが円滑にな
り、熱交換をより一層効率よく行うことができる。
Since the present invention is configured as described above, it has the following effects. (1) Since the low temperature regenerator is heated by the exhaust gas of the high temperature regenerator, which has not been conventionally used, is heated in a separate independent part, a device having a simple structure and excellent exhaust heat recovery can be realized. Further, the temperature of the combustion exhaust gas discharged to the atmosphere can be lowered and the coefficient of performance of the cycle can be improved. (2) When the vertical liquid drop drum is provided around the outer periphery of the high temperature regenerator, the thermal efficiency is improved and the thickness of the refractory heat resistant material is reduced to reduce the size of the high temperature regenerator. You can (3) When the inner row pipes and the outer row pipes have a substantially elliptical shape or a substantially streamline shape consisting of a substantially oval shape formed by a curved surface having a plurality of curvatures, there is little resistance when the combustion gas flows at a high speed. The output of the electric motor for the air intake fan is reduced,
It is possible to further reduce the size of the high temperature regenerator. (4) When the diluted solution heating tube has a substantially elliptical shape or a substantially streamline shape composed of a substantially oval shape formed by a curved surface having a plurality of curvatures, the combustion gas has a low resistance when flowing at a high speed, It is possible to further reduce the size of the low temperature regenerator. (5) When the inner surfaces of the inner row pipes and the outer row pipes are formed in a corrugated surface, the surface area increases and the surface tension of the liquid stretches the liquid thinly and evenly on the inner surface of the pipes, which greatly improves heat transfer. Further, the high temperature regenerator can be further downsized. (6) When the inner surface of the dilute solution heating tube is formed as a corrugated surface, the surface area increases and the surface tension of the liquid stretches the liquid thinly and evenly on the inner surface of the pipe, which greatly improves heat transfer. It is possible to further reduce the size of the low temperature regenerator. (7) When the outer row pipes are arranged so as to have a constant angle of attack with respect to the gas flow, the gas flow becomes smooth, and heat exchange can be performed more efficiently. (8) When the diluted solution heating pipes are arranged so as to have a constant angle of attack with respect to the gas flow, the gas flow becomes smooth, and heat exchange can be performed more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の高温再生器と一体化した高温再生器
排ガス利用の低温再生器の一実施例を示す縦断面説明図
である。
FIG. 1 is a vertical cross-sectional explanatory view showing an embodiment of a low temperature regenerator using exhaust gas of a high temperature regenerator integrated with a high temperature regenerator of the present invention.

【図2】 図1におけるII−II線拡大断面の一例を
示す説明図である。
FIG. 2 is an explanatory diagram showing an example of an enlarged cross section taken along line II-II in FIG.

【図3】 図1における低温再生器のII−II線断面
の他の例を示す説明図である。
FIG. 3 is an explanatory diagram showing another example of a cross section taken along line II-II of the low temperature regenerator in FIG.

【図4】 本発明の高温再生器における管の配列構造の
他の例を示す平断面図である。
FIG. 4 is a plan cross-sectional view showing another example of the arrangement structure of tubes in the high temperature regenerator of the present invention.

【図5】 本発明の高温再生器における管の配列構造の
さらに他の例を示す平断面図である。
FIG. 5 is a plan sectional view showing still another example of an array structure of tubes in the high temperature regenerator of the present invention.

【図6】 従来の吸収冷温水機のフローを示す説明図で
ある。
FIG. 6 is an explanatory diagram showing a flow of a conventional absorption chiller-heater.

【符号の説明】[Explanation of symbols]

70 冷媒蒸気出口 72 液入口 74 濃液出口 76 高温再生器ケーシング 78 燃焼室 80 竪型ドラム 82 内列管 84 外列管 86 フィン 88 ガス通路 90 ガス通路 92 波型表面 110 低温再生器ケーシング 112 希釈溶液入口 114 中間濃度液出口 116 冷媒蒸気出口 118 排ガス出口 120 フィン 122 希釈溶液加熱管 70 Refrigerant vapor outlet 72 Liquid inlet 74 Concentrated liquid outlet 76 High temperature regenerator casing 78 Combustion chamber 80 Vertical drum 82 inner row pipe 84 Outer row pipe 86 fins 88 gas passage 90 gas passage 92 Corrugated surface 110 low temperature regenerator casing 112 Diluted solution inlet 114 Intermediate concentration liquid outlet 116 Refrigerant vapor outlet 118 Exhaust gas outlet 120 fins 122 Diluted solution heating tube

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 上部に冷媒蒸気出口(70)を有し、下
部に中間濃度液又は希釈溶液を導入する液入口(72)
を有し、上側部に濃液出口(74)を有する高温再生器
ケーシング(76)内の竪方向中央部に燃焼室(78)
を設け、 この燃焼室(78)の周囲に、多数の液上昇管を竪方向
に、かつ、二列の同心円状に配置し、 内列管(82)と外列管(84)との間、及び外列管
(84)と高温再生器ケーシング壁との間に多数のフィ
ン(86)を略水平方向に多段に設け、 燃焼室(78)で発生する燃焼ガスを、内列管(82)
と外列管(84)との間のガス通路(88)、及び外列
管(84)と高温再生器ケーシング壁との間のガス通路
(90)へ導入するようにし、 高温再生器ケーシング(76)に隣接して、ガス通路
(88)、(90)と連通するように低温再生器ケーシ
ング(110)を設け、 低温再生器ケーシング(110)は希釈溶液入口(11
2)、中間濃度液出口(114)、冷媒蒸気出口(11
6)及び排ガス出口(118)を有しており、 低温再生器ケーシング(110)内に多数のフィン(1
20)を略水平方向に多段に有する希釈溶液加熱管(1
22)を竪方向に設けたことを特徴とする高温再生器と
一体化した高温再生器排ガス利用の低温再生器。
1. A liquid inlet (72) having a refrigerant vapor outlet (70) in an upper part and introducing an intermediate concentration liquid or a dilute solution in a lower part.
And a combustion chamber (78) in the vertical center in a high temperature regenerator casing (76) having a concentrated liquid outlet (74) on the upper side.
Around the combustion chamber (78), a large number of liquid riser pipes are arranged vertically and in two concentric circles, and between the inner row pipe (82) and the outer row pipe (84). , And a large number of fins (86) between the outer row pipe (84) and the high temperature regenerator casing wall in a substantially horizontal direction in multiple stages, and the combustion gas generated in the combustion chamber (78) is transferred to the inner row pipe (82). )
To the gas passage (88) between the outer row pipe (84) and the gas passage (90) between the outer row pipe (84) and the high temperature regenerator casing wall. A low temperature regenerator casing (110) is provided so as to communicate with the gas passages (88) and (90) adjacent to the low temperature regenerator casing (110).
2), intermediate concentration liquid outlet (114), refrigerant vapor outlet (11)
6) and an exhaust gas outlet (118), and a large number of fins (1) in the low temperature regenerator casing (110).
20) is a dilute solution heating pipe (1) having a plurality of stages in a substantially horizontal direction.
22) is provided in the vertical direction, and is a high temperature regenerator integrated with a high temperature regenerator.
【請求項2】 高温再生器ケーシング(76)の内側を
二重構造にして竪型ドラム(80)を形成したことを特
徴とする請求項1記載の高温再生器と一体化した高温再
生器排ガス利用の低温再生器。
2. The high temperature regenerator exhaust gas integrated with the high temperature regenerator according to claim 1, wherein the inside of the high temperature regenerator casing (76) has a double structure to form a vertical drum (80). Use low temperature regenerator.
【請求項3】 内列管(82)、外列管(84)及び希
釈溶液加熱管(122)の横断面が、ガスの流動抵抗の
少ない略楕円形又は複数個の曲率を持つ曲面で形成され
た略卵形からなる略流線形であることを特徴とする請求
項1又は2記載の高温再生器と一体化した高温再生器排
ガス利用の低温再生器。
3. The cross sections of the inner row pipe (82), the outer row pipe (84) and the diluted solution heating pipe (122) are formed into a substantially elliptical shape having a low gas flow resistance or a curved surface having a plurality of curvatures. 3. A high temperature regenerator integrated with a high temperature regenerator according to claim 1 or 2, wherein the low temperature regenerator uses exhaust gas.
【請求項4】 内列管(82)、外列管(84)及び希
釈溶液加熱管(122)の内面を、波型表面(92)に
形成したことを特徴とする請求項1、2又は3記載の高
温再生器と一体化した高温再生器排ガス利用の低温再生
器。
4. The inner surface of the inner row pipe (82), the outer row pipe (84) and the diluted solution heating pipe (122) is formed into a corrugated surface (92). High-temperature regenerator integrated with the high-temperature regenerator described in 3. A low-temperature regenerator that uses exhaust gas.
【請求項5】 外列管(84)が、ガス流れに対して一
定の迎角を持つように、取付角を少しづつ変化させて配
列されたことを特徴とする請求項1、2、3又は4記載
の高温再生器と一体化した高温再生器排ガス利用の低温
再生器。
5. The outer row pipes (84) are arranged with their mounting angles changed little by little so as to have a constant angle of attack with respect to the gas flow. Or a high temperature regenerator integrated with the high temperature regenerator described in 4, which is a low temperature regenerator using exhaust gas.
【請求項6】 希釈溶液加熱管(122)が、ガス流れ
に対して一定の迎角を持つように、取付角を少しづつ変
化させて配列されたことを特徴とする請求項1、2、
3、4又は5記載の高温再生器と一体化した高温再生器
排ガス利用の低温再生器。
6. The diluting solution heating pipes (122) are arranged with their mounting angles changed little by little so that they have a constant angle of attack with respect to the gas flow.
High temperature regenerator integrated with the high temperature regenerator described in 3, 4 or 5 Low temperature regenerator using exhaust gas.
JP07521493A 1993-03-09 1993-03-09 High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas Expired - Lifetime JP3461857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07521493A JP3461857B2 (en) 1993-03-09 1993-03-09 High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07521493A JP3461857B2 (en) 1993-03-09 1993-03-09 High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas

Publications (2)

Publication Number Publication Date
JPH06257891A JPH06257891A (en) 1994-09-16
JP3461857B2 true JP3461857B2 (en) 2003-10-27

Family

ID=13569742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07521493A Expired - Lifetime JP3461857B2 (en) 1993-03-09 1993-03-09 High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas

Country Status (1)

Country Link
JP (1) JP3461857B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932241B2 (en) * 1999-11-22 2007-06-20 荏原冷熱システム株式会社 Absorption refrigerator
KR100464924B1 (en) * 2002-12-13 2005-01-05 주식회사 신성엔지니어링 Absorption refrigerator with fin tube type of high temperature generator

Also Published As

Publication number Publication date
JPH06257891A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
CN1227492C (en) Main body of absorbing air-conditioner
WO2014012287A1 (en) Air conditioning unit with filler coupling coil pipe evaporative type condenser
JP3461857B2 (en) High-temperature regenerator integrated with high-temperature regenerator Low-temperature regenerator using exhaust gas
JP2007514127A (en) High-efficiency turbulence generator for absorption refrigerating / heating multistage regenerator
JP2000356419A5 (en)
RU96418U1 (en) SECTION AIR COOLING UNIT TYPE ABC GI WITH GAS COOLER
WO2021114541A1 (en) Droplet evaporation device for water chilling unit, and water chilling unit
JPH10160266A (en) Heat exchanger for air conditioner
CN106123657A (en) Heat medium water tubular type flue gas heat-exchange unit
JPH06257878A (en) Absorption refrigerator and water cooler-heater with both low temperature regenerator and exhaust heat recovering low temperature regenerator
JPH0777397A (en) Heat transfer tube
JP3479104B2 (en) Vertical low temperature regenerator
CN205642083U (en) Four tubs of single channel group heat exchangers
JPH0711369B2 (en) Generator
JP3086097B2 (en) Heat transfer tube for double heating type low temperature regenerator
JP3300083B2 (en) Water tube evaporator with vertical drum
JP3129558B2 (en) Combined flow path of absorber and condenser in air-cooled absorption refrigerator and chiller / heater
CN205843469U (en) Enamel heat exchange tube structure for heat medium water tubular type flue gas heat-exchange unit
CN209165621U (en) A kind of pulsating heat pipe cool-down dehumidification device of double winding formula
JPH06185830A (en) Absorption type refrigerator, cold/warm water machine and heat pump provided with steam turbine and compressor at absorber
JP3616900B2 (en) Cross-flow boiler, cross-flow regenerator, and absorption refrigerator equipped with the regenerator
JP3948548B2 (en) Exhaust gas driven absorption chiller / heater
JP3401299B2 (en) Vertical absorber
JPH06201209A (en) Absorptive refrigeration machine and hot water and chilled water making machine provided with double heating low temperature regenerator
JP2983705B2 (en) Outdoor heat exchanger of air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

EXPY Cancellation because of completion of term