JPH0332734B2 - - Google Patents

Info

Publication number
JPH0332734B2
JPH0332734B2 JP57027967A JP2796782A JPH0332734B2 JP H0332734 B2 JPH0332734 B2 JP H0332734B2 JP 57027967 A JP57027967 A JP 57027967A JP 2796782 A JP2796782 A JP 2796782A JP H0332734 B2 JPH0332734 B2 JP H0332734B2
Authority
JP
Japan
Prior art keywords
light
data
receiving element
output
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027967A
Other languages
Japanese (ja)
Other versions
JPS58143251A (en
Inventor
Shotaro Yokoyama
Takashi Nishibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2796782A priority Critical patent/JPS58143251A/en
Publication of JPS58143251A publication Critical patent/JPS58143251A/en
Publication of JPH0332734B2 publication Critical patent/JPH0332734B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 本発明は、板状物体の部分的な欠落や孔などの
欠陥を、光学的に走査して検出する欠陥検出方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect detection method for optically scanning and detecting defects such as partial omissions and holes in a plate-shaped object.

光源列と受光素子列の間に板状物体を通過させ
た時、もし板状物体に部分的な欠落や孔などの欠
陥があると、光源からの光が板状物体に遮られる
ことなく幾つかの受光素子に当たるので、受光素
子の出力信号から板状物体の欠陥の有無を知るこ
とができる。第1図は、この種の欠陥検出装置の
公知の原理構成を示すものである。
When a plate-shaped object is passed between the light source array and the light-receiving element array, if the plate-shaped object has defects such as partial omissions or holes, how many times can the light from the light source pass without being blocked by the plate-shaped object? Therefore, it is possible to know whether there is a defect in the plate-shaped object from the output signal of the light receiving element. FIG. 1 shows the known principle configuration of this type of defect detection device.

第1図の装置においては、n個の光源1a〜1
nから成る光源列に対向してn個の受光素子2a
〜2nから成る受光素子列が設けられている。こ
の例では、光源と受光素子は1:1の関係でn個
ずつ設けられているが、光源の数は受光素子とは
異なつていてもよく、極端な場合には1個でもよ
い。板状の試料3は矢印の方向に進行して光源列
と受光素子列の間を、光を遮る形で通過する。受
光素子2a〜2nの出力信号は信号処理装置4に
入力され、欠陥検出のために処理される。試料3
に欠落部3aや孔3bなどの欠陥が存在すると、
これらの欠陥部が光源と受光素子の間を通過する
時その受光素子に光が当たるので受光素子の出力
が変化する。この変化に基づいて信号処理装置4
は欠陥を検知し、その検知結果を出力装置5に出
力する。
In the apparatus shown in FIG. 1, n light sources 1a to 1
n light receiving elements 2a facing a light source array consisting of n
A light receiving element array consisting of ~2n is provided. In this example, n light sources and light receiving elements are provided in a 1:1 relationship, but the number of light sources may be different from the number of light receiving elements, and in extreme cases, the number may be one. The plate-shaped sample 3 moves in the direction of the arrow and passes between the light source array and the light receiving element array while blocking light. The output signals of the light receiving elements 2a to 2n are input to the signal processing device 4 and processed for defect detection. Sample 3
If there are defects such as missing parts 3a and holes 3b,
When these defective parts pass between the light source and the light-receiving element, light hits the light-receiving element, so that the output of the light-receiving element changes. Based on this change, the signal processing device 4
detects defects and outputs the detection results to the output device 5.

信号処理装置4内に設けられる欠陥判定回路の
一例を第2図に示す。この回路は比較器5を備え
ており、ここで受光素子2の出力信号Sと基準電
源6によつて発生された基準電圧Soとの比較を
行う。受光素子2の特性が例えば光の増大と共に
出力信号Sも増大するようなものである場合に
は、比較器5はS>Soの時に「欠陥あり」と判
断して例えば“1”信号を出力する。
An example of a defect determination circuit provided in the signal processing device 4 is shown in FIG. This circuit includes a comparator 5, which compares the output signal S of the light receiving element 2 with a reference voltage So generated by a reference power source 6. If the characteristics of the light receiving element 2 are such that, for example, the output signal S increases as the light increases, the comparator 5 determines that there is a "defect" when S>So and outputs a signal of "1", for example. do.

しかし、このような従来の欠陥検出方式には、
検出精度が基準電圧Soの設定精度のみに依存す
るという欠点がある。すなわち、装置据付け時な
どの初期調整の時に、素子の製造ばらつきや素子
の置かれる環境の相違などによる受光素子の出力
特性のばらつきに合わせて、受光素子1個ごとに
基準電圧Soの調整を行つてやらなければならな
い。また、経年変化によつて受光素子の出力特性
が変化した場合も個々の基準電圧Soの再調整が
必要になつてくる。これらの欠点は、検査される
板状物体が完全に不透明なものであれば大して問
題にならないかもしれないが、半透明なものや細
かい網状のもの(例えば海苔など)では決して無
視することができない。
However, such conventional defect detection methods have
There is a drawback that the detection accuracy depends only on the setting accuracy of the reference voltage So. In other words, during initial adjustment such as during equipment installation, the reference voltage So is adjusted for each light-receiving element to account for variations in the output characteristics of the light-receiving element due to manufacturing variations in the element or differences in the environment in which the element is placed. I have to do it. Further, when the output characteristics of the light receiving elements change due to aging, it becomes necessary to readjust the individual reference voltages So. These drawbacks may not be a big problem if the plate-like object being inspected is completely opaque, but cannot be ignored if it is semi-transparent or has a fine mesh structure (such as seaweed). .

本発明の目的は、上述の欠点を除去し、調整や
管理が簡単で、複数の受光素子間の特性のばらつ
きなどに影響されない高精度の欠陥検出方法を提
供することにある。
An object of the present invention is to provide a highly accurate defect detection method that eliminates the above-mentioned drawbacks, is easy to adjust and manage, and is not affected by variations in characteristics among a plurality of light receiving elements.

この目的を達成するために本発明によれば、試
料たる板状物体を複数m個の受光素子からなる受
光素子列により光学的に走査して得られる各受光
素子の出力データから試料の欠陥を検出する欠陥
検出方法において、前記受光素子列の1走査サイ
クル中に各受光素子から順次得られるm個のデー
タD(i)(ただし、i=1、2、…、mとする)を
すべて記憶し、この記憶したm個のデータの和ni=
D(i)を計算し、その結果を用いてm個のデータ
の平均値およびその定数k倍に相当するkを
計算し、前記記憶した各データD(i)ごとに前記平
均値Dとの差の絶対値|D(i)−D|を計算し、こ
の|D(i)−D|と前記kとの大小比較により前
記試料の欠陥の有無を判断することを特徴とし、
もし1つでも|D(i)−|>kとなるようなケ
ースがあれば試料に欠陥ありと判断するようにし
たものである。
In order to achieve this object, according to the present invention, defects in the sample are detected from the output data of each light receiving element obtained by optically scanning a plate-shaped object as a sample with a light receiving element array consisting of a plurality of m light receiving elements. In the defect detection method for detecting, all m pieces of data D(i) (where i=1, 2, ..., m) sequentially obtained from each light receiving element during one scanning cycle of the light receiving element array are stored. Then, the sum of m stored data ni=
1 Calculate D(i), use the result to calculate the average value of m pieces of data and k corresponding to its constant k times, and calculate the average value D and the average value D for each stored data D(i). The absolute value of the difference |D(i)-D| is calculated, and the presence or absence of a defect in the sample is determined by comparing the magnitude of this |D(i)-D| with the k,
If there is even one case where |D(i)-|>k, it is determined that the sample is defective.

すなわち、以下に本発明の原理を第3図のグラ
フに基ずき具体的に説明する、同図aにおいて、
許容範囲は平均値Dを基準としたプラス−マイナ
スのしきい値をkで表わされる。いまD(i)をD
(2)と仮定すれば、判定値|D(i)−|、すなわち
|D(2)−|は図におけるAに相当する。したが
つて、許容範囲であるハツチング部のマイナス側
しきい値Bと判定値Aとの比較を行なえばA<B
となり、判定値は許容範囲にあり欠陥とは見なさ
れない。次にD(i)を“欠陥部”D(4)と仮定すれ
ば、判定値|D(4)−|は図におけるCに相当
し、許容範囲であるハツチング部のプラス側しき
い値B′と比較される。結果はC>B′となり、判
定値はしきい値を超え「欠陥あり」と判断され
る。
That is, in the following, the principle of the present invention will be explained in detail based on the graph of FIG.
The permissible range is expressed by k, which is a plus or minus threshold value based on the average value D. Now D(i)
Assuming (2), the decision value |D(i)-|, that is, |D(2)-|, corresponds to A in the figure. Therefore, if we compare the negative threshold value B of the hatched part, which is an allowable range, with the judgment value A, then A<B.
Therefore, the judgment value is within the permissible range and is not considered a defect. Next, if we assume that D(i) is the "defective part" D(4), the judgment value |D(4)-| corresponds to C in the figure, and is the positive threshold value B of the hatched part, which is within the allowable range. ’. The result is C>B', the determination value exceeds the threshold, and it is determined that there is a defect.

このように本発明は、しきい値の基準点を全デ
ータの平均値としているため、受光量“大”とい
う観点から欠陥部とみなされたデータD(4)に限ら
ず、例えば図のD(1)がそうであるように、受光量
が小さすぎるために欠陥部と見なすことも可能で
ある。これは、透光性あるいは半透明の被測定物
において、付着物等の検出を行ないたい場合には
有効である。尚、上記効果に相伴うものとして、
しきい値の定数kを見逃すことはできない。
In this way, the present invention uses the average value of all data as the reference point for the threshold value, so it is not limited to data D(4), which is considered to be a defective part from the viewpoint of "large" amount of received light, but for example, D in the figure. As in (1), the amount of light received is too small, so it can be considered a defective part. This is effective when it is desired to detect deposits or the like on a translucent or semi-transparent object to be measured. In addition, as a result of the above effects,
The threshold constant k cannot be overlooked.

すなわち定数kは許容範囲を決定するものであ
り、測定における個々の条件により、あらかじめ
設定されるものである。この条件には、装置側の
精度によるものと、被測定物の特性によるものと
があり、前者の例として素子を太陽電池で構成す
ることに伴なう出力のばらつき、後者の例として
被測定物を“食用のり”としたことによる出力の
ばらつきがあげられる。第4図の例では、k≒
0.5として設定することにより、各素子の出力の
ばらつきに対応したが、このばらつきが小さい場
合には、kを小さくして許容範囲の幅を狭め欠陥
部の検出感度を高めることが好ましい。
That is, the constant k determines the permissible range and is set in advance depending on the individual conditions in the measurement. These conditions include the accuracy of the equipment and the characteristics of the object to be measured. An example of the former is the variation in output due to the element being composed of a solar cell, and an example of the latter is the accuracy of the object to be measured. One example is the variation in output due to the use of "edible glue". In the example in Figure 4, k≒
By setting k to 0.5, variation in the output of each element was accommodated, but if this variation is small, it is preferable to decrease k to narrow the width of the tolerance range and increase the detection sensitivity of defective parts.

以上は、本発明が出力のばらつきに影響されな
いことを説明するものであるが、本発明は素子の
経年変化も考慮したものであり、これを第3図b
に基づき説明する。
The above explains that the present invention is not affected by variations in output, but the present invention also takes into account aging of the element, and this is shown in Fig. 3b.
The explanation will be based on.

すなわち、同図は第3図aに示した素子の出力
が、経年変化により、全体的に低下した一例を示
すものである。上記同様、D(4)を例にとつて考え
ると、素子の出力低下に伴ない判定値|D(4)−
|も小さくなつていることがわかる。ここでしき
い値が従来同様設定された値であれば、出力値D
(4)であらわされた欠陥は検出されないであろう。
しかしながら本発明におけるしきい値には、全体
の出力値の平均が変数として含まれており、素
子の出力値としきい値は密接な関係を有してい
る。したがつて、素子の出力が全体的に低下すれ
ば、しきい値もそれに伴つて小さくなり、図にお
いてハツチング部で示す部分が、この場合の許容
範囲に相当する。このため第3図a同様、D(4)は
欠陥部として検出されることになる。
That is, this figure shows an example in which the output of the element shown in FIG. 3a has decreased overall due to aging. As above, taking D(4) as an example, the judgment value |D(4)−
It can be seen that | is also getting smaller. Here, if the threshold value is set as before, the output value D
The defect expressed in (4) will not be detected.
However, the threshold value in the present invention includes the average of the overall output values as a variable, and the output value of the element and the threshold value have a close relationship. Therefore, if the overall output of the element decreases, the threshold value also decreases accordingly, and the hatched area in the figure corresponds to the allowable range in this case. Therefore, as in FIG. 3a, D(4) is detected as a defective portion.

本発明は、このような原理に基づき構成される
ものであるが、次に本発明を実施する為の装置の
一例を第4図に基づき説明する。受光素子11は
入力光に応じた出力信号SをA/D変換器12に
入力する。一方、周波数固定の基準パルスの周波
数を分周器13が1/qに分周して、システムのタ
イミングパルスを発生する。すなわち分周器13
は基準パルスq発ごとにスタート信号パルスTを
出してシステムを基準パルスq発ごとに1動作さ
せる。qの値を変化させることによつてシステム
の動作速度を調節することができる訳であり、場
合によつては分周器13は省略することもでき
る。A/D変換器12は分周器13からANDゲ
ート10を介して供給されるスタート信号Tによ
り始動し、変換動作が終了すると変換終了信号
EOCとデータ信号Dを出力する。これらのデー
タ信号Dはm個のレジスタ21,22,…に入力
され、順次記憶される。順次記憶のための制御は
各レジスタに設けられているANDゲートA1,
A2,……によつて行われる。
The present invention is constructed based on such a principle. Next, an example of an apparatus for carrying out the present invention will be explained based on FIG. 4. The light receiving element 11 inputs an output signal S corresponding to the input light to the A/D converter 12. On the other hand, a frequency divider 13 divides the frequency of the fixed-frequency reference pulse by 1/q to generate a system timing pulse. That is, frequency divider 13
outputs a start signal pulse T every q reference pulses to operate the system once every q reference pulses. By changing the value of q, the operating speed of the system can be adjusted, and in some cases, the frequency divider 13 can be omitted. The A/D converter 12 is started by a start signal T supplied from the frequency divider 13 via the AND gate 10, and when the conversion operation is completed, a conversion end signal is issued.
Outputs EOC and data signal D. These data signals D are input to m registers 21, 22, . . . and are sequentially stored. Control for sequential storage is provided by AND gate A1, which is provided in each register.
A2,... is performed.

分周器13の出力パルスはカウンタ14によつ
て初期値零からカウントされる。カウンタ14の
2進出力信号Xはデコーダ15によつて1〜m+1
の制御信号Yにデコードされる。ここでi番目の
制御信号はカウンタ14の2進出力がiに等しい
時のみオンすなわち“1”信号となる。したがつ
て、デコーダ15は1からm+1の順に順番に
“1”信号を出力する。レジスタ21,22,…
のうちi番目のレジスタにはANDゲートA1,
A2,……の作用により、変換終了信号EOC=
1かつi番目の制御信号=1の時のみ、A/D変
換器12によつてA/D変換された信号Sの値が
書込まれる。つまりi番目にA/D変換された信
号SのデータD(i)はi番目のレジスタに記憶さ
れ、最終的にレジスタ21,22,…にはm回
A/D変換された信号Sのデータが時系列順に書
込まれることになる。このm回の変換は受光素子
11が試料の一端から他端まで走査したことに対
応する。
The output pulses of the frequency divider 13 are counted by a counter 14 from an initial value of zero. The binary output signal X of the counter 14 is processed by the decoder 15 from 1 to m +1.
is decoded into a control signal Y. Here, the i-th control signal turns on, that is, becomes a "1" signal only when the binary output of the counter 14 is equal to i. Therefore, the decoder 15 outputs "1" signals in order from 1 to m +1 . Registers 21, 22,...
The i-th register has an AND gate A1,
Due to the action of A2, ..., the conversion end signal EOC=
Only when the i-th control signal=1, the value of the signal S that has been A/D converted by the A/D converter 12 is written. In other words, the data D(i) of the signal S that has been A/D converted the i-th time is stored in the i-th register, and finally the data of the signal S that has been A/D-converted m times is stored in the registers 21, 22, etc. will be written in chronological order. These m conversions correspond to the light receiving element 11 scanning from one end of the sample to the other end.

信号Sの測定をm回終了した次のタイミング、
すなわちデコーダ15のm+1出力が“1”になつ
てA/D変換関係の一連の動作は終了し、システ
ムの動作は次の段階に移行する。すなわち、制御
信号m+1によつて加算器16が始動されると共
に、ANDゲート10はブロツクされ、カウンタ
14はホールドされる。加算器16はレジスタ2
1,22,…に書込まれているデータD(i)の総和
を計算する。A/D変換器12の変換データを時
系列順にD(1)、D(2)、D(3)、……D(m)とすると、
加算器16が行う演算は、ni=1 D(i)である。
The next timing after completing the measurement of the signal S m times,
That is, the m +1 output of the decoder 15 becomes "1", a series of operations related to A/D conversion are completed, and the system operation moves to the next stage. That is, adder 16 is started by control signal m +1 , AND gate 10 is blocked, and counter 14 is held. Adder 16 is register 2
The sum of data D(i) written in 1, 22, . . . is calculated. Letting the conversion data of the A/D converter 12 be D(1), D(2), D(3), ...D(m) in chronological order,
The operation performed by the adder 16 is ni=1 D(i).

加算器16のこの出力ΣD(i)は、乗算器17に
よつて1/m倍され、ここでD(i)についての平均
値が求められると共に、乗算器18によつて定
数k/m倍され、ここではk/mΣD(i)=k{1/mΣ
D (i)}=kの計算が行われる。ここでkは前述し
たように、個々の条件に応じて定まるものであ
り、この計算結果は欠陥判定のしきい値として用
いられる。
This output ΣD(i) of the adder 16 is multiplied by 1/m by a multiplier 17, where the average value of D(i) is determined, and the multiplier 18 multiplies it by a constant k/m. and here k/mΣD(i)=k{1/mΣ
D (i)}=k is calculated. Here, as described above, k is determined depending on individual conditions, and the calculation result is used as a threshold value for defect determination.

一方、レジスタ21,22,……の各記憶デー
タD(i)と上記平均値との差D(i)−が減算器3
1,32,…によつて求められ、これらの差はそ
れぞれ絶対値形成回路41,42,……によつて
絶対値|D(i)−|に変換される。
On the other hand, the difference D(i)- between each stored data D(i) of the registers 21, 22, . . . and the above average value is calculated by the subtracter 3.
1, 32, . . . and these differences are converted into absolute values |D(i)−| by absolute value forming circuits 41, 42, .

乗算器18の出力信号kと、絶対値形成回路
41,42,……の各出力信号|D(i)−|との
間の大小比較が比較器51,52,……によつて
行われ、もし|D(i)−|>kであればその出
力信号Biが“1”となり、ORゲート19を介し
てシステム出力として、試料の欠陥を表わす
“1”信号が出力される。なお、以上の演算はマ
イクロコンピユータなどによつて実行することも
できる。
A comparison between the output signal k of the multiplier 18 and each output signal |D(i)−| of the absolute value forming circuits 41, 42, . . . is performed by the comparators 51, 52, . , if |D(i)-|>k, the output signal Bi becomes "1", and a "1" signal representing a defect in the sample is outputted as a system output via the OR gate 19. Note that the above calculations can also be executed by a microcomputer or the like.

以上の回路動作をまとめると次のようになる。 The above circuit operation can be summarized as follows.

まず試料を一端から他端まで走査して受光素子
11の出力をm回A/D変換する。その変換結果
をD(1)、D(2)、…D(m)=D(i)とする。D(i)は試料
の端から端までの横方向の距離(幅)をWとすれ
ば、W・i/mの位置の走査結果に相当する。デ
ータをm個取り終わつたら、データの平均値=
1/mΣD(i)を計算すると共に、それに定数kを乗じ たものに相当するkを計算する。一方、各デー
タD(i)ごとに|D(i)−|を計算し、その計算結
果とkとの大小比較を行い、1つでも|D(i)−
D|>kとなるようなデータD(i)があれば、試
料に欠陥ありと判定するものである。
First, the sample is scanned from one end to the other, and the output of the light receiving element 11 is A/D converted m times. Let the conversion results be D(1), D(2),...D(m)=D(i). D(i) corresponds to the scanning result at a position of W·i/m, where W is the lateral distance (width) from one end of the sample to the other. After taking m pieces of data, the average value of the data =
1/mΣD(i) is calculated, and k, which is equivalent to multiplying it by a constant k, is calculated. On the other hand, |D(i)−| is calculated for each data D(i), and the result of the calculation is compared with k, and even if there is only one |D(i)−
If there is data D(i) such that D|>k, it is determined that the sample has a defect.

以上述べた本発明によれば、データD(i)の平均
値および定数倍kを欠陥判定のしきい値とし
て用いることにより、複数の受光素子間のばらつ
きや経年変化の影響がやkにすべて吸収され
て検出結果には効いてこなくなり、したがつて高
精度でありながら受光素子ごとの煩しい調整作業
が不要になるという利点がある。
According to the present invention described above, by using the average value of the data D(i) and the constant multiplication k as the threshold value for defect determination, the influence of variations among multiple light receiving elements and changes over time can be completely eliminated. It is absorbed and has no effect on the detection results, so it has the advantage of not requiring complicated adjustment work for each light receiving element, although it is highly accurate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の欠陥検出装置の原理構成を示す
配置図、第2図は信号処理回路部分の基本構成を
示すブロツク図、第3図a,bは本発明の原理を
説明するグラフ、第4図は本発明を実施する装置
の一例を示すブロツク図である。 3……試料、11……受光素子、12……A/
D変換器、16……加算器、17,18……乗算
器、21,22……レジスタ、31,32……減
算器、41,42……絶対値形成回路、51,5
2……比較器。
FIG. 1 is a layout diagram showing the basic configuration of a known defect detection device, FIG. 2 is a block diagram showing the basic configuration of a signal processing circuit, FIGS. 3a and 3b are graphs explaining the principle of the present invention, and FIG. FIG. 4 is a block diagram showing an example of an apparatus for implementing the present invention. 3...Sample, 11...Photodetector, 12...A/
D converter, 16... Adder, 17, 18... Multiplier, 21, 22... Register, 31, 32... Subtractor, 41, 42... Absolute value forming circuit, 51, 5
2... Comparator.

Claims (1)

【特許請求の範囲】 1 試料たる板状物体を複数m個の受光素子から
なる受光素子列により光学的に走査して得られる
各受光素子の出力データから試料の欠陥を検出す
る欠陥検出方法において、前記受光素子列の1走
査サイクル中に各受光素子から順次得られるm個
のデータD(i)(ただし、i=1、2、…、mとす
る)をすべて記憶し、この記憶したm個のデータ
の和ni=1 D(i)を計算し、その結果を用いてm個の
データの平均値およびその定数k倍に相当する
kを計算し、前記記憶した各データD(i)ごとに
前記平均値Dとの差の絶対値|D(i)−D|を計算
し、この|D(i)−D|と前記kとの大小比較に
より前記試料の欠陥の有無を判断することを特徴
とする板状物体の欠陥検出方法。
[Scope of Claims] 1. In a defect detection method for detecting defects in a sample from output data of each light-receiving element obtained by optically scanning a plate-shaped object as a sample with a light-receiving element array consisting of a plurality of m light-receiving elements. , all m pieces of data D(i) (where i=1, 2, ..., m) sequentially obtained from each light receiving element during one scanning cycle of the light receiving element array are stored, and the stored m The sum of the data ni=1 D(i) is calculated, and the result is used to calculate the average value of the m data and k, which is multiplied by a constant k, and each of the stored data D( For each i), calculate the absolute value |D(i)-D| of the difference from the average value D, and compare the magnitude of this |D(i)-D| with the above k to determine the presence or absence of defects in the sample. A method for detecting a defect in a plate-like object, characterized by determining the defect.
JP2796782A 1982-02-22 1982-02-22 Defect detecting method of platelike object Granted JPS58143251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2796782A JPS58143251A (en) 1982-02-22 1982-02-22 Defect detecting method of platelike object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2796782A JPS58143251A (en) 1982-02-22 1982-02-22 Defect detecting method of platelike object

Publications (2)

Publication Number Publication Date
JPS58143251A JPS58143251A (en) 1983-08-25
JPH0332734B2 true JPH0332734B2 (en) 1991-05-14

Family

ID=12235656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2796782A Granted JPS58143251A (en) 1982-02-22 1982-02-22 Defect detecting method of platelike object

Country Status (1)

Country Link
JP (1) JPS58143251A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6259669B2 (en) 2014-01-20 2018-01-10 株式会社日立ハイテクノロジーズ Inspection device and measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147982A (en) * 1974-04-30 1975-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147982A (en) * 1974-04-30 1975-11-27

Also Published As

Publication number Publication date
JPS58143251A (en) 1983-08-25

Similar Documents

Publication Publication Date Title
US4575237A (en) Distance measuring device
US4718097A (en) Method and apparatus for determining the endpoints of a speech utterance
US4277176A (en) Method and apparatus for checking the width and parallelism of margins following the centering of a print with respect to a support
JPS6239379B2 (en)
JPH0332734B2 (en)
US4219277A (en) Method of detecting flaws on surfaces
JPH0332733B2 (en)
JPH10221455A (en) X-ray generation detector
JPS57179657A (en) Inspecting device for acoustic emission
US8035071B2 (en) Contamination-inspecting apparatus and detection circuit
JP2009042163A (en) Optical inspection device, pinhole inspection device, film thickness inspection device, and surface inspection device
US11728818B2 (en) Pipeline analog to digital converter and signal conversion method
JPH0514858B2 (en)
US3798429A (en) Apparatus for integrating the area of a succeeding peak superimposed on the tail of a preceding peak in the output of a measuring instrument
KR820002144B1 (en) Method of detecting flaws on surfaces
SU1714632A1 (en) Device to determine the center of gravity coordinates of the object image
SU953448A1 (en) Calculating strain gauge
WO2024095201A1 (en) Improved device for measuring the distance between the same device and a reference object using light radiation
SU646292A1 (en) Arrangement for amplitude and phase measurements
SU1702262A1 (en) Method of surface flaw detection
SU1145308A1 (en) Device for measuring photoreceiver signal-to-noise ratio
SU1250941A1 (en) Device for preliminary processing of acoustical emission signals
SU809593A1 (en) Device for monitoring discrete channel signal-to-noise ratio
JPS63118641A (en) Optical flaw discriminator
JPH0526856A (en) Ultrasonic detection device