JPH0332445A - Method for removing smoke and malodorous gas from burnt mold - Google Patents
Method for removing smoke and malodorous gas from burnt moldInfo
- Publication number
- JPH0332445A JPH0332445A JP16577789A JP16577789A JPH0332445A JP H0332445 A JPH0332445 A JP H0332445A JP 16577789 A JP16577789 A JP 16577789A JP 16577789 A JP16577789 A JP 16577789A JP H0332445 A JPH0332445 A JP H0332445A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- inorganic powder
- burnt
- smoke
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000779 smoke Substances 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 36
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 6
- 239000011347 resin Substances 0.000 claims abstract description 5
- 229920005989 resin Polymers 0.000 claims abstract description 5
- 238000010304 firing Methods 0.000 claims description 36
- 239000008187 granular material Substances 0.000 claims description 11
- 239000011230 binding agent Substances 0.000 claims description 10
- 230000001877 deodorizing effect Effects 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 abstract description 7
- 239000003463 adsorbent Substances 0.000 abstract description 4
- 229910021529 ammonia Inorganic materials 0.000 abstract description 3
- 230000008016 vaporization Effects 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 30
- 239000007789 gas Substances 0.000 description 22
- 239000004576 sand Substances 0.000 description 16
- 235000019645 odor Nutrition 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000002734 clay mineral Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 238000005266 casting Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 108010082455 Sebelipase alfa Proteins 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 229940041615 kanuma Drugs 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 238000010112 shell-mould casting Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、耐熱性粒状物を熱硬化性樹脂粘結剤で結合し
た焼成鋳型、例えばシェルモールドサンドを用いたシェ
ル鋳型等の脱煙・脱臭方法に関する。焼成鋳型は、エキ
ゾーストマニホールド、エンジンヘッドカバー、エンジ
ンブロック等を製作するための鋳型あるいは中子として
利用されている。また、アルミニウムや鋳鉄の重力鋳造
、アルミニウムの低圧鋳造、真空鋳造等、多くの鋳造分
野において使用されている。Detailed Description of the Invention [Industrial Field of Application] The present invention is a method for removing smoke from firing molds in which heat-resistant granules are bonded with a thermosetting resin binder, such as shell molds using shell mold sand. Regarding deodorizing methods. Firing molds are used as molds or cores for manufacturing exhaust manifolds, engine head covers, engine blocks, and the like. It is also used in many casting fields, such as gravity casting of aluminum and cast iron, low pressure casting of aluminum, and vacuum casting.
[従来の技術]
エキゾーストマニホールドやエンジンヘッドカバー等、
複雑な形状の製品の製作には、耐熱性粒状物、例えば珪
砂に、熱硬化性のフェノール樹脂を粘結剤として添加し
、焼成して得た鋳型あるいは中子(以下、焼成鋳型とい
う)が広く使用されている。[Conventional technology] Exhaust manifolds, engine head covers, etc.
To manufacture products with complex shapes, molds or cores (hereinafter referred to as fired molds) are made by adding thermosetting phenolic resin as a binder to heat-resistant granules, such as silica sand, and firing the mixture. Widely used.
焼成鋳型を製造する方法としては、珪砂をフェノール樹
脂粘結剤で被覆したシェルモールドサンドを用いるシェ
ルモールド法が多用され、このシェルモールドサンドを
所望形状の金型2内に充填して(第2図)、焼成炉1内
で加熱し、フェノール樹脂を硬化させる。得られた焼成
鋳型3は、通常、金型2から取出した後、種類別に分類
してパレットP上に並べ、放置して冷却する。As a method for producing fired molds, a shell molding method using a shell mold sand made of silica sand coated with a phenolic resin binder is often used, and this shell mold sand is filled into a mold 2 having a desired shape (second ), the phenol resin is heated in the firing furnace 1 to harden it. The obtained fired molds 3 are usually taken out from the mold 2, sorted by type, arranged on a pallet P, and left to cool.
[発明が解決しようとする課題]
ところが、上記したような焼成鋳型の製造においては、
フェノール樹脂の硬化反応時に大量の悪臭ガスを発生す
るという問題があり、作業環境の悪化が従来より大きな
問題となっていた。[Problem to be solved by the invention] However, in manufacturing the above-mentioned firing mold,
There is a problem in that a large amount of foul-smelling gas is generated during the curing reaction of phenolic resin, and deterioration of the working environment has become a bigger problem than in the past.
このため、悪臭防止の対策が種々検討されており、例え
ば、上記第2図の製造工程中、焼成鋳型3の焼成から金
型2からの焼成鋳型3の取出しまでの工程では、作業空
間の密閉、排気ダクト4の設置といった対策が取られて
いる。For this reason, various measures to prevent bad odors have been studied.For example, during the manufacturing process shown in FIG. Measures such as installing an exhaust duct 4 are being taken.
しかしながら、金型2から取出した焼成鋳型3を冷却す
る工程では、人手による作業が多く、広い空間を必要と
するため、悪臭対策が不十分で、通常は、扇風機等によ
り悪臭ガスが作業者の方向へ流れないようにする程度の
対策しか取られていない。特に、焼成直後の焼成鋳型3
は高温で、余熱で反応が進行するため、室温となるまで
悪臭ガスやその煙が発生し、これが工場内および工場敷
地内に拡散して、作業環境を損なうおそれがある。However, in the process of cooling the firing mold 3 taken out from the mold 2, there is a lot of manual work and a large space is required, so countermeasures against bad odors are insufficient. Measures have only been taken to prevent water from flowing in that direction. In particular, the firing mold 3 immediately after firing
The temperature is high, and the reaction proceeds with the residual heat, so foul-smelling gas and smoke are generated until the temperature reaches room temperature, which can spread into the factory and the factory grounds, potentially damaging the working environment.
悪臭の拡散を防止するには、焼成後の鋳型を排気ダクト
を接続した密閉容器内に入れて数分間放置し、悪臭が発
生しなくなってからパレット上に並べるということが考
えられるが、脱臭に時間がかかり、作業性が悪い。In order to prevent the spread of bad odors, it is possible to place the mold after firing in a sealed container connected to an exhaust duct and leave it for a few minutes, and then arrange it on a pallet after the bad odor has ceased to occur. It takes time and has poor workability.
しかして本発明の目的は、大規模な設備変更をすること
なく、焼成直後の鋳型から発生する煙、悪臭ガスを速や
かに低減し、作業環境の改善を図ることにある。Therefore, an object of the present invention is to promptly reduce smoke and foul-smelling gas generated from a mold immediately after firing, without making large-scale equipment changes, and to improve the working environment.
[課題を解決するための手段]
本発明者等は、上記実情に鑑み鋭意検討し、その結果、
耐熱性粒状物に粘結剤として熱硬化性樹脂を添加し焼成
して得た焼成鋳型を、気体を流通することによって浮遊
、流動させた耐熱性の無機粉体内に埋没し、焼成鋳型と
無機粉体とを所定時間接触させることにより焼成鋳型の
脱煙・脱臭が容易になされることを見出した。[Means for Solving the Problems] The present inventors have conducted extensive studies in view of the above circumstances, and as a result, have
A fired mold obtained by adding a thermosetting resin as a binder to a heat-resistant granular material and firing it is buried in heat-resistant inorganic powder that is suspended and fluidized by flowing gas, and the fired mold and inorganic It has been found that smoke and odor removal from the firing mold can be easily achieved by contacting the powder with the powder for a predetermined period of time.
本発明において、焼成鋳型を構成する基材となる耐熱性
粒状物としては、耐熱性で高温焼成(通常250℃以上
)により分解しない材料であればいずれでも使用でき、
一般には経済性等の点から珪砂が広く用いられる。人工
のセラミックス粉末等も使用可能であるが、経済性が劣
る。In the present invention, as the heat-resistant granules that serve as the base material constituting the firing mold, any material can be used as long as it is heat-resistant and does not decompose during high-temperature firing (usually at 250°C or higher).
Generally, silica sand is widely used from the point of view of economy and the like. Artificial ceramic powder etc. can also be used, but they are less economical.
耐熱性粒状物の粒度は、鋳型の種類、形状等により好適
な範囲が異なり、通常、35〜270メツシユ(420
〜53μm〉の範囲で適宜選択される。例えば中子とし
て用いる場合には、内部で発生するガスがよく抜けるよ
うに48〜1ooメツシユ(297〜149μm)のも
のを適宜混合して使用するのがよい。The suitable range of the particle size of the heat-resistant granules varies depending on the type and shape of the mold, and is usually 35 to 270 mesh (420 mesh).
~53 μm> as appropriate. For example, when used as a core, it is preferable to use a mixture of 48 to 10 mesh (297 to 149 μm) as appropriate so that the gas generated inside can be easily removed.
耐熱性粒状物を結合する粘結剤としては、フェノール樹
脂等の熱硬化性樹脂が好適に使用される。A thermosetting resin such as a phenol resin is preferably used as the binder for binding the heat-resistant granules.
具体的には、ノボラック型のフェノール樹脂にヘキサメ
チレンテトラミン等の硬化剤を添加したもの等が使用さ
れ、加熱により硬化して耐熱性粒状物を強固に結合する
。Specifically, a novolac type phenol resin to which a curing agent such as hexamethylenetetramine is added is used, and is cured by heating to firmly bond the heat-resistant granules.
耐熱性粒状物と粘結剤とは、焼成鋳型を製造する際に混
合してもよいが、予め耐熱性粒状物を粘結剤で被覆した
市販のシェルモールドサンドを用いると製造が容易にな
る。耐熱性粒状物と粘結剤の配合割合は、製品の大きさ
や使用位置、鋳造方法等により適宜変更される。The heat-resistant granules and the binder may be mixed when manufacturing the firing mold, but manufacturing is facilitated by using a commercially available shell mold sand in which the heat-resistant granules are coated with the binder in advance. . The blending ratio of the heat-resistant granules and the binder is changed as appropriate depending on the size of the product, the position of use, the casting method, etc.
焼成鋳型を製造する場合には、このシェルモールドサン
ドを鋳型形状に合せて作製した金型内に充填し、焼成炉
内で加熱する。焼成温度は、金型温度が粘結剤の硬化温
度以上、通常250℃以上となるようにし、l〜5分間
程度保持して硬化させる。When producing a firing mold, this shell mold sand is filled into a mold made to match the shape of the mold, and heated in a firing furnace. The firing temperature is such that the mold temperature is higher than the curing temperature of the binder, usually 250° C. or higher, and held for about 1 to 5 minutes to harden.
焼成後、金型から取出した焼成鋳型は、速やかに耐熱性
の無機粉体と接触させ、脱煙・脱臭を行なう。After firing, the fired mold is removed from the mold and immediately brought into contact with heat-resistant inorganic powder to remove smoke and odor.
無機粉体としては、耐熱性で熱による変質がなく、焼成
鋳型と熱交換を行なってこれを速やかに冷却するもので
あればよい。例えば焼成鋳型の基材である珪砂は、熱伝
導性に優れ、しかも同材質であるため、焼成鋳型表面に
微粉末が付着しても後工程に影響がないので好ましい。Any inorganic powder may be used as long as it is heat resistant, does not change in quality due to heat, and can rapidly cool the mold by exchanging heat with the firing mold. For example, silica sand, which is the base material of the firing mold, has excellent thermal conductivity and is made of the same material, so even if fine powder adheres to the surface of the firing mold, it does not affect the subsequent process, which is preferable.
珪砂以外には、多孔質物、例えば園芸用として用いられ
る大谷石、鹿沼土、軽石、あるいはセピオライト等の含
水ケイ酸マグネシウム質粘土鉱物(以下、含水系粘土鉱
物という)、ゼオライト、活性炭等を使用してもよく、
吸着性に富むため悪臭成分の吸着体として作用し、脱臭
効果を高める。In addition to silica sand, porous materials such as Oya stone, Kanuma soil, pumice used for gardening, hydrated magnesium silicate clay minerals such as sepiolite (hereinafter referred to as hydrated clay minerals), zeolite, activated carbon, etc. are used. It's okay,
Because it is highly adsorbent, it acts as an adsorbent for malodorous components and enhances the deodorizing effect.
特に、含水系粘土鉱物は軽くて比較的少ない空気量で使
用することができ、接触による熱移動のみでなく、保有
する付着水や結晶水が蒸気として逃げる際の蒸発熱で周
囲の熱を奪い、冷却効果を高める。In particular, hydrous clay minerals are light and can be used with a relatively small amount of air, and they not only transfer heat through contact, but also absorb heat from the surrounding area through heat of evaporation when the attached water and crystallized water escape as steam. , enhance the cooling effect.
粉体の粒径は、気体を流通させることにより容易に浮上
り、流動することが可能であればよく、珪砂の場合、6
号砂(主な粒度が48〜100メツシュ;297〜14
9μm)、7号砂(主な粒度が48〜150メツシュ:
297〜105μm)が好適に使用できる。多孔質物
の場合は10メツシユ(1,68mm)以下、好ましく
は12メツシユ(1,41mm)以下で、325メツシ
ユ〈44μm〉以下の粒度のものを30%以上含むもの
が好適に使用される。The particle size of the powder may be as long as it can easily float and flow by circulating gas, and in the case of silica sand, it is 6
No. sand (main particle size is 48-100 mesh; 297-14
9 μm), No. 7 sand (main particle size is 48 to 150 mesh:
297 to 105 μm) can be suitably used. In the case of porous materials, those having a particle size of 10 meshes (1.68 mm) or less, preferably 12 meshes (1.41 mm) or less, and containing 30% or more of particles with a particle size of 325 meshes (44 μm) or less are preferably used.
なお、無機粉体として金属粉末を使用してもよく、熱伝
導性に優れるので冷却効率が高い。Note that metal powder may be used as the inorganic powder, and since it has excellent thermal conductivity, the cooling efficiency is high.
脱煙・脱臭を行なう際には、第1図に示すように、無機
粉体5を、焼成鋳型3より十分大きな容量を有する容器
(以下、流動槽と称する)6内に充填し、流動槽6内に
気体7を供給することによって無機粉体5を浮遊、流動
させる。このようにした無機粉体5の中に焼成鋳型3を
埋没し両者を所定時間接触させる。When removing smoke and deodorizing, as shown in FIG. By supplying gas 7 into 6, the inorganic powder 5 is made to float and flow. The firing mold 3 is buried in the inorganic powder 5 thus formed, and the two are brought into contact for a predetermined period of time.
流動槽は、焼成鋳型およびその保持具が入る大きさで、
かつ粉体を流動させる十分な余地があればよい、容量が
大きい方が脱煙・脱臭効果は高いが、経済性は低下する
ので、一般には、焼成鋳型または保持具を含めた外形寸
法に相当する容積に対し、10〜70倍の容積を有する
ことが好ましい。The fluidized tank is large enough to accommodate the firing mold and its holder.
It is sufficient if there is sufficient room for the powder to flow.The larger the capacity, the better the smoke and deodorizing effect, but the lower the economical efficiency, so it is generally equivalent to the external dimensions including the firing mold or holder. It is preferable to have a volume that is 10 to 70 times that of the original.
流動槽内に供給する気体はガス体であればよいが、可燃
性や毒性のあるものは好ましくない、経済的には、空気
、特に工業的に汎用されている圧縮空気が好適である。The gas supplied into the fluidization tank may be any gas, but flammable or toxic gases are not preferred.From an economical perspective, air, especially compressed air, which is commonly used industrially, is suitable.
また、気体内の湿度は特定。Also, the humidity in the gas is specified.
する必要はないが、水分が蒸発する際の蒸発熱で冷却効
果が向上するので、5〜70%湿度の空気を使用すると
より効果的である。Although it is not necessary to do so, it is more effective to use air with a humidity of 5 to 70%, since the cooling effect is improved by the heat of evaporation when water evaporates.
流動槽内への気体の供給は、例えば、第1図のように、
流動槽6の底面に多数の小孔8を設けて行なう。小孔8
の形状は、粉体5が均等に浮上るように、気体7の出方
を調節可能で、かつ気体7を導入しないときには、粉体
5が小孔8内に入ることのないような形状とする。例え
ば、皿小ネジのような笠付きで、ネジ止めのできるもの
や、気体が通るときに浮上り、停止すると下がって粉体
を入れないような弁方式とすればよい。Gas is supplied into the fluidized tank, for example, as shown in Figure 1.
This is done by providing a large number of small holes 8 in the bottom of the fluidization tank 6. small hole 8
The shape is such that the exit direction of the gas 7 can be adjusted so that the powder 5 floats evenly, and the powder 5 does not enter the small hole 8 when the gas 7 is not introduced. do. For example, it may be a countersunk machine screw with a cap that can be screwed down, or a valve type that floats up when gas passes through it and lowers when it stops, preventing powder from entering.
接触時間、つまり、焼成鋳型が冷却されて煙や悪臭の発
生がなくなるまでに要する時間は、使用する粉体の種類
によって異なり、例えば、珪砂の6号砂、7号砂では焼
成鋳型の肉厚10m当り5秒間以上の接触で効果が見ら
れる。また、含水系粘土鉱物は、焼成鋳型の肉厚10順
当り1秒間以上の接触で効果が見られるが、悪臭ガスの
拡散をより少なくするためには、接触時間を5〜10秒
程度とすることが好ましい。これにより、例えばアンモ
ニアガス濃度を115〜1/7程度に低減することがで
きる。The contact time, that is, the time required for the firing mold to cool down and stop emitting smoke or bad odors, varies depending on the type of powder used. Effects can be seen with contact for 5 seconds or more per 10m. In addition, the effect of hydrous clay minerals is seen when they are in contact for 1 second or more per 10 parts of the thickness of the fired mold, but in order to further reduce the diffusion of foul-smelling gases, the contact time should be about 5 to 10 seconds. It is preferable. Thereby, the ammonia gas concentration can be reduced to about 115 to 1/7, for example.
[作用]
焼成直後の鋳型は高温であり、そのまま放置すると、余
熱で反応が進行してアンモニア等の悪臭ガスや煙を発生
する。本発明は、焼成鋳型を直ちに冷却して悪臭ガスや
煙の発生を抑制しようとするもので、焼成鋳型は、流動
する無機粉体との接触による熱移動により、また無機粉
体を流動化するために供給される気体により、急激に冷
却される。これにより、焼成鋳型の温度は急激に低下し
く例えば珪砂、含水系粘土鉱物では15秒間の接触で表
面温度が180〜190℃から40〜50℃低下し、約
140℃以下になる〉、硬化反応が終了して、悪臭ガス
や煙の発生がなくなる。さらに、無機粉体が発生する悪
臭ガスの吸着体として作用し、あるいは流通する気体や
無機粉体中に水分が含まれる場合にはその蒸発熱により
冷却がより効果的に行なわれ、短時間で脱煙、脱臭がな
される。[Function] The mold is at a high temperature immediately after firing, and if it is left as is, the reaction will proceed due to the residual heat and generate foul-smelling gas such as ammonia and smoke. The present invention attempts to suppress the generation of foul-smelling gas and smoke by immediately cooling the firing mold. The gas supplied for this purpose cools down rapidly. As a result, the temperature of the firing mold decreases rapidly; for example, in the case of silica sand and hydrous clay minerals, the surface temperature decreases from 180 to 190 degrees Celsius by 40 to 50 degrees Celsius to below about 140 degrees Celsius after 15 seconds of contact. When the process is complete, there will be no more foul-smelling gas or smoke. Furthermore, if the inorganic powder acts as an adsorbent for the malodorous gases generated, or if water is contained in the circulating gas or inorganic powder, the heat of evaporation will make cooling more effective and in a shorter time. Smoke and odor are removed.
[実施例]
以下、本発明を実施例により詳細に説明するが、本発明
はその要旨を越えない限りこれら実施例により限定され
るものではない。[Examples] Hereinafter, the present invention will be explained in detail by examples, but the present invention is not limited by these examples unless the gist thereof is exceeded.
実施例1
外径80m、内径605m*、高さ137m5、壁面さ
らに、上記の焼成、脱臭工程を、粉体との接触を15秒
間とし、5分間隔で連続して行なったところ、良好な結
果が得られ、連続使用に対しても何ら問題がないことが
わかった。ただし、含水系粘土鉱物を使用した場合には
、焼成鋳型を埋没させる粉体の中央付近の温度が上昇す
る傾向があるため、流動槽内にすのこ状の板を取付け、
横方向に時々往復させて、粉体を移動させ、温度の均一
化を図った。この温度上昇は極めてゆっくりなため、浮
遊した無機粉体の上部、中央および下部に当る流動槽の
側面より気体を導入空気と直角方向に間欠的に流すこと
により、あるいはプロペラ状の撹拌機を上部から入れて
粉体を撹拌してもよい。なお、焼成鋳型の表面には粉体
の微粉末が付着するが、鋳造工程に影響を与えることは
なかった。Example 1 Outer diameter 80 m, inner diameter 605 m*, height 137 m5, wall surface Further, the above baking and deodorizing steps were performed continuously at 5 minute intervals with contact with the powder for 15 seconds, and good results were obtained. was obtained, and it was found that there was no problem with continuous use. However, when using hydrous clay minerals, the temperature near the center of the powder in which the fired mold is buried tends to rise, so a slatted plate is installed in the fluidized bath.
The powder was moved back and forth from time to time in the lateral direction to ensure uniform temperature. Since this temperature rise is extremely slow, gas may be introduced from the side of the fluidized tank at the top, center, and bottom of the suspended inorganic powder, and may be introduced intermittently in a direction perpendicular to the air, or a propeller-like agitator may be placed at the top of the fluidized inorganic powder. You can also stir the powder. Although fine powder adhered to the surface of the firing mold, it did not affect the casting process.
実施例2
内径80III!11、高さ90mm、抜き勾配2°の
底付きの金型を300℃に加熱し、この中に実施例1と
同じ組成のシェルモールドサンドを一杯に入れた。約1
分間保持した後、金型を逆転させて未焼成のシェルモー
ルドサンドを取出し、厚さ約8〜9Bのカップ形状の焼
成鋳型を得た。Example 2 Inner diameter 80III! 11. A mold with a bottom having a height of 90 mm and a draft angle of 2° was heated to 300° C., and shell mold sand having the same composition as in Example 1 was filled into the mold. Approximately 1
After holding for a minute, the mold was reversed and the unfired shell mold sand was taken out to obtain a cup-shaped fired mold with a thickness of approximately 8 to 9 mm.
次いで、この焼成鋳型を流動槽に入れ、粉体として含水
系粘土鉱物(主な粒度が12〜325メツシユ(粒径1
、41 +ma〜44 μm >で、325メツシユ
以下を30%含む〉を用いて、実施例1と同様の方法で
脱煙・脱臭を行なった9空気流量はIOJ/minであ
った。Next, this fired mold was placed in a fluidized bath and powdered water-containing clay mineral (main particle size 12-325 mesh (particle size 1
, 41 + ma to 44 μm > containing 30% of 325 mesh or less. 9 The air flow rate was IOJ/min. The air flow rate was IOJ/min.
約5分間隔で、鋳型の焼成、および脱煙・脱臭を連続し
て行なったところ、実施例1同様、良好な結果が得られ
、煙・悪臭の著しい低減効果が見られた。When the mold was fired and the smoke and odor removed were performed continuously at intervals of about 5 minutes, good results were obtained as in Example 1, and a remarkable effect of reducing smoke and bad odor was observed.
[発明の効果]
以上説明したように、本発明によれば、焼成鋳型の脱煙
・脱臭を容易にかつ短時間で行なうことができ、作業環
境を著しく改善することができる。[Effects of the Invention] As explained above, according to the present invention, the firing mold can be easily and quickly de-smoked and deodorized, and the working environment can be significantly improved.
しかも、作業性の低下や、大幅な設備変更をする必要が
ないので、経済性に優れ、工業的に極めて大きな価値を
有する。Moreover, since there is no need to reduce work efficiency or make major equipment changes, it is highly economical and has extremely great industrial value.
第1図は本発明による焼成鋳型の脱煙・脱臭工程を示す
図、第2図は従来の焼成鋳型の製造工程を示す図、第3
図および第4図はそれぞれ本発明実施例における相対臭
気強度変化およびアンモニア濃度変化を示す特性図であ
る。
■・・・・・・焼成炉
2・・・・・・金型
3・・・・・・焼成鋳型
5・・・・・・無機粉体
6・・・・・・流動槽
第1図
第2図
第3図
接
蝕
時
間
(秒)
第4図
接
鳴
時
間
(秒)Fig. 1 is a diagram showing the smoke and deodorization process of a firing mold according to the present invention, Fig. 2 is a diagram showing a conventional manufacturing process of a firing mold, and Fig. 3 is a diagram showing a manufacturing process of a conventional firing mold.
4 and 4 are characteristic diagrams showing relative odor intensity changes and ammonia concentration changes in Examples of the present invention, respectively. ■...Bacining furnace 2...Mold 3...Firing mold 5...Inorganic powder 6...Fluidized tank Fig. 1 Figure 2 Figure 3 Contact time (seconds) Figure 4 Contact time (seconds)
Claims (1)
成して得た焼成鋳型を、気体を流通することによつて浮
遊、流動させた耐熱性の無機粉体内に埋没し、焼成鋳型
と無機粉体とを所定時間接触させることを特徴とする焼
成鋳型の脱煙・脱臭方法。A fired mold obtained by adding a thermosetting resin as a binder to a heat-resistant granular material and firing it is buried in heat-resistant inorganic powder that is suspended and fluidized by flowing gas, and then a fired mold is created. 1. A method for removing smoke and deodorizing a fired mold, which method comprises contacting an inorganic powder with an inorganic powder for a predetermined period of time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16577789A JP2796735B2 (en) | 1989-06-28 | 1989-06-28 | How to remove smoke and deodorize the firing mold |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16577789A JP2796735B2 (en) | 1989-06-28 | 1989-06-28 | How to remove smoke and deodorize the firing mold |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0332445A true JPH0332445A (en) | 1991-02-13 |
JP2796735B2 JP2796735B2 (en) | 1998-09-10 |
Family
ID=15818829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16577789A Expired - Lifetime JP2796735B2 (en) | 1989-06-28 | 1989-06-28 | How to remove smoke and deodorize the firing mold |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2796735B2 (en) |
-
1989
- 1989-06-28 JP JP16577789A patent/JP2796735B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2796735B2 (en) | 1998-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4222429A (en) | Foundry process including heat treating of produced castings in formation sand | |
CN104903023B (en) | The manufacture method of precoated sand and its manufacture method and casting mold | |
JP6275324B2 (en) | How to cast casting parts | |
CA1233964A (en) | Method of reclaiming sand used in evaporative casting process | |
JP4223830B2 (en) | Water-soluble casting mold and manufacturing method thereof | |
US3163519A (en) | Pellet of iron ore and flux, apparatus and method for making same | |
US5203398A (en) | Low temperature process for evaporative pattern casting | |
JPH0332445A (en) | Method for removing smoke and malodorous gas from burnt mold | |
JP3766385B2 (en) | Artificial ore and coating agent or fireproof block containing the artificial ore | |
CN100558486C (en) | The manufacture method of regenerated foundry sand and manufacturing installation | |
US4995443A (en) | Process for evaporative pattern casting | |
GB1005437A (en) | Improvements in and relating to light-weight fireproof products | |
WO1986001754A1 (en) | Molding medium, method for making same and evaporative pattern casting process | |
CN105000658A (en) | Manufacturing method of ultramicropore aerator for sewage treatment | |
JP3138479B2 (en) | Casting sand recycling method | |
JPH04220134A (en) | Desmoked mold material | |
JP2639977B2 (en) | Surface treatment method of casting mold and casting mold | |
JP2000061583A5 (en) | ||
JP2002153941A (en) | Resin coated sand composition for mold | |
JP2005319474A (en) | Method for drying, dewaxing, and firing plaster mold for precision casting | |
JP3406307B2 (en) | Manufacturing method of heat insulation molding for casting | |
CN1022768C (en) | Multi-hole metal making method | |
JPH01168825A (en) | Production of iron sintered ore | |
JPS62156044A (en) | Molding material and casting mold | |
KR20200124889A (en) | Molded articles with excellent water permeability and hygroscopicity |