JPH0332733B2 - - Google Patents

Info

Publication number
JPH0332733B2
JPH0332733B2 JP57027966A JP2796682A JPH0332733B2 JP H0332733 B2 JPH0332733 B2 JP H0332733B2 JP 57027966 A JP57027966 A JP 57027966A JP 2796682 A JP2796682 A JP 2796682A JP H0332733 B2 JPH0332733 B2 JP H0332733B2
Authority
JP
Japan
Prior art keywords
data
light
output
receiving element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57027966A
Other languages
Japanese (ja)
Other versions
JPS58143250A (en
Inventor
Shotaro Yokoyama
Takashi Nishibe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2796682A priority Critical patent/JPS58143250A/en
Publication of JPS58143250A publication Critical patent/JPS58143250A/en
Publication of JPH0332733B2 publication Critical patent/JPH0332733B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 本発明は、板状物体の部分的な欠落や孔などの
欠陥を、光学的に操作して検出する欠落検出方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a defect detection method for detecting defects such as partial defects and holes in a plate-shaped object by optically manipulating the defects.

光源列と受光素子列の間に板状物体を通過させ
た時、もし板状物体に部分的な欠落や孔などの欠
陥があると、光源からの光が板状物体に遮される
ことなく幾つかの受光素子に当たるので、受光素
子の出力信号から板状物体の欠陥の有無を知るこ
とができる。第1図は、この種の欠陥検出装置の
公知の原理構成を示すものである。
When a plate-shaped object is passed between the light source array and the light-receiving element array, if the plate-shaped object has defects such as partial defects or holes, the light from the light source will not be blocked by the plate-shaped object. Since it hits several light receiving elements, it is possible to know whether there is a defect in the plate-shaped object from the output signal of the light receiving elements. FIG. 1 shows the known principle configuration of this type of defect detection device.

第1図の装置においては、n個の光源1a〜1
nから成る光源列に対向してn個の受光素子2a
〜2nから成る受光素子列が設けられている。こ
の例では、光源と受光素子は1対1の関係でn個
ずつ設けられているが、光源の数は受光素子の数
とは異なつていてもよく、極端な場合には1個で
もよい。板状の試料3は矢印の進行方向に進行し
て光源列と受光素子列の間を、光を遮る形でて通
過する。受光素子2a〜2nの出力信号は信号処
理装置4に入力され、欠陥検出のために処理され
る。試料3に欠落部3aや孔3bなどの欠陥が存
在すると、これらの欠陥部が光源と受光素子の間
を通過する時その受光素子に光が当たるのでその
受光素子の出力が変化する。この変化に基づいて
信号処理装置4は欠陥を検知し、その検知結果を
出力装置5に出力する。
In the apparatus shown in FIG. 1, n light sources 1a to 1
n light receiving elements 2a facing a light source array consisting of n
A light receiving element array consisting of ~2n is provided. In this example, n light sources and light receiving elements are provided in a one-to-one relationship, but the number of light sources may be different from the number of light receiving elements, and in extreme cases, it may be one. . The plate-shaped sample 3 moves in the direction of arrow and passes between the light source array and the light receiving element array while blocking light. The output signals of the light receiving elements 2a to 2n are input to the signal processing device 4 and processed for defect detection. If defects such as a missing portion 3a or a hole 3b are present in the sample 3, when these defective portions pass between the light source and the light receiving element, light hits the light receiving element, causing a change in the output of the light receiving element. Based on this change, the signal processing device 4 detects a defect and outputs the detection result to the output device 5.

信号処理装置4内に設けられる欠陥判定回路の
一例を第2図に示す。この回路は比較器5を備え
ており、ここで受光素子2の出力信号Sと基準電
源6によつて発生された基準電圧Soとの比較を
行う。受光素子2の特性が例えば光の増大と共に
出力信号Sも増大するようなものである場合に
は、比較器5はS>Soの時に「欠陥あり」と判
断して例えば〓1”信号を出力する。
An example of a defect determination circuit provided in the signal processing device 4 is shown in FIG. This circuit includes a comparator 5, which compares the output signal S of the light receiving element 2 with a reference voltage So generated by a reference power source 6. If the characteristics of the light receiving element 2 are such that, for example, the output signal S increases as the light increases, the comparator 5 determines that there is a "defect" when S>So and outputs, for example, a 〓1'' signal. do.

しかし、このような従来の欠陥検出方式には、
検出精度が基準電圧Soの設定精度のみに依存す
るという欠点がある。すなわち、装置据付け時な
どの初期調整の時に、素子の製造ばらつきや素子
の置かれる環境の相違などによる受光素子の出力
特性のばらつきに合わせて、受光素子1個ごとに
基準電圧Soの調整を行つてやらなければならな
い。また経年変化によつて受光素子の出力特性が
変化した場合も個々の基準電圧Soの再調整が必
要となつてくる。これらの欠点は、調査される板
状物体が完全に不透明なものであれば大して問題
にならないかもしれないが、半透明なものや細か
い網状のもの(例えば海苔など)では決して無視
することができない。
However, such conventional defect detection methods have
There is a drawback that the detection accuracy depends only on the setting accuracy of the reference voltage So. In other words, during initial adjustment such as during equipment installation, the reference voltage So is adjusted for each light-receiving element to account for variations in the output characteristics of the light-receiving element due to manufacturing variations in the element or differences in the environment in which the element is placed. I have to do it. Further, when the output characteristics of the light receiving elements change due to aging, it becomes necessary to readjust the individual reference voltages So. These drawbacks may not be a big problem if the plate-like object being investigated is completely opaque, but cannot be ignored if it is translucent or has a fine mesh structure (such as seaweed). .

本発明の目的は、上述の欠点を除去し、調整や
管理が簡単で、複数の受光素子間の特性のばらつ
きなどに影響されない高精度の欠陥検出方法を提
供することにある。
An object of the present invention is to provide a highly accurate defect detection method that eliminates the above-mentioned drawbacks, is easy to adjust and manage, and is not affected by variations in characteristics among a plurality of light receiving elements.

この目的を達成するために本発明によれば、試
料たる板状物体を複数m個の受光素子列により光
学的に走査して得られる各受光素子の出力データ
から試料の欠陥を検出する欠陥検出方法におい
て、前記受光素子列の1走査サイクル中に各受光
素子から順次得られるm個のデータD(i)(ただ
し、i=1、2、…、mとする)をすべて記憶
し、この記憶したm個のデータの和ni=1 D(i)を計
算し、その結果をk/m倍することによりm個のデ ータの平均値の定数k倍に相当するkを計算
し、前記記憶した各データD(i)について|D(i)−
D(i+1)|を計算し、この|D(i)−D(i+1)
|と前記kとの大小比較により前記試料の欠陥
の有無を判断することを特徴とし、もし1つでも
|D(i)−D(i+1)|>kとなるようなケース
があれば試料に欠陥ありと判断するようにしたも
のである。
In order to achieve this object, according to the present invention, a defect detection method detects defects in a sample from output data of each light receiving element obtained by optically scanning a plate-shaped object as a sample with a plurality of m light receiving element arrays. In the method, all m pieces of data D(i) (where i = 1, 2, ..., m) sequentially obtained from each light receiving element during one scanning cycle of the light receiving element array are stored, The sum of m pieces of data ni=1 D(i) is calculated, and the result is multiplied by k/m to calculate k, which is equivalent to a constant k times the average value of m pieces of data. Regarding each stored data D(i) |D(i)−
D(i+1)| is calculated, and this |D(i)−D(i+1)
It is characterized by determining the presence or absence of defects in the sample by comparing the magnitude of | and k, and if there is even one case where |D(i)-D(i+1)|>k, It is determined that there is a defect.

すなわち、以下本発明の原理を第3図のグラフ
に基ずきより具体的に説明する。同図aにおい
て、いまD(i)をD(3)と仮定し、〓欠陥部”として
のD(4)の判定を行なうと、許容範囲はD(3)を基準
としたプラス−マイナスのしきい値K(図にお
けるハツチング部)で表わされる。一方、これと
比較される判定値|D(i)−D(i+1)|、すなわ
ち|D(3)−D(4)|は図におけるAに相当する。し
たがつて、許容範囲であるハツチング部のプラス
側しきい値Bと判定値Aとの比較を行なえば、A
>Bとなり判定値はしきい値を越え、「欠陥あり」
と判断される。次にD(i)を“欠陥部”D(4)と仮定
すれば、しきい値の基準点はD(4)となり、比較は
許容範囲のマイナス側しきい値B′と|D(4)−D
(5)|で表わされる判定値との間で行なわれる。
That is, the principle of the present invention will be explained in more detail below based on the graph of FIG. In the same figure a, if D(i) is now assumed to be D(3) and D(4) is judged as "defective part", the tolerance range is plus or minus with respect to D(3). It is represented by the threshold value K (hatched part in the figure). On the other hand, the judgment value compared with this |D(i)-D(i+1)|, that is, |D(3)-D(4)| It corresponds to A. Therefore, if we compare the positive threshold value B of the hatched part, which is the allowable range, with the judgment value A, then A
>B, the judgment value exceeds the threshold and there is a "defective"
It is judged that. Next, if D(i) is assumed to be the "defect part" D(4), the reference point of the threshold value is D(4), and the comparison is made with the threshold value B' on the negative side of the tolerance range |D(4) )-D
(5) It is performed between the judgment value represented by |.

このように本発明のしきい値は、その各時点に
おいて比較する値を基準に設定されるため、光源
を1つで構成した場合等に生じる素子全体の出力
のばらつきにしきい値が影響されることはない。
これは判定値を出力の差の絶対値としていること
に起因するものであるが、上記効果に相伴うもの
として、しきい値の定数kを見逃すことはできな
い。
In this way, the threshold value of the present invention is set based on the value to be compared at each point in time, so the threshold value is affected by variations in the output of the entire element that occur when a single light source is used. Never.
This is due to the fact that the determination value is the absolute value of the difference in output, but the constant k of the threshold value cannot be overlooked as it is accompanied by the above effect.

すなわち定数kは許容範囲を決定するものであ
り、測定における個々の条件により、あらかじめ
設定されるものである。この条件には、装置側の
精度によるものと、被測定物の特性によるものと
があり、前者の例として素子を太陽電池で構成す
ることに伴なう出力のばらつき、後者の例として
被測定物を〓食用のり”としたことによる出力の
ばらつきがあげられる。第4図の例では、k≒
0.5として設定することにより、各素子の出力の
ばらつきに対応したが、このばらつきが小さい場
合には、kを小さくして許容範囲の幅を狭め欠陥
部の検出感度を高めることが好ましい。
That is, the constant k determines the permissible range and is set in advance depending on the individual conditions in the measurement. These conditions include the accuracy of the equipment and the characteristics of the object to be measured. An example of the former is the variation in output due to the element being composed of a solar cell, and an example of the latter is the accuracy of the object to be measured. The variation in output is due to the fact that the material is edible glue.In the example in Figure 4, k≒
By setting k to 0.5, variation in the output of each element was dealt with, but if this variation is small, it is preferable to decrease k to narrow the width of the tolerance range and increase the detection sensitivity of defective parts.

以上は、本発明が出力のばらつきに影響されな
いことを説明するものであるが、本発明は素子の
経年変化も考慮したものであり、これを第3図b
に基づき説明する。
The above explains that the present invention is not affected by variations in output, but the present invention also takes into account aging of the element, and this is shown in Fig. 3b.
The explanation will be based on.

すなわち、同図は第3図aに示した素子の出力
が、経年変化により、全体的に低下した一例を示
すものである。
That is, this figure shows an example in which the output of the element shown in FIG. 3a has decreased overall due to aging.

上記同様、D(3)とD(4)を例にとつて考えると、
素子の出力低下に伴ない判定値|D(3)−D(4)|も
小さくなつていることがわかる。ここでしきい値
が従来同様設定された値であれば、出力値D(4)で
あらわされた欠陥は検出されないであろう。しか
しながら本発明におけるしきい値には、全体の出
力値の平均が変数として含まれており、素子の
出力値としきい値は密接な関係を有している。し
たがつて、素子の出力が全体的に低下すれば、し
きい値もそれに伴つて小さくなり、図においてハ
ツチング部で示す部分が、この場合の許容範囲に
相当する。このため第3図a同様、D(4)は欠陥部
として検出されることになる。
As above, considering D(3) and D(4) as an example,
It can be seen that the determination value |D(3)−D(4)| also becomes smaller as the output of the element decreases. If the threshold value is set as in the conventional case, the defect represented by the output value D(4) will not be detected. However, the threshold value in the present invention includes the average of the overall output values as a variable, and the output value of the element and the threshold value have a close relationship. Therefore, if the overall output of the element decreases, the threshold value also decreases accordingly, and the hatched area in the figure corresponds to the allowable range in this case. Therefore, as in FIG. 3a, D(4) is detected as a defective portion.

本発明は、このような原理に基づき構成される
ものであるが、次に本発明を実施する為の装置の
一例を第4図に基づき説明する。
The present invention is constructed based on such a principle. Next, an example of an apparatus for carrying out the present invention will be explained based on FIG. 4.

受光素子11は入力光にい応じた出力信号Sを
A/D変換器12に入力する。一方、周波数固定
の基準パルスの周波数を分周器13が1/qに分周
して、システムのタイミングパルスを発生する。
すなわち分周器13は基準パルスq発ごとにスタ
ート信号パルスTを出してシステムを基準パルス
q発ごと1動作させる。qの値を変化させること
によつてシステムの動作速度を調節することがで
きる訳であり、場合によつては分周器13は省略
することもできる。A/D変換器12は分周器1
3からANDゲート10を介して供給されるスタ
ート信号Tにより始動し、変換動作が終了すると
変換終了信号EOCとデータ信号Dを出力する。
これらのデータ信号Dはm個のレジスタ21,2
2、…に入力され、順次記憶される。順次記憶の
ための制御は各レジスタに設けられているAND
ゲートA1,A2、…によつて行われる。
The light receiving element 11 inputs an output signal S corresponding to the input light to the A/D converter 12. On the other hand, a frequency divider 13 divides the frequency of the fixed-frequency reference pulse by 1/q to generate a system timing pulse.
That is, the frequency divider 13 outputs a start signal pulse T every q reference pulses to operate the system once every q reference pulses. By changing the value of q, the operating speed of the system can be adjusted, and in some cases, the frequency divider 13 can be omitted. A/D converter 12 is frequency divider 1
3 through the AND gate 10, and outputs a conversion end signal EOC and a data signal D when the conversion operation is completed.
These data signals D are sent to m registers 21, 2.
2, ... and are stored sequentially. Control for sequential storage is provided in each register by AND
This is done by gates A1, A2, .

分周器13の出力パルスはカウンタ14によつ
て初期値零からカウントされる。カウンタ14の
2進出力信号Xはデコーダ15によつて1〜m+1
の制御信号Yにデコードされる。ここでi番目の
制御信号はカウンタ14の2進出力がiに等しい
時のみオンすなわち“1”信号となる。したがつ
て、デコーダ15は1からm+1の順に順番に
“1”信号を出力する。レジスタ21,22、…
のうち、i番目のレジスタにはANDゲートA1,
A2…の作用により、変換終了信号EOC=1か
つi番目の制御信号=1の時のみ、A/D変換器
12によつてA/D変換された信号Sの値が書込
まれる。つまりi番目にA/D変換された信号S
のデータD(i)はi番目のレジスタに記憶され、最
終的にレジスタ21,22、…にはm回A/D変
換された信号Sのデータが時系列順に書込まれる
ことになる。このm回の変換は受光素子11が試
料の一端から他端まで走査したことに相当する。
The output pulses of the frequency divider 13 are counted by a counter 14 from an initial value of zero. The binary output signal X of the counter 14 is processed by the decoder 15 from 1 to m +1.
is decoded into a control signal Y. Here, the i-th control signal turns on, that is, becomes a "1" signal only when the binary output of the counter 14 is equal to i. Therefore, the decoder 15 outputs "1" signals in order from 1 to m +1 . Registers 21, 22,...
Among them, the i-th register has an AND gate A1,
Due to the action of A2, the value of the signal S A/D-converted by the A/D converter 12 is written only when the conversion end signal EOC=1 and the i-th control signal=1. In other words, the i-th A/D converted signal S
The data D(i) is stored in the i-th register, and finally the data of the signal S that has been A/D converted m times is written in registers 21, 22, . . . in chronological order. These m conversions correspond to the light receiving element 11 scanning from one end of the sample to the other end.

信号Sの測定をm回終了した次のタイミング、
すなわちデコーダ15のm+1出力が〓1”となつ
てA/D変換関係の一連の動作は終了し、システ
ムの動作は次の段階に移行する。すなわち、制御
信号m+1によつて加算器16が始動されると共
に、ANDゲート10はブロツクされ、カウンタ
14はホールドされる。加算器16はレジスタ2
1,22、…に書込まれているデータD(i)の総和
を計算する。A/D変換器12の変換データを時
系列順にD(i),D(2)…、Dmとすると、加算器1
6が行う演算は、ni=1 D(i)である。
The next timing after completing the measurement of the signal S m times,
In other words, the m +1 output of the decoder 15 becomes 〓1'', the series of operations related to A/D conversion is completed, and the system operation moves to the next stage. That is, the addition is performed by the control signal m +1 . As adder 16 is started, AND gate 10 is blocked and counter 14 is held.
The sum of data D(i) written in 1, 22, . . . is calculated. If the conversion data of the A/D converter 12 is D(i), D(2)..., Dm in chronological order, then the adder 1
The operation performed by 6 is ni=1 D(i).

相隣接する2組のレジスタ21,22以下レジ
スタ22,23……に対してそれぞれ減算器3
1,32、…が設けられ、各減算器はそれぞれ両
レジスタ記憶データの差D(1)−D(2)、D(2)−D
(3)、…、D(m−1)−D(m)を計算する。これ
らの差は各減算器に後置された絶対値形成回路4
1,42、…によつて絶対値|D(1)−D(2)|、|
D(2)−D(3)|、……、|D(m−1)−Dm|に変
換される。
A subtracter 3 is provided for each of the two adjacent sets of registers 21, 22 and the following registers 22, 23...
1, 32, ... are provided, and each subtracter calculates the difference D(1)-D(2), D(2)-D between the data stored in both registers, respectively.
(3),..., calculate D(m-1)-D(m). These differences are determined by the absolute value forming circuit 4 placed after each subtractor.
Absolute value |D(1)−D(2)|,| by 1, 42, ...
It is converted into D(2)-D(3)|,..., |D(m-1)-Dm|.

加算器16の出力ΣD(i)は乗算器17によつて
k/m倍され、ここでk/mΣD(i)=k{1/mΣD(i)}
=k Dの計算が行われる。ここではkは前述しよう
に、個々の条件に応じて定まるものであり=
1/mΣD(i)は全データの平均値を意味する。
The output ΣD(i) of the adder 16 is
multiplied by k/m, where k/mΣD(i)=k{1/mΣD(i)}
=k D is calculated. Here, k is determined according to individual conditions as described above, and =
1/mΣD(i) means the average value of all data.

乗算器17の出力信号の値kと各絶対値形成
回路41,42、…の出力信号の値|D(i)−D
(i+1)|との大小比較器を51,52、……によ
つて行う。各比較器はk<|D(i)−D(i+1)|
であればその出力信号Biが〓1”となり、ORゲ
ート18を介してシステム出力として、試料の欠
陥を表わす〓1”信号が出力される。なお、以上
の演算はマイクロコンピユータなどによつて実行
することもできる。
The value k of the output signal of the multiplier 17 and the value of the output signal of each absolute value forming circuit 41, 42, ... |D(i)-D
A magnitude comparator with (i +1 )| is performed using 51, 52, . Each comparator is k<|D(i)−D(i +1 )|
If so, the output signal Bi becomes 〓1'', and a 〓1'' signal representing a defect in the sample is outputted as a system output via the OR gate 18. Note that the above calculations can also be executed by a microcomputer or the like.

以上の回路動作をまとめると次のようになる。 The above circuit operation can be summarized as follows.

まず試料の一端から他端まで走査して受光素子
11の出力をm回A/D変換する。その変換結果
をD(1)、D(2)、…D(m)=D(i)とする。D(i)は試
料の端から端までの横方向の距離(幅)をWとす
れば、W・i/mの位置の走査結果に相当する。デ ータをm個取り終わつたら、データの平均値の
k倍すなわちk=k{1/mΣD(i)}を計算する。
First, the sample is scanned from one end to the other, and the output of the light receiving element 11 is A/D converted m times. Let the conversion results be D(1), D(2), . . . D(m)=D(i). D(i) corresponds to the scanning result at a position of W·i/m, where W is the lateral distance (width) from one end of the sample to the other. After taking m pieces of data, calculate k times the average value of the data, that is, k=k{1/mΣD(i)}.

一方、|D(i)−D(i+1)|を計算し、その計算結果
とkとの大小比較を行い、1つでも|D(i)−D
(i+1)|>kとなつたら、それは欠陥部分が通
過したことに起因するものとして判断して「欠陥
あり」の信号を出力するのである。
On the other hand, calculate |D(i)−D(i +1 )|, compare the magnitude of the calculation result with k, and find even one |D(i)−D
If (i +1 )|>k, it is determined that this is due to the passage of a defective part, and a signal indicating "defective" is output.

以上述べた本発明の検出方式によれば、データ
の変化量|D(i)−D(i+1)|を欠陥の有無の判定
値として用いると共に、データの平均値の定数
倍kを判定時のしきい値として用いることによ
り、複数の素子のばらつきや経年変化が検出精度
に無関係になり、したがつて高精度でありながら
受光素子ごとの煩しい調整作業が不要になるとい
う利点がある。また、上記判定値はデータD(i)の
単なる絶対値ではなく、次のデータとの差の絶対
値|D(i)−D(i+1)|を判定データとして用いる
ことにより、装置側の精度により生じる出力全体
の傾きにもしきい値が影響されないという利点が
ある。
According to the detection method of the present invention described above, the amount of change in data |D(i)−D(i +1 )| is used as a determination value for the presence or absence of a defect, and the constant times k of the average value of data is determined. By using it as a time threshold, variations in multiple elements and changes over time become irrelevant to detection accuracy, which has the advantage of providing high accuracy while eliminating the need for troublesome adjustment work for each light-receiving element. . In addition, the above judgment value is not just the absolute value of data D(i), but the absolute value of the difference with the next data |D(i)-D(i +1 )| is used as judgment data, so that the device side There is an advantage that the threshold value is not affected by the slope of the overall output caused by the accuracy of .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の欠陥検出装置の原理構成を示す
配置図、第2図は第1図の信号処理回路部分の基
本構成を示すブロツク図、第3図a,bは本発明
の原理を説明するグラフ、第4図は本発明を実施
する装置の一例を示すブロツク図である。 3……試料、11……受光素子、12……A/
D変換器、16……加算器、17……乗算器、2
1,22……レジスタ、31,32……減算器、
41,42……絶対値形成回路、51,52……
比較器。
Fig. 1 is a layout diagram showing the basic structure of a known defect detection device, Fig. 2 is a block diagram showing the basic structure of the signal processing circuit portion of Fig. 1, and Figs. 3 a and b explain the principle of the present invention. FIG. 4 is a block diagram showing an example of an apparatus for carrying out the present invention. 3...Sample, 11...Photodetector, 12...A/
D converter, 16... Adder, 17... Multiplier, 2
1, 22... register, 31, 32... subtractor,
41, 42... Absolute value forming circuit, 51, 52...
Comparator.

Claims (1)

【特許請求の範囲】 1 試料たる板状物体を複数m個の受光素子から
なる受光素子列により光学的に走査して得られる
各受光素子の出力データから試料の欠陥を検出す
る欠陥検出方法において、前記受光素子列の1走
査サイクル中に各受光素子から順次得られるm個
のデータD(i)(ただし、i=1、2、…、mとす
る)をすべて記憶し、この記憶したm個データの
ni=1 D(i)を計算し、その結果をk/m倍することに よりm個のデータの平均値の定数k倍に相当す
るkを計算し、前記記憶した各データD(i)につ
いて|D(i)−D(i+1)|を計算し、この|D(i)
−D(i+1)|と前記kとの大小比較により前
記試料の欠陥の有無を判断することを特徴とする
板状物体の欠陥検出方法。
[Scope of Claims] 1. In a defect detection method for detecting defects in a sample from output data of each light-receiving element obtained by optically scanning a plate-shaped object as a sample with a light-receiving element array consisting of a plurality of m light-receiving elements. , all m pieces of data D(i) (where i=1, 2, ..., m) sequentially obtained from each light receiving element during one scanning cycle of the light receiving element array are stored, and the stored m Sum of data ni=1 D(i) is calculated, and the result is multiplied by k/m to calculate k, which is equivalent to a constant k times the average value of m data. Calculate |D(i)-D(i+1)| for data D(i), and calculate |D(i)
A method for detecting a defect in a plate-shaped object, characterized in that the presence or absence of a defect in the sample is determined by comparing the magnitude of -D(i+1)| with the k.
JP2796682A 1982-02-22 1982-02-22 Defect detecting method of platelike object Granted JPS58143250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2796682A JPS58143250A (en) 1982-02-22 1982-02-22 Defect detecting method of platelike object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2796682A JPS58143250A (en) 1982-02-22 1982-02-22 Defect detecting method of platelike object

Publications (2)

Publication Number Publication Date
JPS58143250A JPS58143250A (en) 1983-08-25
JPH0332733B2 true JPH0332733B2 (en) 1991-05-14

Family

ID=12235630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2796682A Granted JPS58143250A (en) 1982-02-22 1982-02-22 Defect detecting method of platelike object

Country Status (1)

Country Link
JP (1) JPS58143250A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717289B2 (en) * 1986-04-23 1995-03-01 東洋通信機株式会社 Double feed of cut sheets and detection method for mixing different types of sheets

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147982A (en) * 1974-04-30 1975-11-27
JPS52153487A (en) * 1976-06-16 1977-12-20 Mitsubishi Rayon Co Defect detecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147982A (en) * 1974-04-30 1975-11-27
JPS52153487A (en) * 1976-06-16 1977-12-20 Mitsubishi Rayon Co Defect detecting method

Also Published As

Publication number Publication date
JPS58143250A (en) 1983-08-25

Similar Documents

Publication Publication Date Title
EP0098320B1 (en) Apparatus and method for counting a plurality of objects
US3971918A (en) Method and apparatus for measuring the number of stacked corrugated cardboards
US4718097A (en) Method and apparatus for determining the endpoints of a speech utterance
US4222077A (en) Analog-digital conversion method, and a picture reproduction method using the same
JPH0332733B2 (en)
JPH0645941A (en) Inspection device
GB2029153A (en) Focus detecting device
JPH0332734B2 (en)
US4389105A (en) Device for detecting coincident focusing points
JPH10221455A (en) X-ray generation detector
US3742352A (en) Apparatus and method for measuring and analyzing dynamic processes
KR940004332A (en) Circuit test method and delay defect detector
JP2004518979A (en) Method for counting photons in a laser scanning device
SU809593A1 (en) Device for monitoring discrete channel signal-to-noise ratio
SU516046A1 (en) Statistical time interval analyzer
SU1377873A1 (en) Statistical analyzer
JPS61149869A (en) Waveform analytic system
SU970428A2 (en) Device for evaluating truth of measurement results
SU866498A1 (en) Time delay measuring method
WO2024095201A1 (en) Improved device for measuring the distance between the same device and a reference object using light radiation
SU1130878A1 (en) Device for determining entropy characteristics of random signals
SU1067513A1 (en) Device for determining stationarity of random process
RU2013030C1 (en) Device for testing of irregularity of frequency characteristic of sensitivity of microphone
SU1420364A1 (en) Digital device for measuring order of interference
SU1201753A1 (en) Multichannel system for determining coordinates of multitude of simultaneously acting sources of acoustic signals