JPH0332470A - Automatic shape recognizing method for u-shaped groove - Google Patents

Automatic shape recognizing method for u-shaped groove

Info

Publication number
JPH0332470A
JPH0332470A JP16580789A JP16580789A JPH0332470A JP H0332470 A JPH0332470 A JP H0332470A JP 16580789 A JP16580789 A JP 16580789A JP 16580789 A JP16580789 A JP 16580789A JP H0332470 A JPH0332470 A JP H0332470A
Authority
JP
Japan
Prior art keywords
groove
points
data
groove shape
shaped groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16580789A
Other languages
Japanese (ja)
Inventor
Yasuhisa Iida
飯田 泰久
Masahiro Fujiwara
正弘 藤原
Kazuji Shitomi
蔀 和司
Hiroshi Kotani
博志 小谷
Takashi Imamura
今村 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16580789A priority Critical patent/JPH0332470A/en
Publication of JPH0332470A publication Critical patent/JPH0332470A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect groove shape elements by calculating a groove width, groove depths, difference in level, stagger and a root gap based on four characteristic points. CONSTITUTION:The picture data of a U-shaped groove shape obtained by the optical cutting method are converted into a two-dimensional X-Y coordinate system to calculate the groove shape elements by using a computer. Points P1 and P2 where an error between a measured value and a reference value is made more than (l) dot are then obtained from right and left inflection points. Intersections P3 and P4 between regression equation of respective right and left shoulder heights and regression equation of rectilinear parts of slants are obtained by the expressions I and II, respectively. These P1, P2, P3 and P4 are made to the characteristic points and based on those characteristic points, the groove width W, the groove depths H1 and H2, the difference in level DELTAh1, the stagger DELTAh2 and the root gap DELTAw are calculated. By this method, confirmation and record holding of the groove shape elements having objectivity and reliability can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、U形開先をコンピューターにより2次元図形
解析するU形開先の自動形状認識方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic shape recognition method for a U-shaped groove in which a two-dimensional graphical analysis of the U-shaped groove is performed using a computer.

〔従来の技術〕[Conventional technology]

従来、U形開先により突合わせ溶接施工する溶接製品の
品質管理には、第5図説明図に示すU形開先lについて
、開先巾W、開先深さH2段差Δh29食い違いΔh2
.ルートギャソプΔW等の開先形状要素を、第6図フロ
ーチャートに示す手順で測定し、設計公差を満足してい
るか否かを確認検査しており、全長検査としては、第7
図(A)説明図に示すように、点検用形ゲージ10を用
いて設計公差の最大最小範囲を満足しているか否かを判
断して実施し、代表部詳細検査としては、同図(B)説
明図に示すように、測定用形ゲージ11を用いて詳細デ
ータを測定する部位の開先巾W〜ルートギャップΔW等
形状要素を計測している。
Conventionally, for quality control of welded products that are butt welded using a U-shaped groove, groove width W, groove depth H2, step difference Δh29, discrepancy Δh2 are required for the U-shaped groove l shown in the explanatory diagram in Fig. 5.
.. Bevel shape elements such as root gasop ΔW are measured according to the procedure shown in the flowchart in Figure 6, and inspected to confirm whether the design tolerances are satisfied.
As shown in the explanatory diagram in Figure (A), the inspection gauge 10 is used to determine whether the maximum and minimum range of design tolerances are satisfied. ) As shown in the explanatory diagram, shape elements such as the groove width W to the root gap ΔW of the portion whose detailed data is to be measured are measured using a measuring gauge 11.

しかしながら、このような従来の検査方法には次のよう
な欠点がある。
However, such conventional inspection methods have the following drawbacks.

(1)測定にゲージを用いるため、検査員の熟練度によ
り検査結果にばらつきを生じ客観性、信頼性に欠ける。
(1) Since a gauge is used for measurement, the test results vary depending on the skill level of the inspector, resulting in a lack of objectivity and reliability.

(2)検査の記録は、検査員の現場測定データの記帳、
再整理により行われ、記録再現性に著しく欠ける。
(2) Inspection records include recording of on-site measurement data by inspectors;
This was done through rearrangement, resulting in a significant lack of recording reproducibility.

(3)検査の合理化、省人化要求に対応できない。(3) Unable to respond to demands for rationalization of inspections and labor savings.

〔発明が解決しようとする課題) 本発明は、このような事情に鑑みて提案されたもので、
光切断法によって得られたU形開先の形状画像データか
らコンピューターを用いて開先形状要素を・正確に検出
することができ、客観性、信頼性のある開先形状要素の
確認とその記録保持をすることができるU形開先の自動
形状認識方法を提供することを目的とする。
[Problem to be solved by the invention] The present invention was proposed in view of the above circumstances, and
The groove shape elements can be accurately detected using a computer from the shape image data of the U-shaped groove obtained by the optical cutting method, and the groove shape elements can be confirmed and recorded with objectivity and reliability. An object of the present invention is to provide an automatic shape recognition method for a U-shaped groove that can be maintained.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、光切断法によって得られたU形開
先形状の画像データをコンピューターを用いて2次元の
X−Y座標系に置き換え開先形状要素として開先巾、開
先深さ。
To this end, the present invention uses a computer to convert image data of a U-shaped groove shape obtained by the optical cutting method into a two-dimensional X-Y coordinate system, and calculates groove width and groove depth as groove shape elements.

段差1食い違い、ルートギャップを算出検知するにあた
り、(1)2次元のX−Y座標系における開先の左右の
肩の高さはそれぞれ肩の部分のデータの平均値をとりそ
れとの誤差が大きくなる変曲点よりn個手前までのデー
タの平均値を肩の高さとして、回軌式y=aVr、+y
=avr2で表わし、(2)次に開先の左右の斜面の直
線部分はそれぞれ変曲点よりn個前方のデータから変化
率dy/dにをm回求めその平均値を傾きに、、に2と
して、X−Y座標系における回軌式)’ =k I X
 + b 1 、  y −に2 x+b2で表わし、
(3)更に左右の変曲点から測定値と基準値の誤差がl
ドツト以上になる点Pl (Xt * ’11)+ P
2  (X2 *y2)を求めるとともに、左右それぞ
れの肩の高さの回軌式と斜面の直線部分の回軌式との交
点Ps  (Xs、  ys)  :x5 = (av
rlbt ) /kt + P+  (Xs 、  3
F! )  : Xs= (avr2−b2 ) /に
2を求めて、これらP、r  P 2 、P 3 * 
 P 4を特徴点とし、(4)上記特徴点P1.P2 
、Ps 、P+に基づき開先巾W ” X 4− X 
s *開先法さH1=y1731 H2=3’2  )
’41段差ΔKt =1+−y51食い違いΔh2 ”
)’2  )’s +ルートギャップΔw=x2−Xt
を算出することを特徴とする。
In calculating and detecting the difference in level difference and root gap, (1) For the height of the left and right shoulders of the groove in the two-dimensional X-Y coordinate system, take the average value of the data for each shoulder, and the error from that is large. The shoulder height is the average value of the data up to n points before the inflection point, and the circular orbit formula y = aVr, +y
= avr2, (2) Next, for the straight line parts of the left and right slopes of the groove, calculate the rate of change dy/d m times from the data n points ahead of the inflection point, and use the average value as the slope. 2, the circular orbit formula in the X-Y coordinate system)' = k I X
+ b 1 , y − is expressed as 2 x + b2,
(3) Furthermore, the error between the measured value and the reference value is l from the left and right inflection points.
Point Pl (Xt * '11) + P that is more than a dot
2 (X2 * y2), and the intersection point Ps (Xs, ys) of the circular orbit formula at the height of the left and right shoulders and the circular orbit formula at the straight part of the slope: x5 = (av
rlbt ) /kt + P+ (Xs, 3
F! ): Find 2 in Xs= (avr2-b2) / and calculate these P, r P 2 , P 3 *
P4 is a feature point, and (4) the above feature point P1. P2
, Ps, P+, groove width W''
s * Groove length H1=y1731 H2=3'2)
'41 step difference ΔKt = 1+-y51 discrepancy Δh2"
)'2)'s + root gap Δw=x2-Xt
It is characterized by calculating.

〔作用〕[Effect]

本発明方法においては、U形開先に帯状スリット光を照
射してテレビカメラで撮った開先形状の画像データを画
像メモリに記録し、それをコンピューターを用いて2次
元のX−Y座標系に置き換え、開先の左右の肩の高さa
vrl 、  avr2の計算−左右の斜面の傾きdy
/lxの計算−変曲点から辿る点、左右それぞれの肩の
高さと左右の斜面の交点P、。
In the method of the present invention, a U-shaped groove is irradiated with band-shaped slit light, image data of the groove shape taken with a television camera is recorded in an image memory, and a computer is used to create a two-dimensional X-Y coordinate system. Replaced with the height a of the shoulders on the left and right sides of the groove.
Calculation of vrl, avr2 - slope dy of left and right slopes
Calculation of /lx - Point traced from the inflection point, intersection point P of the left and right shoulder heights and the left and right slopes.

P2.P、、Pやの計算−関先巾W、開先深さH,l 
H21段差Δh29食い違いΔh2゜ル−トギヤツプΔ
Wの計算の順で計算し、U形開先の形状を自動的に検出
認識する。
P2. Calculation of P, , P and - Seki width W, groove depth H, l
H21 step difference Δh29 discrepancy Δh2゜ route gap Δ
Calculations are performed in the order of calculation of W, and the shape of the U-shaped groove is automatically detected and recognized.

〔実施例〕〔Example〕

本発明U形開先の自動形状認識方法の一実施例を図面に
ついて説明すると、第1図は実施装置を示す斜視図、第
2図は開先形状要素の説明図、第3図は開先形状認識プ
ロセスのフローチャート、第4図は開先形状認識の各プ
ロセスの説明図である。
One embodiment of the automatic shape recognition method for a U-shaped groove according to the present invention will be explained with reference to the drawings. Figure 1 is a perspective view showing the implementation device, Figure 2 is an explanatory diagram of groove shape elements, and Figure 3 is a groove diagram. Flowchart of shape recognition process, FIG. 4 is an explanatory diagram of each process of groove shape recognition.

まず第1図は、U形開先lを光切断法により測定し、画
像メモリ8に配列データとして記録した開先形状の画像
データを、コンピューター9により開先形状要素として
算出する構t?、態様を示しており、光切断法とは、U
形開先lに、レーザー光源2及びシリンドリカルレンズ
3より出されるスリット光4をξクー5を介して帯状ス
リット光6として照射し、その照射部をテレビカメラ7
で観察すると、あたかもU形開先1を帯状スリット光6
で切断したかのごとき形状として測定できる方法である
First, FIG. 1 shows a structure in which a U-shaped groove l is measured by the optical cutting method, and the image data of the groove shape recorded in the image memory 8 as array data is calculated by the computer 9 as groove shape elements. , shows an aspect, and the photocleavage method is U
A slit light 4 emitted from a laser light source 2 and a cylindrical lens 3 is irradiated onto the shaped groove l as a band-shaped slit light 6 via a
When observed with
This is a method that allows you to measure the shape as if it had been cut.

次に、コンピューター9における開先形状自動認識方法
の要領を、第2図〜第4図について以下に説明する。
Next, the outline of the automatic groove shape recognition method in the computer 9 will be explained below with reference to FIGS. 2 to 4.

すなわち、第2図に示すようなU形開先1の開先形状要
素として、開先巾W、開先深さHl + H2*段差Δ
h19食い違いΔh2゜ルートギャップΔWを得るため
に、第3図フローチャートに示すプロセスで算出してゆ
く。
That is, the groove shape elements of the U-shaped groove 1 as shown in FIG. 2 are groove width W, groove depth Hl + H2 * step difference Δ
In order to obtain the h19 discrepancy Δh2° root gap ΔW, calculations are performed using the process shown in the flowchart of FIG.

まず観察時の図形の歪を除くために幾何学補正をかけた
データは、例えば502個の配列に格納されX−Y座標
系に置き換えである。
First, data subjected to geometric correction to remove distortion of the figure at the time of observation is stored in, for example, 502 arrays and replaced with an X-Y coordinate system.

肩の高さの求め方は、第4図(1)において、幾何学補
正データが設計値の基準データとの誤差が例えば±10
ドント以内であることを確認しながら、1つ後のデータ
との差をとってゆく、この差が例えば25ドツト以上に
なる点を変曲点Aとし、A−10をm、 1を例えば5
0とし、lからmまでのデータの平均を左側の肩の高さ
とする。右側の肩の高さも同様にデータを負方向にみて
ゆき、差が25ドソト以上になる点を変曲点Bとし、B
+10をm、、1を例えば480とし、lからmまでの
データの平均値を右側の肩の高さとする。
The method for determining the shoulder height is as shown in Fig. 4 (1), if the error between the geometric correction data and the design value reference data is, for example, ±10.
While checking that it is within the dots, take the difference from the next data.The point where this difference is, for example, 25 dots or more is the inflection point A, A-10 is m, and 1 is, for example, 5.
0, and the average of the data from l to m is the height of the left shoulder. Similarly, for the height of the right shoulder, look at the data in the negative direction, and define the point where the difference is 25 dos or more as the inflection point B.
+10 is m, 1 is, for example, 480, and the average value of the data from l to m is the height of the right shoulder.

そして(1)式により左側の肩の高さavrl 。Then, the height of the left shoulder avrl is determined by equation (1).

右側の肩の高さavr2を求める。Find the height avr2 of the right shoulder.

斜面の直線部分の傾きの求め方は、第4図(II)にお
いて、A+5から幾何学補正データが基準データとの誤
差が例えば±lOドツト以内であることを確認しながら
、dy/dxを例えば5回求めその平均値を左側の傾き
とし、同様にB−5から負方向にデータを見てゆき、d
y/dχを5回求めその平均値を右側の傾きとする。
To find the slope of the straight line part of the slope, in Fig. 4 (II), while confirming that the error between the geometric correction data from A+5 and the reference data is within, for example, ±10 dots, set dy/dx, for example. Obtain it 5 times, use the average value as the left slope, and similarly look at the data in the negative direction from B-5, d
Determine y/dχ five times and use the average value as the right slope.

そして(2)式により左側の傾きに1.右側の傾きに2
を求める。
Then, according to equation (2), the left slope is 1. 2 on the right slope
seek.

k雪下Σdy/dx    ・・・(2)特徴点Ps 
+ P 21  Ps r  P +の求め方は、第4
図(III)において、直線Ltd)’s=k、x+b
、とy”avrlとの交点をP。
k under snow Σdy/dx ... (2) Feature point Ps
+ P 21 Ps r P + is found in the fourth
In figure (III), the straight line Ltd)'s=k, x+b
, and y”avrl is the intersection point P.

(Xs +  3’りとし、(3)式により求める。(Xs + 3'), calculated using equation (3).

!!  =  (avrl  −bl )  /f k
! ! = (avrl-bl)/fk
.

・・・(3) 直線L2  : y2 =k2x+b2とy=avrl
との交点をPG  (xや、y4)とし、(4)式によ
り求める。
...(3) Straight line L2: y2 = k2x + b2 and y = avrl
The intersection point with PG (x, y4) is determined by equation (4).

x、=(avr2   b2)/fk2・・・(4) X、から正方向に幾何学補正データと基準データとの誤
差をとってゆき、この誤差が110171以上になる点
が5回連続した場合その1番最初の点をP、(Xt+ 
 yt)とする。
x, = (avr2 b2)/fk2... (4) If the error between the geometric correction data and the reference data is taken in the positive direction from X, and there are 5 consecutive points where this error is 110171 or more The first point is P, (Xt+
yt).

また同様にx4から負方向に幾何学補正データと基準デ
ータとの誤差をとってゆき、この誤差が±10ドツト以
上になる点が5回連続した場合その1番最初の点をF2
(X21)F2)とする。
Similarly, take the error between the geometric correction data and the reference data in the negative direction from x4, and if there are 5 consecutive points where this error is ±10 dots or more, the first point is set to F2.
(X21)F2).

かくして以上の算出値に基づき第4図 (EV)、  (V)において、開先巾W、開先深さH
l + 82 +段差Δh19食い違いΔh2及びルー
トギャップΔWを、以下の通り求める。
Thus, based on the above calculated values, in Fig. 4 (EV) and (V), the groove width W and the groove depth H are
l + 82 + step difference Δh19 discrepancy Δh2 and root gap ΔW are determined as follows.

開先巾Wを(5)式により求める。The groove width W is determined by equation (5).

W=x、−Xj        ・・・(5)左側の開
先深さHl及び右側の開先深さH2を(6)式により求
める。
W=x, -Xj (5) The left groove depth Hl and the right groove depth H2 are determined by equation (6).

Hl =hosbuf (xl ) −aVFl、H2
=hosbuf (x2 ) −avr2・・・(6) 段差Δh、を(7)式により求める。
Hl = hosbuf (xl) - aVFl, H2
=hosbuf (x2) -avr2 (6) The step difference Δh is determined by the equation (7).

Δh、=H2−H,・・・(7) 食い違いΔh、を(8)式により求める。Δh,=H2-H,...(7) The discrepancy Δh is determined by equation (8).

Δh7 =hosbuf (x2 ) −hosbuf
 (Xt )・・・(8) ル−トギヤツプΔWを(9)式により求める。
Δh7 =hosbuf (x2) −hosbuf
(Xt)...(8) Find the root gap ΔW using equation (9).

Δw−x2−Xl        ・・◆(9)以上に
より、U形開先1の開先形状要素を自動的に正確に算出
認識することができる。
Δw-x2-Xl . . . (9) As described above, the groove shape elements of the U-shaped groove 1 can be automatically and accurately calculated and recognized.

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、光切断法によって得られたU
形開先形状の画像データをコンピューターを用いて2次
元のX−Y座標系に置き換え開先形状要素として開先巾
、開先深さ1段差1食い違い、ルートギヤ・ノブを算出
検知するにあたり、(1)2次元のX−Y座標系におけ
る開先の左右の肩の高さはそれぞれ肩の部分のデータの
平均値をとりそれとの誤差が大きくなる変曲点よりn個
手前までのデータの平均値を肩の高さとして、回軌式y
=aVrj 、 y ” aVr7で表わし、(2)次
に開先の左右の斜面の直線部分はそれぞれ変曲点よりn
個前方のデータから変化率dV/ dx@ m回求めそ
の平均値を傾きに2.に2として、X−Y座標系におけ
る回軌式y=k、x+b、。
In short, according to the present invention, U obtained by photosection method
Image data of the groove shape is converted into a two-dimensional X-Y coordinate system using a computer.In calculating and detecting the groove width, groove depth, one step difference, and the root gear/knob as the groove shape elements, ( 1) The height of the shoulders on the left and right sides of the groove in the two-dimensional X-Y coordinate system is determined by taking the average value of the data at each shoulder, and then averaging the data up to n points before the inflection point where the error from that value becomes large. The value is the height of the shoulder, and the orbital formula y
= aVrj, y'' expressed as aVr7, (2) Next, the straight line portions of the left and right slopes of the groove are n from the inflection point, respectively.
The rate of change dV/dx@ m times is calculated from the previous data and the average value is set as the slope 2. 2, the circular orbit formula y=k, x+b, in the X-Y coordinate system.

y=k2 )c+b2で表わし、(3)更に左右ノ変曲
点から測定値と基準値の誤差がβドツト以上になる点P
s  (X+ 、Y+ )、P2’ (x2゜y2)を
求めるとともに、左右それぞれの肩の高さの回軌式と斜
面の直線部分の回軌式との交点PI  (Xj +  
3’3 )  : Xj = −(aVrlbl)/k
t 、PI  (X4 +  ’!+ ): X4= 
(avr2  b2 ) /に2を求めて、これらPl
、p2.p、、P+を特徴点とし、(4)上記特徴点P
1.P2 、Pl 、P+に基づき開先巾W ” X 
4−X g +開先深さH1=y。
y=k2) c+b2, and (3) point P where the error between the measured value and the reference value is more than β dots from the left and right inflection points.
s (X+, Y+), P2' (x2゜y2), and find the intersection point PI (Xj +
3'3): Xj = -(aVrlbl)/k
t, PI (X4 + '!+): X4=
(avr2 b2 ) Find 2 in / and add these Pl
, p2. Let p,,P+ be the feature points, (4) the above feature point P
1. Groove width W”X based on P2, Pl, P+
4-X g + groove depth H1 = y.

y3・ H2=y2  )’今9段差Δh、”’)’+
−y31食い違いΔh2 =y2  Ys 、ルートギ
ャップΔW”X2−Xjを算出することにより、光切断
法によって得られたU形開先の形状画像データからコン
ピューターを用いて開先形状要素を正確に検出すること
ができ、客観性、信頼性のある開先形状要素の確認とそ
の記録保持をすることができるU形開先の自動形状認識
方法を得るから、本発明は産業上極めて有益なものであ
る。
y3・H2=y2)'Now 9 steps Δh,"')'+
-y31 discrepancy Δh2 = y2 Ys, by calculating the root gap ΔW” The present invention is industrially extremely useful because it provides an automatic shape recognition method for a U-shaped groove that can objectively and reliably confirm groove shape elements and maintain records thereof. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明U形開先の自動形状認識方法の
一実施例を示し、第1図は実施装置を示す斜視図、第2
図は開先形状要素の説明図、第3図は開先形状認識プロ
セスのフローチャート、第4図は開先形状認識の各プロ
セスの説明図である。 第5図〜第7図は従来のU形開先検査方法を示し、第5
図は開先形状要素の説明図、第6図は開先形状検査プロ
セスのフローチャート、第7図は開先形状検査の各検査
態様の説明図である。 1・・・U形開先、W・・・開先巾、Hl、H2・・・
開先深さ、Δh、・・・段差、Δh2・・・食い違い、
ΔW・・・ルートギャップ、2・・・レーザー光源、3
・・・シリンドリカルレンズ、4・・・スリット光、5
・・・ミラー、6・・・帯状スリット光、7・・・テレ
ビカメラ、8・・・画像メモリ、9・・・コンピュータ
1 to 4 show an embodiment of the automatic shape recognition method for a U-shaped groove according to the present invention.
FIG. 3 is an explanatory diagram of groove shape elements, FIG. 3 is a flowchart of the groove shape recognition process, and FIG. 4 is an explanatory diagram of each process of groove shape recognition. Figures 5 to 7 show the conventional U-shaped groove inspection method.
FIG. 6 is an explanatory diagram of groove shape elements, FIG. 6 is a flowchart of the groove shape inspection process, and FIG. 7 is an explanatory diagram of each inspection aspect of the groove shape inspection. 1...U-shaped groove, W...groove width, Hl, H2...
Groove depth, Δh,... step, Δh2... discrepancy,
ΔW... Root gap, 2... Laser light source, 3
... Cylindrical lens, 4... Slit light, 5
...mirror, 6...belt-shaped slit light, 7...television camera, 8...image memory, 9...computer

Claims (1)

【特許請求の範囲】  光切断法によって得られたU形開先形状の画像データ
をコンピューターを用いて2次元のX−Y座標系に置き
換え開先形状要素として開先巾、開先深さ、段差、食い
違い、ルートギャップを算出検知するにあたり、(1)
2次元のX−Y座標系における開先の左右の肩の高さは
それぞれ肩の部分のデータの平均値をとりそれとの誤差
が大きくなる変曲点よりn個手前までのデータの平均値
を肩の高さとして、回軌式y=avr_1、y=avr
_2で表わし、(2)次に開先の左右の斜面の直線部分
はそれぞれ変曲点よりn個前方のデータから変化率 dy/dxをm回求めその平均値を傾きk_1、k_2
として、X−Y座標系における回軌式y=k_1x+b
_1、y=k_2x+b_2で表わし、(3)更に左右
の変曲点から測定値と基準値の誤差がlドット以上にな
る点P_1(x_1、y_1)、P_2(x_2、y_
2)を求めるとともに、左右それぞれの肩の高さの回軌
式と斜面の直線部分の回軌式との交点P_3(x_3、
y_3):x_3=(avr_1−b_1)/k_1、
P_4(x_4、y_4):x_4=(avr_2−b
_2)/k_2を求めて、これらP_1、P_2、P_
3、P_4を特徴点とし、(4)上記特徴点P_1、P
_2、P_3、P_4に基づき開先巾W=X_4−X_
3、開先深さH_1=y_1−y_3、H_2=y_2
−y_4、段差Δh_1=y_4−y_3、食い違いΔ
h_2=y_2−y_1、ルートギャップΔw=x_2
−x_1を算出することを特徴とするU形開先の自動形
状認識方法。
[Claims] The image data of the U-shaped groove shape obtained by the optical cutting method is converted into a two-dimensional X-Y coordinate system using a computer, and the groove shape elements include groove width, groove depth, When calculating and detecting steps, discrepancies, and route gaps, (1)
The height of the left and right shoulders of the groove in the two-dimensional X-Y coordinate system is determined by taking the average value of the data at each shoulder, and then calculating the average value of the data up to n points before the inflection point where the error becomes large. As the height of the shoulder, the orbital formula y=avr_1, y=avr
(2) Next, for the straight line parts of the left and right slopes of the groove, calculate the rate of change dy/dx m times from the data n points ahead of the inflection point, and calculate the average value as the slope k_1, k_2.
As, the circular orbit formula y=k_1x+b in the X-Y coordinate system
_1, y=k_2x+b_2, (3) Furthermore, points P_1 (x_1, y_1), P_2 (x_2, y_
2) and the intersection point P_3(x_3,
y_3):x_3=(avr_1-b_1)/k_1,
P_4(x_4, y_4):x_4=(avr_2-b
_2)/k_2 and calculate these P_1, P_2, P_
3. P_4 is a feature point, (4) the above feature points P_1, P
Based on _2, P_3, and P_4, groove width W=X_4-X_
3. Groove depth H_1=y_1-y_3, H_2=y_2
-y_4, step difference Δh_1=y_4-y_3, discrepancy Δ
h_2=y_2-y_1, root gap Δw=x_2
An automatic shape recognition method for a U-shaped groove, characterized by calculating -x_1.
JP16580789A 1989-06-28 1989-06-28 Automatic shape recognizing method for u-shaped groove Pending JPH0332470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16580789A JPH0332470A (en) 1989-06-28 1989-06-28 Automatic shape recognizing method for u-shaped groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16580789A JPH0332470A (en) 1989-06-28 1989-06-28 Automatic shape recognizing method for u-shaped groove

Publications (1)

Publication Number Publication Date
JPH0332470A true JPH0332470A (en) 1991-02-13

Family

ID=15819370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16580789A Pending JPH0332470A (en) 1989-06-28 1989-06-28 Automatic shape recognizing method for u-shaped groove

Country Status (1)

Country Link
JP (1) JPH0332470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612785A (en) * 1996-01-03 1997-03-18 Servo Robot Inc. Twin sensor laser probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612785A (en) * 1996-01-03 1997-03-18 Servo Robot Inc. Twin sensor laser probe

Similar Documents

Publication Publication Date Title
KR100685206B1 (en) Method and instrument for measuring bead cutting shape of electric welded tube
JP4705479B2 (en) Bead shape detection method and apparatus
US4776692A (en) Testing light transmitting articles
US20100157043A1 (en) System and method for inspecting the interior surface of a pipeline
JPH0555802B2 (en)
CN115841484B (en) Steel structure welding quality detection system based on three-dimensional laser scanning
EP0736342B1 (en) Method and apparatus for measuring cross sectional dimensions of sectional steel
JPH0332470A (en) Automatic shape recognizing method for u-shaped groove
KR100415796B1 (en) Method of determining a scanning interval in surface inspection
Sansoni et al. Design and development of a 3D system for the measurement of tube eccentricity
JP2572286B2 (en) 3D shape and size measurement device
JP2567923B2 (en) Distance measurement method
JP3151790B2 (en) Method and apparatus for detecting center position of weld groove / bead
JP2004309492A (en) Construction and civil engineering structure measurement/analysis system
JP2004181471A (en) Method and device for detecting bead shape of electric resistance welded tube
JPS6149774A (en) Outside surface welding method of weld pipe
JPH0332469A (en) Automatic shape recognizing method for v-shaped groove
EP0441972A1 (en) Object recognition method by otpical cutting method
JPH09101113A (en) Method and device for measuring beveling position and its form
JP2872481B2 (en) How to measure groove dimensions
JPH10105719A (en) Optical measurement method for hole position
JPH07218227A (en) Method and apparatus for measuring sectional shape
JPH08220001A (en) Surface-flam inspecting method
JP2618303B2 (en) ERW pipe welding bead cutting shape measurement method
JPH06246592A (en) Attaching accuracy measuring method