JPH0332464A - Reflow furnace - Google Patents

Reflow furnace

Info

Publication number
JPH0332464A
JPH0332464A JP16538689A JP16538689A JPH0332464A JP H0332464 A JPH0332464 A JP H0332464A JP 16538689 A JP16538689 A JP 16538689A JP 16538689 A JP16538689 A JP 16538689A JP H0332464 A JPH0332464 A JP H0332464A
Authority
JP
Japan
Prior art keywords
heating
area
heated
heating area
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16538689A
Other languages
Japanese (ja)
Inventor
Eiji Tsukagoshi
塚越 英治
Takaharu Saeki
敬治 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP16538689A priority Critical patent/JPH0332464A/en
Publication of JPH0332464A publication Critical patent/JPH0332464A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of damages and soldering defects of parts by independently providing force convection type heating means respectively in a preheating area and regular heating area and forming the convection of the hot wind circulating in the transporting direction of materials to be heated in the preheating area and the regular heating area. CONSTITUTION:The heating area consisting of a panel heater 22 for temp. rising of the materials (substrates) 27 to be heated, the 1st, 2nd heating areas for soaking consisting of panel heaters 23, 24 and the heating area for the regular heating consisting of a panel heater 25 are disposed in series in the reflow furnace 21. The force convection type heating means are, thereupon, respectively independently provided in the heating area consisting of the heating areas for temp. rising and soaking and the regular heating area. The heating means are constituted of air heaters 32, 35, blowers 33, 36, pipes 31a, 31b, 34a, 34b, etc. The convection of the hot wind circulating in the same direction as the transporting direction of the materials. 27 to be heated is formed in the preheating area and regular heating area. The uniform soldering is executed while the generation of solder balls is suppressed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子回路基板や電子回路部品の半田付は作業
などに使用するためのリフロー炉に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reflow oven used for soldering electronic circuit boards and electronic circuit components.

(従来技術) 回路基板に各種の半導体素子部品を、半田付けにより面
実装する方法として、リフロー炉を使用した方法(リフ
ローソルダリング)が知られている。この半田付は方法
は、複数の輻射加熱域を直列に配置して成るリフロー炉
内を、例えばベルトコンベアにより、その接合部に予め
半田をコーティングした電子部品を回路基板の所定位置
に載置した状態で通過せしめて、この炉内を通過する際
に前記加熱域からの輻射熱で接合部の半田を再溶融させ
て基板の所定位置で電子部品の半田付けを行う方法であ
る。
(Prior Art) A method using a reflow oven (reflow soldering) is known as a method for surface mounting various semiconductor element parts on a circuit board by soldering. This soldering method involves placing electronic components whose joints are coated with solder in advance on a predetermined position on a circuit board, using a belt conveyor, for example, in a reflow oven consisting of multiple radiant heating zones arranged in series. In this method, electronic components are soldered at predetermined positions on the board by remelting the solder at the bonding portions using radiant heat from the heating area as the board passes through the furnace.

第3図は従来のリフロー炉の構成の一例を示し、リフロ
ー炉l内には、例えば赤外線ヒータまたは遠赤外線ヒー
タのような面ヒータからなる輻射加熱域2〜5が炉長方
向に4対配置され、これら上下の加熱域2〜5の間をベ
ルトコンベア6の上に所定間隔で載置された被加熱物、
すなわち、種々の電子部品(図示せず)を搭載した基板
7が前記リフロー炉内の入口1aから出口1bにかけて
搬送される。電子部品と基板7との接合部には半田がコ
ーティングされている。ベルトコンベア6は、モータ8
に接続された駆動用ローラ9および3個の送り用ローラ
10に巻回されたベルト11から構成されている。
FIG. 3 shows an example of the configuration of a conventional reflow oven. Inside the reflow oven, four pairs of radiant heating areas 2 to 5 each consisting of a surface heater such as an infrared heater or a far-infrared heater are arranged in the oven length direction. The objects to be heated are placed on a belt conveyor 6 at predetermined intervals between these upper and lower heating areas 2 to 5,
That is, a substrate 7 on which various electronic components (not shown) are mounted is conveyed from an inlet 1a to an outlet 1b in the reflow oven. The joint between the electronic component and the board 7 is coated with solder. The belt conveyor 6 has a motor 8
The belt 11 is wound around a driving roller 9 connected to a drive roller 9 and three feeding rollers 10.

この構造のリフロー炉1においては、上記した各加熱域
2〜5の面ヒータからの輻射加熱と炉内雰囲気の自然対
流による加熱とが複合した状態で基板7上の電子部品の
半田付けが行なわれる。
In the reflow oven 1 having this structure, the electronic components on the board 7 are soldered in a state where radiation heating from the surface heaters in each of the heating zones 2 to 5 described above and heating due to natural convection in the furnace atmosphere are combined. It will be done.

ここで、各加熱域2〜5において、加熱域2は、入口1
aから炉内に搬入された基板7の温度を急速に上昇せし
めるために配置される温度立ち上げ部として機能する。
Here, in each heating zone 2 to 5, the heating zone 2 is the inlet 1
It functions as a temperature raising part arranged to rapidly raise the temperature of the substrate 7 carried into the furnace from a.

しかし、例えば基板やそこに搭載される電子部品の間で
は熱容量に差があり、それらの間に温度差が生ずるので
、全体を均熱するために、加熱域2の後段に加熱域3,
4を配置した均熱部が形成されている。そして更に、こ
れら加熱域3,4の後段には、本加熱部としての本加熱
用加熱域5が配置され、ここで基板7およびそれに搭載
されている電子部品は所定温度、すなわち半田付は温度
に加熱されて半田付けが行なわれる。
However, for example, there is a difference in heat capacity between the circuit board and the electronic components mounted thereon, and a temperature difference occurs between them.
A soaking section is formed in which 4 is arranged. Further, a heating area 5 for main heating as a main heating part is arranged after these heating areas 3 and 4, and here the board 7 and the electronic components mounted thereon are kept at a predetermined temperature, that is, soldering is carried out at a certain temperature. It is heated to perform soldering.

(発明が解決しようとする課題) ところで、前記したように、リフロー炉1内を搬送され
る基板7の各部における熱容量は必ずしも均一ではなく
、更に、基板7と該基板7の上に搭載れる電子部品との
間にも熱容量の差が存在する。従って、これらの熱容量
の差に起因して、−般に、炉内の各位置において、基板
や搭載部品の温度プロファイルが異なってくる。
(Problems to be Solved by the Invention) By the way, as described above, the heat capacity of each part of the substrate 7 transported in the reflow oven 1 is not necessarily uniform, and furthermore, the heat capacity of the substrate 7 and the electronics mounted on the substrate 7 are not necessarily uniform. There are also differences in heat capacity between parts. Therefore, due to these differences in heat capacity, the temperature profile of the substrate and mounted components generally differs at each location within the furnace.

第4図にその温度プロファイルの1例を示す。FIG. 4 shows an example of the temperature profile.

図において、実線は基板、点線は搭載部品、−点鎖線は
搭載部品のパッケージ表面におけるそれぞれの温度プロ
ファイルを示す。
In the figure, the solid line indicates the temperature profile of the board, the dotted line indicates the mounted component, and the dashed-dotted line indicates the temperature profile of the package surface of the mounted component.

一般に、半田付けに用いるクリーム半田中のフラックス
の働きを有効に発揮せしめるためには、図のように、均
熱部における基板の温度を所定屋度でフラットに管理す
ることが好ましい。
Generally, in order to effectively utilize the function of the flux in the cream solder used for soldering, it is preferable to maintain the temperature of the board in the soaking section at a predetermined temperature level, as shown in the figure.

しかし、第3図に示したような従来構造のリフロー炉に
おいては、均熱部における基板温度を第4図のように管
理すると、均熱部の終端付近では基板と搭載部品との間
で温度差△T1を生じ、また、本加熱部においても温度
差△T2が生ずる。
However, in a reflow oven with a conventional structure as shown in Fig. 3, if the substrate temperature in the soaking section is managed as shown in Fig. 4, the temperature between the board and the mounted components will drop near the end of the soaking section. A temperature difference ΔT1 is generated, and a temperature difference ΔT2 is also generated in the main heating section.

この傾向は、熱容量の大きい部品を搭載したときに顕著
に現われ、基板は所定温度T1になっていても搭載部品
の温度T!は著しく低くなり(△T。
This tendency becomes noticeable when components with large heat capacities are mounted, and even if the board reaches a predetermined temperature T1, the temperature of the mounted components is T! becomes significantly lower (△T.

が人となり)、結局、半田付は不良や半田付は不能とい
う不都合を招く。
This results in inconveniences such as defective soldering or impossibility of soldering.

本加熱部における基板温度T、を高めるような温度管理
を行ない、搭載部品の温度T、を高めれば、半田付は不
能というような事態を回避することはできるが、しかし
、あまりに高温にすることは、基板や搭載部品の熱損傷
を招いて、その機能喪失をもたらすので不都合である。
By managing the temperature to raise the board temperature T in the main heating section and increasing the temperature T of the mounted components, it is possible to avoid a situation where soldering is impossible. This is disadvantageous because it causes thermal damage to the board and mounted components, resulting in loss of their functionality.

また、本加熱部における温度差△T!を小さくし、半田
付は不良を防止するためには、均熱部における温度差△
T1をできるだけ小さくすることが必要である。しかし
ながら、従来構造のリフロー炉lの場合、△T、を小さ
くするためには、ライン速度を極めて遅くするか、また
は炉長を長くして加熱域の数を増大するかのいずれかの
対策を採らざるを得す、そのため、製造効率の低下や炉
の大型化を招くという問題を避は得ない。
Also, the temperature difference △T! in the main heating section! In order to reduce the temperature difference and prevent soldering defects, it is necessary to reduce the temperature difference △ in the soaking area.
It is necessary to make T1 as small as possible. However, in the case of a reflow oven with a conventional structure, in order to reduce ΔT, it is necessary to either make the line speed extremely slow or increase the number of heating zones by increasing the oven length. Therefore, problems such as a decrease in manufacturing efficiency and an increase in the size of the furnace are unavoidable.

本発明は、このような問題を解消し、炉の大型化を企る
ことなく、均熱部における部品と搭載部品との間の温度
差△T1を小、また本加熱部における温度差△T!も小
とすることができる構造のリフロー炉の提供を目的とす
る。
The present invention solves these problems and reduces the temperature difference △T1 between the components and mounted components in the soaking section and the temperature difference ΔT in the main heating section without increasing the size of the furnace. ! The present invention aims to provide a reflow oven having a structure that can be made small in size.

(課題を解決するための手段) 上記した目的を達成するために、本発明においては、被
加熱物の温度立ち上げ用加熱域および均熱用加熱域から
成る予熱域ならびに本加熱用加熱域がこの順序で配置さ
れている炉内を前記被加熱物が搬送されるリフロー炉に
おいて、前記予熱域および前記本加熱用加熱域のそれぞ
れに独立して強制対流式加熱手段が設けられ、前記被加
熱物の搬送方向と同方向に循環する熱風の対流が前記予
熱域および前記本加熱用加熱域に形成されることを特徴
とするリフロー炉が提供される。
(Means for Solving the Problem) In order to achieve the above-mentioned object, in the present invention, a preheating area consisting of a heating area for raising the temperature of the object to be heated and a heating area for soaking, and a heating area for main heating are provided. In a reflow furnace in which the object to be heated is transported through the furnace arranged in this order, forced convection heating means are provided independently in each of the preheating area and the heating area for main heating, and the object to be heated is A reflow oven is provided, characterized in that a convection of hot air circulating in the same direction as the conveyance direction of the object is formed in the preheating area and the main heating area.

(作用) 均熱部を含む予熱域には、面ヒータからの輻射熱以外に
熱風が強制的に対流せしめられるので、従来の自然対流
の場合に比べて、被加熱物への熱の伝達速度が速くなり
、その結果、短時間で均熱部における前記△T1を小さ
くすることができる。
(Function) In addition to the radiant heat from the surface heater, hot air is forced to convect in the preheating area including the soaking section, so the speed of heat transfer to the heated object is faster than in the case of conventional natural convection. As a result, the ΔT1 in the soaking section can be reduced in a short time.

また、本加熱部にも熱風の強制対流が形成されるので、
そこにおける前記△T、も小さくなる。
In addition, forced convection of hot air is also formed in the main heating section, so
The above ΔT there also becomes smaller.

その結果、均熱部においては基板温度を所定温度にフラ
ットに管理した状態であっても、半田付けが進行する本
加熱部における基板と搭載部品との温度差を小さくする
ことができ、クリーム半田のフラックスの有効性を損う
ことなく、確実な半田付けを行なうことができるように
なる。
As a result, even if the board temperature is kept flat at a predetermined temperature in the soaking section, the temperature difference between the board and mounted components in the main heating section where soldering progresses can be reduced, and cream soldering It becomes possible to perform reliable soldering without impairing the effectiveness of the flux.

(実施例) 以下に、本発明の実施例を添付図面に基づいて説明する
(Example) Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は本発明の第1の実施例を示し、リフロー炉21
内には、赤外線ヒータまたは遠赤外線ヒータのような上
下一対の面ヒータ22から成る温度立ち上げ用加熱域、
同じく上下一対の面ヒータ23から成る第1の均熱用加
熱域、上下一対の面ヒータ24から成る第2の均熱用加
熱域、および上下一対の面ヒータ25から成る本加熱用
加熱域25がこの順序で直列に配置されている。ここで
、温度立ち上げ用加熱域、第1の均熱用加熱域および第
2の均熱用加熱域は、被加熱物を本加熱用加熱域におい
て適正な半田付は条件を実現するための予熱域を構成す
る。
FIG. 1 shows a first embodiment of the present invention, in which a reflow oven 21
Inside, there is a heating area for raising the temperature consisting of a pair of upper and lower surface heaters 22 such as infrared heaters or far infrared heaters;
Similarly, a first soaking heating area includes a pair of upper and lower surface heaters 23, a second soaking heating area includes a pair of upper and lower surface heaters 24, and a heating area 25 for main heating consists of a pair of upper and lower surface heaters 25. are arranged in series in this order. Here, the heating area for temperature start-up, the first heating area for soaking, and the second heating area for soaking are used to properly solder the object to be heated in the heating area for main heating. Configure the preheating area.

各加熱域における一対の面ヒータの間には、モータ28
に接続された駆動用ロータ29および送すローラ30に
巻回されたベルトコンベア26が走行し、その上に所定
間隔で被加熱物27が載置されることにより、これら被
加熱物27はリフロー炉21の入口21aから出口21
bに向かって搬送される。
A motor 28 is installed between the pair of surface heaters in each heating area.
A belt conveyor 26 wound around a driving rotor 29 and a feeding roller 30 connected to the belt conveyor 26 runs, and objects to be heated 27 are placed thereon at predetermined intervals, so that the objects to be heated 27 are reflowed. From the inlet 21a of the furnace 21 to the outlet 21
It is transported towards b.

面ヒータ22のリフロー炉入口21a側と面ヒータ23
および面ヒータ24の境界には、それぞれ、炉内にパイ
プ31a、31bが被加熱物27の上方から挿入され、
パイプ31aはエアヒータ32を介してブロア33に接
続され、またパイプ31bはブロア33に接続され、全
体として、予熱域における強制対流加熱手段が構成され
る。
The reflow oven inlet 21a side of the surface heater 22 and the surface heater 23
Pipes 31a and 31b are inserted into the furnace from above the object to be heated 27 at the boundaries of the surface heater 24, and
The pipe 31a is connected to the blower 33 via the air heater 32, and the pipe 31b is connected to the blower 33, and the entire system constitutes forced convection heating means in the preheating area.

同様に、本加熱用加熱域の面ヒータ25の前後にも、パ
イプ34 a、  34 bがそれぞれ被加熱物27の
上方から挿入され、パイプ34aはエアヒータ35を介
してブロア36に、またパイプ34bはブロア36に接
続され、全体として、本加熱用加熱域における強制対流
加熱手段が構成される。
Similarly, pipes 34a and 34b are inserted from above the object to be heated 27 before and after the surface heater 25 in the heating area for main heating, respectively, and the pipe 34a is connected to the blower 36 via the air heater 35, and the pipe 34b is connected to the blower 36 via the air heater 35. is connected to the blower 36, and as a whole constitutes forced convection heating means in the heating zone for main heating.

これらのそれぞれ独立した強制対流加熱手段のいずれに
おいても、プロ733.36を運転すると、エアヒータ
32.35で加熱された熱風が、パイプ31a、34a
から炉内に吹き込まれ、被加熱物27の搬送方向に流れ
、パイプ31b、 34bからブロア33,36に吸引
されるようになっている。すなわち、熱風は、予熱域、
本加熱用加熱域においてそれぞれ矢印P+、Ptで示し
たように独立して循環するようになっている。
In any of these independent forced convection heating means, when the Pro 733.36 is operated, the hot air heated by the air heater 32.35 flows through the pipes 31a, 34a.
The air is blown into the furnace, flows in the direction of conveyance of the object to be heated 27, and is sucked into blowers 33, 36 through pipes 31b, 34b. That is, the hot air is heated in the preheating area,
In the heating area for main heating, they circulate independently as shown by arrows P+ and Pt, respectively.

つぎに作用を説明する。Next, the effect will be explained.

リフロー炉21に搬入された被加熱物7は面ヒータ22
の間を通過する過程で温度立ち上げがなされ、第1の均
熱用加熱域の面ヒータの間に移送される。ここで、面ヒ
ータ23の輻射熱によって加熱されると同時に、その上
面は対流する熱風で加熱される。そのため、被加熱物の
熱容量の小さい部分は輻射加熱による過度の温度上昇が
抑制され、一方、熱容量の大きい部分は輻射加熱と対流
加熱の相乗作用によって温度上昇が促進されることにな
り、被加熱物全体としての部分的な温度差は小さくなる
The object to be heated 7 carried into the reflow oven 21 is heated by a surface heater 22.
The temperature is raised during the process of passing between the heating areas, and the heating area is transferred between the surface heaters of the first soaking heating area. Here, at the same time as being heated by the radiant heat of the surface heater 23, its upper surface is heated by the convecting hot air. Therefore, excessive temperature rise due to radiation heating is suppressed in parts of the object with a small heat capacity, while temperature rise in parts with a large heat capacity is promoted due to the synergistic effect of radiant heating and convection heating. Local temperature differences in the entire object become smaller.

そして、第2の均熱用加熱域の面ヒータ24の間を通過
する過程で、被加熱物の全体的な温度差は一層小さくな
って均熱化が進む。
Then, in the process of passing between the surface heaters 24 in the second soaking heating area, the overall temperature difference of the object to be heated becomes even smaller, and heating progresses.

均熱化した被加熱物27はつづいて本加熱用加熱域の面
ヒータ25の間に移送され、予熱域の場合よりも高温に
加熱されるが、このときも熱風の対流の作用により、被
加熱物の部分的な温度差は小さくなる。このように、熱
風の対流による強制加熱を加味することにより、均熱部
における温度差△T11本加熱用加熱部における温度差
△T2はいずれも小さくなり、半田付は不良は起らなく
なる。
The uniformly heated object 27 is then transferred between the surface heaters 25 in the heating area for main heating, and heated to a higher temperature than in the preheating area, but at this time as well, due to the action of hot air convection, the object to be heated is The local temperature difference of the heated object becomes smaller. In this way, by taking forced heating by convection of hot air into consideration, both the temperature difference ΔT1 in the soaking part and the temperature difference ΔT2 in the heating part become small, and no soldering defects occur.

第2図は本発明の他の実施例を示し、このリフロー炉の
場合は、第1図の実施例炉において、第2の均熱用加熱
域の面ヒータのうち上方の面ヒータを取除き、エアヒー
タ37と接続する熱風吹付は部38を取付け、ここで、
外気をエアヒータ37で加熱した熱風を搬送される被加
熱物27の上面に強制的に吹きつける構造にしたもので
ある。
Fig. 2 shows another embodiment of the present invention, and in the case of this reflow oven, the upper surface heater of the second soaking heating area is removed from the embodiment furnace of Fig. 1. , a hot air blowing section 38 connected to the air heater 37 is attached, and here,
The structure is such that hot air obtained by heating outside air with an air heater 37 is forcibly blown onto the upper surface of the object to be heated 27 being conveyed.

このような構造にすると、均熱効果が一層促進されて有
効である。
Such a structure is effective because the heating effect is further promoted.

(発明の効果) 以上の説明で明らかなように、本発明のリフロー炉は、
その構成を、被加熱物の温度立ち上げ用加熱域および均
熱用加熱域から成る予熱域ならびに本加熱用加熱域がこ
の順序で配置されている炉内を前記被加熱物が搬送され
るリフロー炉において、前記予熱域および前記本加熱用
加熱域のそれぞれに独立して強制対流式加熱手段が設け
られ、前記被加熱物の搬送方向と同方向に循環する熱風
の対流が前記予熱域および前記本加熱用加熱域に形成さ
れるようにしたので、例えば基板表面に実装される電子
部品の種類により当該基板表面に熱4゜ 容量の差が生じた場合でも、均熱部におけるこの基板表
面の温度差を極めて小さく抑えることが可能となり、そ
の結果、本加熱用加熱部において、部品の損傷や半田付
は不良等の欠陥が発生することを防止することができる
。また、基板表面における半田付は接合部は、どの個所
でも、急速に均熱温度にまで立ち上がり、その温度の保
持時間も長くなるので、クリーム半田中に含まれている
フラックスが安定することになり、その結果、半田ボー
ル発生のような現象が抑制されて均一な半田付けが可能
となる。
(Effects of the Invention) As is clear from the above explanation, the reflow oven of the present invention has
Its configuration is a reflow process in which the object to be heated is conveyed through a furnace in which a preheating area consisting of a heating area for raising the temperature of the object to be heated and a heating area for soaking, and a heating area for main heating are arranged in this order. In the furnace, a forced convection type heating means is provided independently in each of the preheating area and the main heating heating area, and the convection of hot air circulating in the same direction as the conveying direction of the object to be heated is provided in the preheating area and the main heating area. Since it is formed in the heating area for main heating, for example, even if there is a 4° difference in heat capacity on the board surface depending on the type of electronic component mounted on the board surface, the temperature of this board surface in the soaking section is It becomes possible to suppress the temperature difference to an extremely small value, and as a result, it is possible to prevent defects such as damage to components and poor soldering in the heating section for main heating. In addition, when soldering on the surface of a board, any part of the joint quickly rises to a soaking temperature, and this temperature is maintained for a long time, so the flux contained in the cream solder becomes stable. As a result, phenomena such as the generation of solder balls are suppressed, and uniform soldering becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明のリフロー炉の実施例を示
す構成図、第3図は従来のリフロー炉の構成図、第4図
はリフロー炉内における基板と搭載部品の温度プロファ
イルを示すグラフである。 21・・・リフロー炉、21a・・・入口、21b・・
・出口、22,23,24.25・・・面ヒータ、26
・・・ベルトコンベア、27・・・基板(被加熱物)、
28・・・モータ、29・・・駆動用ローラ、30・・
・送り用ローフ、 32゜ ロア、 31a、31b、34a、34b−・・パイプ、35.
37・・・エアヒータ、33.36・・・部38・・・
熱風吹き付は部。
Figures 1 and 2 are block diagrams showing an embodiment of the reflow oven of the present invention, Figure 3 is a block diagram of a conventional reflow oven, and Figure 4 shows the temperature profile of the substrate and mounted components in the reflow oven. It is a graph. 21... Reflow oven, 21a... Inlet, 21b...
・Outlet, 22, 23, 24. 25... Surface heater, 26
... Belt conveyor, 27 ... Substrate (object to be heated),
28...Motor, 29...Driving roller, 30...
- Feeding loaf, 32° lower, 31a, 31b, 34a, 34b--pipe, 35.
37...Air heater, 33.36...Part 38...
Hot air blowing part.

Claims (1)

【特許請求の範囲】[Claims]  被加熱物の温度立ち上げ用加熱域および均熱用加熱域
から成る予熱域ならびに本加熱用加熱域がこの順序で配
置されている炉内を前記被加熱物が搬送されるリフロー
炉において、前記予熱域および前記本加熱用加熱域のそ
れぞれに独立して強制対流式加熱手段が設けられ、前記
被加熱物の搬送方向と同方向に循環する熱風の対流が前
記予熱域および前記本加熱用加熱域に形成されることを
特徴とするリフロー炉。
In a reflow furnace in which the object to be heated is transported through a furnace in which a preheating area consisting of a heating area for raising the temperature of the object to be heated and a heating area for soaking, and a heating area for main heating are arranged in this order, A forced convection type heating means is provided independently in each of the preheating area and the heating area for main heating, and the convection of hot air circulating in the same direction as the conveyance direction of the object to be heated causes the heating in the preheating area and the heating area for main heating. A reflow oven characterized by being formed in a region.
JP16538689A 1989-06-29 1989-06-29 Reflow furnace Pending JPH0332464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16538689A JPH0332464A (en) 1989-06-29 1989-06-29 Reflow furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16538689A JPH0332464A (en) 1989-06-29 1989-06-29 Reflow furnace

Publications (1)

Publication Number Publication Date
JPH0332464A true JPH0332464A (en) 1991-02-13

Family

ID=15811405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16538689A Pending JPH0332464A (en) 1989-06-29 1989-06-29 Reflow furnace

Country Status (1)

Country Link
JP (1) JPH0332464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735974B2 (en) * 2006-03-30 2011-07-27 株式会社ジェイテクト Joint structure of universal joint yoke and shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735974B2 (en) * 2006-03-30 2011-07-27 株式会社ジェイテクト Joint structure of universal joint yoke and shaft

Similar Documents

Publication Publication Date Title
JP4602536B2 (en) Reflow soldering equipment
JPH03124369A (en) Reflow soldering device
JP4896776B2 (en) Reflow device
JPH04300066A (en) Method and device for reflow soldering
JPH0828569B2 (en) Reflow equipment
JPH0665434B2 (en) Reflow soldering equipment
JPH0332464A (en) Reflow furnace
JP2003292154A (en) Heat-treating apparatus for thick-film printed circuit board, and carrier roller
JPH064188B2 (en) Reflow soldering method and device
JPH0715133A (en) Reflow soldering device
JPH03216273A (en) Reflow furnace
JP3191398B2 (en) Reflow equipment
JPS6138985B2 (en)
JPH10284831A (en) Hot air blowing plate for reflow soldering device
JPH0310873B2 (en)
JP4041627B2 (en) Heating device and heating method
JP3045132B2 (en) Reflow equipment
JP2555192B2 (en) Reflow furnace
JPH02396A (en) Heating method of soldered circuit board
JPH05110242A (en) Board
JP4252819B2 (en) Reflow preheat drying method and apparatus
JPH11298135A (en) Heating furnace for soldering
JPH0240490A (en) Far infrared ray heating furnace
JP2791158B2 (en) Heating equipment
JP2013004789A (en) Reflow device