JP2005319474A - Method for drying, dewaxing, and firing plaster mold for precision casting - Google Patents

Method for drying, dewaxing, and firing plaster mold for precision casting Download PDF

Info

Publication number
JP2005319474A
JP2005319474A JP2004137981A JP2004137981A JP2005319474A JP 2005319474 A JP2005319474 A JP 2005319474A JP 2004137981 A JP2004137981 A JP 2004137981A JP 2004137981 A JP2004137981 A JP 2004137981A JP 2005319474 A JP2005319474 A JP 2005319474A
Authority
JP
Japan
Prior art keywords
mold
gypsum
drying
plaster
dewaxing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004137981A
Other languages
Japanese (ja)
Other versions
JP4374575B2 (en
Inventor
Hidekazu Suzuki
英和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHONAN DESIGN KK
Original Assignee
SHONAN DESIGN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHONAN DESIGN KK filed Critical SHONAN DESIGN KK
Priority to JP2004137981A priority Critical patent/JP4374575B2/en
Priority to PCT/JP2005/006044 priority patent/WO2005107976A1/en
Publication of JP2005319474A publication Critical patent/JP2005319474A/en
Application granted granted Critical
Publication of JP4374575B2 publication Critical patent/JP4374575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively drying a plaster mold, in which a large-size resin pattern is embedded, without breaking the pattern. <P>SOLUTION: A method for drying, dewaxing, and firing method for a plaster mold for precision casting comprises: a plaster mold forming step (A), wherein a resin pattern (a), to which a gate pattern is attached, is set in a mold form, plaster for precision casting is poured into the mold form, and the plaster is cured; a drying step (B), wherein the mold form is removed after curing the plaster, and then a plaster mold (P), in which the resin pattern (a) is embedded, is dried under a pressure reduced condition (I): a dewaxing step (C), wherein the plaster mold (P), in which the resin pattern (a) is embedded, is subjected to stepwise heating (II) with the gate (O) turned downward, and thermally melted, decomposed, and liquefied components of the resin pattern (a)is allowed to flow out from the gate (O); and a firing step (D), wherein the resin pattern (a) is burnt and extinguished, and further an excessive moisture in the plaster is removed. In addition, the stepwise heating in the dewaxing step is preferably conducted at a temperature zone of ≤250°C, and, in the firing step, the resin pattern (a) is preferably burnt and extinguished at a temperature of 300°C-750°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、精密鋳造のプラスターモールド法における石膏型の乾燥・脱ロウ・焼成方法に関するものである。   The present invention relates to a gypsum mold drying, dewaxing and firing method in a precision casting plaster mold method.

精密鋳造における代表的な工法は、ロストワックス法とプラスターモールド法である。ロストワックス法とは湯口を付したロウ・ワックス模型を耐火フィラーとコロイダルシリカ配合分散液であるスラリーに浸漬・乾燥し初層を、さらにスラリーに浸漬・スタッコを振り掛け乾燥を数回繰り返し、ロウ・ワックス模型を耐火被覆層にて被覆する。ついで、湯口を下方にして、150〜300℃に加温し、ロウ・ワックス模型を溶融流出せしめ、残存するロウ・ワックス成分を燃焼・焼失せしめる。ついで1000℃前後に昇温し、焼成
することにて耐火被覆層をセラミック化せしめ、ロウ・ワックス模型と類似の中空部位を有する高強度の鋳型と成す。次いで、湯口を上方にして、溶融金属を鋳込み、冷却後鋳型を崩壊せしめて、ロウ・ワックス模型類似形状の金属体を取り出し、後加工にて金属製品と成す方法である。
Typical methods for precision casting are the lost wax method and the plaster mold method. With the lost wax method, a wax model with a gate is immersed and dried in a slurry that is a dispersion containing a refractory filler and colloidal silica. The wax model is covered with a fireproof coating layer. Next, the pouring gate is lowered and heated to 150 to 300 ° C., the wax model is melted and discharged, and the remaining wax component is burned and burned out. Next, the temperature is raised to around 1000 ° C., and the refractory coating layer is made into a ceramic by firing, thereby forming a high-strength mold having a hollow portion similar to a wax model. Next, the molten metal is cast with the gate facing upward, the mold is collapsed after cooling, a metal body having a similar shape to the wax model is taken out, and is processed into a metal product by post-processing.

プラスターモールド法とは湯口を付したロウ・ワックス模型を型枠内に設置し石膏を流し込み、石膏内部にロウ・ワックス模型を埋没した状態にて硬化せしめる。石膏が十分硬化した後、型枠から脱型し、数日間自然乾燥せしめる。次いで、湯口を下方にして150〜250℃に加温し、ロウ・ワックス模型を溶融流出せしめ、更に300〜750℃に昇温して、石膏内部に残存するロウ・ワックス成分を燃焼・焼失せしめ、模型形状の中空部位を有する石膏型を製作する。この石膏型の湯口を上方にして、溶融金属を鋳込み、冷却後、石膏型を崩壊せしめて、ロウ・ワックス模型類似形状の金属体を取り出し、後加工にて金属製品と成す方法である。   In the plaster mold method, a wax model with a gate is placed in a mold, and gypsum is poured into it, and the wax model is buried in the gypsum and cured. After the plaster is fully cured, it is removed from the mold and allowed to air dry for several days. Next, heat the pouring gate down to 150-250 ° C to melt and flow out the wax model, and then raise the temperature to 300-750 ° C to burn and burn off the wax component remaining in the gypsum. A plaster mold having a model-shaped hollow part is manufactured. This is a method in which molten metal is cast with the gypsum mold gate facing upward, and after cooling, the gypsum mold is collapsed to take out a metal body having a wax-wax model-like shape and form a metal product by post-processing.

ロストワックス法には、チタン合金・ニッケル合金・コバルト合金や鋳鋼鉄のごとき高融点合金が使用される。一方、プラスターモールド法では、Al合金・Mg合金・Zn合金などの低融点合金が使用される。   In the lost wax method, a high melting point alloy such as titanium alloy, nickel alloy, cobalt alloy or cast steel is used. On the other hand, in the plaster mold method, a low melting point alloy such as an Al alloy, Mg alloy, or Zn alloy is used.

ロストワックス法の鋳型はセラミックであり、高融点合金の精密鋳造に耐える高強度・耐熱性を有している。鋳型崩壊時、金属体表面に強い衝撃を受けるが、金属体が高強度なるためほとんど損傷なく金属体を取り出すことができる。一方、プラスターモールド法のプラスターモールドは石膏であり、高融点合金の精密鋳造に耐えるだけの高強度・耐熱性を有していない。しかしながら、低融点合金の精密鋳造に耐えるだけの強度と耐熱性は保有している。石膏型崩壊時、金属体に衝撃を受けるが、石膏型はセラミック型よりも強度が弱く比較的簡単に崩壊させることができるため、高融点合金よりも強度の劣る低融点合金でも、ほとんど損傷なく金属体を取り出すことができる。   The lost wax mold is ceramic, and has high strength and heat resistance that can withstand precision casting of high melting point alloys. When the mold collapses, a strong impact is applied to the surface of the metal body, but since the metal body has high strength, the metal body can be taken out with little damage. On the other hand, the plaster mold of the plaster mold method is plaster and does not have high strength and heat resistance enough to withstand precision casting of a high melting point alloy. However, it has sufficient strength and heat resistance to withstand precision casting of low melting point alloys. When the gypsum mold collapses, the metal body is impacted, but the gypsum mold is weaker than the ceramic mold and can be disintegrated relatively easily, so even a low melting point alloy that is inferior in strength to a high melting point alloy has almost no damage. The metal body can be taken out.

精密鋳造用石膏型の乾燥に関しては、鋳物便覧 日本鋳物協会編に記載されている。鋳物便覧には石膏型の乾燥に関し、乾燥炉の昇温曲線と石膏型中心部位の温度曲線が開示されている。乾燥炉温度230℃にて約20時間後に石膏型中心温度が乾燥炉温度230℃に到達している。   The drying of precision casting plaster molds is described in the casting manual, Japan Foundry Association. The casting manual discloses a temperature rise curve of the drying furnace and a temperature curve of the central portion of the gypsum mold regarding drying of the gypsum mold. After about 20 hours at a drying furnace temperature of 230 ° C., the gypsum mold center temperature reaches the drying furnace temperature of 230 ° C.

精密鋳造用石膏メーカー サンエス石膏(株)のカタログによれば、石膏の乾燥は、(1)室温にて3時間自然乾燥、(2)室温から100℃で1時間、(3)100〜150℃で1時間、(4)150〜250℃で1時間、乾燥機内で乾燥することを指示している。
According to the catalog of gypsum maker Sanes Gypsum Co., Ltd. for precision casting, gypsum is dried by (1) natural drying at room temperature for 3 hours, (2) from room temperature to 100 ° C for 1 hour, and (3) 100-150 ° C. 1 hour, and (4) drying at 150 to 250 ° C. for 1 hour in the dryer.

尚、砂型や石膏型を使用した低圧鋳造法については、特許文献1に開示される「薄物大型鋳造品の製造方法」があり、石膏鋳型を得るものとしては特許文献2に開示される「光造形樹脂をマスターとした金属鋳造品の鋳造方法」及び特許文献3に開示される「精密鋳造用鋳型の製作方法とそれに用いる模型」がある。
特開2004−82211号公報 特開平9−66344号公報 特開2002−153943号公報
As for the low-pressure casting method using a sand mold or a gypsum mold, there is a “manufacturing method of a thin large casting” disclosed in Patent Document 1. There are “a casting method of a metal casting using a modeling resin as a master” and “a manufacturing method of a mold for precision casting and a model used therefor” disclosed in Patent Document 3.
JP 2004-82211 A JP-A-9-66344 JP 2002-153943 A

しかしながら、上述したように、精密鋳造プラスターモールド法における全工程の中で石膏の乾燥工程が最も長時間を要する。これは、精密鋳造用石膏型の中心部位まで十分に乾燥する必要があるからであり、特に石膏型が大きくなると、乾燥所要時間は益々長くなるものである。   However, as described above, the gypsum drying process takes the longest time among all the processes in the precision casting plaster mold method. This is because it is necessary to sufficiently dry the central part of the precision casting gypsum mold, and the time required for drying becomes longer as the gypsum mold increases.

また、石膏型の乾燥が不十分の場合、溶融金属を鋳込むと水蒸気爆発を起こすと言った危険性を伴う。精密鋳造法 日本鋳物協会精密鋳造部会編 p−197には、Mg合金の精密鋳造においては、石膏型の未乾燥水分と化学反応を起こすため、石膏型は適さないと記されているほどである。   In addition, when the gypsum mold is not sufficiently dried, there is a risk that a steam explosion will occur if molten metal is cast. Precision casting method Japan Foundry Association Precision Casting Section edited by p-197, it is stated that a gypsum mold is not suitable for Mg alloy precision casting because it causes a chemical reaction with the dry moisture of the gypsum mold. .

これに対して、石膏乾燥炉での加熱乾燥を急ぐと、石膏型の割れやそりが発生する原因となる。特に、ロストワックス模型ではなく、樹脂模型の場合にはその現象が顕著に発現される。   On the other hand, if heating and drying in a gypsum drying furnace is rushed, it will cause cracking and warping of the gypsum mold. In particular, in the case of a resin model rather than a lost wax model, the phenomenon is remarkably expressed.

よって、本発明者達は、大型樹脂模型を埋没させた石膏型を割れることなく効率よく乾燥させる方法を鋭意検討した結果、本発明に到達した。   Therefore, the inventors of the present invention have reached the present invention as a result of earnestly examining a method for efficiently drying a gypsum mold in which a large resin model is embedded without breaking.

したがって、この発明は、精密鋳造におけるプラスターモールド法において、型枠内に湯口模型を付した樹脂模型(a)を設置し、精密鋳造用石膏を流し込み硬化させる石膏型製作工程(A)と、石膏硬化後型枠を外し、減圧状態(I)において樹脂模型(a)が埋没した石膏型(P)を乾燥させる乾燥工程(B)と、樹脂模型(a)が埋没した石膏型(P)を、湯口(O)を下方にして階段状加熱(II)し、樹脂模型(a)の熱溶融分解液化成分を湯口(O)より流出させる脱ロウ工程(C)と、樹脂模型(a)を燃焼焼失させ、且つ石膏の余剰水分を除去する焼成工程(D)とから成る精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法である。尚、脱ロウ工程での階段状加熱は、250℃以下の温度帯域で行われることが望ましく、また前記焼成工程では、300℃〜750℃の温度にて樹脂模型(a)を燃焼消失させることが望ましい。   Accordingly, the present invention provides a plaster mold manufacturing process (A) in which a resin model (a) having a gate model is placed in a mold frame and a plaster for precision casting is poured and cured in a plaster mold method in precision casting, After curing, the mold is removed, and a drying step (B) for drying the gypsum mold (P) in which the resin model (a) is buried in a reduced pressure state (I); and a gypsum mold (P) in which the resin model (a) is buried A dewaxing step (C) in which the gate (O) is stepped and heated in a stepped manner (II), and the hot melt decomposition liquefaction component of the resin model (a) flows out from the gate (O), and the resin model (a) This is a drying, dewaxing, and firing method for a precision casting plaster mold comprising a firing step (D) that burns and burns and removes excess moisture from gypsum. The stepwise heating in the dewaxing process is preferably performed in a temperature range of 250 ° C. or less, and in the baking process, the resin model (a) is burned off at a temperature of 300 ° C. to 750 ° C. Is desirable.

さらに、前記樹脂模型(a)は、ポリスチレン粉末積層造形模型であることが望ましい。また、前記樹脂模型(a)は、ロウ・ワックス成分(b)及び/若しくは可塑剤成分(c)を含有する2液反応硬化性ポリウレタン樹脂模型であっても良いものである。   Furthermore, the resin model (a) is preferably a polystyrene powder layered modeling model. The resin model (a) may be a two-component reaction curable polyurethane resin model containing a wax component (b) and / or a plasticizer component (c).

さらにまた、前記減圧状態(I)とは、乾燥気体が細孔キャピラリー(CP)より石膏型(P)が配置された空間へ流入可能な状態であることが望ましい。また、前記空間は、常温〜80℃の温度範囲内の温度であることが望ましく、前記圧力は、200mmHg〜750mmHgの圧力範囲内の圧力であることが望ましい。   Furthermore, the reduced pressure state (I) is preferably a state in which dry gas can flow into the space where the gypsum mold (P) is disposed from the pore capillary (CP). The space is preferably at a temperature within a temperature range of room temperature to 80 ° C., and the pressure is preferably a pressure within a pressure range of 200 mmHg to 750 mmHg.

また、前記階段状加熱(II)は、第1の温度帯域において所定時間保持され、前記第1の温度帯域よりも所定値高い第2の温度帯域において所定時間保持されるような加熱経過を経ることが望ましい。尚、第1の温度帯域は、150℃以下であり、第2の温度帯域は150℃〜250℃であることが望ましい。また、前記所定時間は、少なくとも30分であることが望ましい。   Further, the stepwise heating (II) undergoes a heating process such that the stepwise heating (II) is held for a predetermined time in the first temperature band and is held for a predetermined time in a second temperature band that is higher than the first temperature band by a predetermined value. It is desirable. The first temperature zone is preferably 150 ° C. or lower, and the second temperature zone is preferably 150 ° C. to 250 ° C. The predetermined time is preferably at least 30 minutes.

さらに、前記樹脂模型(a)に含有されるロウ・ワックス成分(b)は、融点50〜130℃の微粉末であることが望ましい。   Furthermore, the wax component (b) contained in the resin model (a) is preferably a fine powder having a melting point of 50 to 130 ° C.

さらにまた、前記樹脂模型(a)に含有される可塑剤成分(c)は、0℃において液状であることが望ましい。   Furthermore, it is desirable that the plasticizer component (c) contained in the resin model (a) is liquid at 0 ° C.

以上説明したように、精密鋳造全工程の中で石膏型をいかに迅速に乾燥せしめるかが短納期の律速となる。石膏型より過剰の遊離水を乾燥除去し・石膏の結晶水を除去することが必要である。水分除去に長時間を要するのは、過剰の遊離水を乾燥除去することである。   As explained above, how quickly the gypsum mold is dried in the entire precision casting process is the rate-determining method for short delivery. It is necessary to dry and remove excess free water from the gypsum mold and to remove the crystal water of gypsum. It takes a long time for water removal to dry and remove excess free water.

本発明の方法に従って、乾燥初期段階に乾燥気体を通じながら減圧・加熱にて乾燥することにより、迅速に石膏型の乾燥が促進され、短納期対応が可能となる。また、石膏型の急激乾燥による割れを防止できる効果をも備えている。   According to the method of the present invention, by drying under reduced pressure and heating while passing a dry gas in the initial stage of drying, drying of the gypsum mold is promptly promoted, and a short delivery time can be achieved. It also has the effect of preventing cracking due to rapid drying of the gypsum mold.

以下、この発明の実施例について図面により説明する。   Embodiments of the present invention will be described below with reference to the drawings.

精密鋳造プラスターモールド法は模型を石膏型に埋没せしめ、乾燥・脱ロウ・焼成するため、模型自体は焼失するものである。石膏型は、鋳込み後石膏型を崩壊し、金属体を取り出し製品と成すために、これも、再使用できないものである。同一形状複数の鋳物製品を製造するためには、製品に相当する数だけ模型が必要である。その1つ1つの模型と類似の鋳物製品が生産されるものであるため、模型の形状はしっかりと品質管理されたものであらねば成らない。   In the precision casting plaster mold method, the model is buried in a plaster mold and dried, dewaxed, and fired. The gypsum mold is not reusable because the gypsum mold collapses after casting and the metal body is taken out to form a product. In order to manufacture a plurality of cast products having the same shape, as many models as the number of products are required. Since casting products similar to each model are produced, the shape of the model must be tightly controlled.

図1は、本発明実施例として用いた2気筒吸引口のモデル(M)の全体斜視図である。この3次元形状データを光造形機に導入し、光造形マスターモデルを製作した。次いで、シリコンゴムにて反転しシリコンゴム割り型を製作した。このシリコンゴム型に2液反応硬化性ウレタン樹脂液を真空注型し、2気筒吸引口形状樹脂模型(a)を作成した。作成した2気筒吸引口形状樹脂模型(a)の全体斜視図は図1と同じである。   FIG. 1 is an overall perspective view of a model (M) of a two-cylinder suction port used as an embodiment of the present invention. This three-dimensional shape data was introduced into an optical modeling machine to produce an optical modeling master model. Next, it was inverted with silicon rubber to produce a silicon rubber split mold. A two-component reaction-curable urethane resin solution was vacuum cast into this silicon rubber mold to prepare a two-cylinder suction port-shaped resin model (a). The overall perspective view of the created two-cylinder suction port-shaped resin model (a) is the same as FIG.

ここで、まず最初に樹脂模型(a)の実施の形態について説明する。ものつくりにおいてはいきなり量産するものではなく、初期は数個〜数十個の試作生産から開始されるのが一般的である。精密鋳造品もしかりである。近年、顧客から鋳造品を受注する場合は3次元データにて受注する形態が急速に増加して来た。この3次元データを積層粉末造形機に送り、3次元立体造形にて樹脂模型を制作するラピッドプロトタイピングが最も早い模型製作方法である。 Here, first, an embodiment of the resin model (a) will be described. Manufacturing is not suddenly mass-produced, and generally starts with several to several tens of prototypes in the initial stage. There is also a precision casting product. In recent years, when receiving orders for castings from customers, the form of receiving orders using three-dimensional data has increased rapidly. Rapid prototyping is the fastest model manufacturing method in which this three-dimensional data is sent to a laminated powder molding machine to produce a resin model by three-dimensional solid modeling.

精密鋳造用樹脂模型(a)としては加熱溶融流失燃焼する樹脂が最適であり、本発明にてもポリスチレン微粉末ビーズを実施使用している。粉末積層造形されたポリスチレン模型は軟化点150〜200℃の熱可塑性樹脂から成るものであり、脱ロウ工程(I)にて軟化溶融流失するものである。また、加熱条件の進展に従って、熱劣化分解燃焼し焼失する。十分焼失させれば、石膏型内に残留する灰分は微量となる。石膏型内の模型形状空間部位に残留した微量の灰分は、空気を吹き込むことにより簡単に除去することができる。   The resin model (a) for precision casting is optimally a resin that melts and flows out by heating, and polystyrene fine powder beads are also used in the present invention. The polystyrene model formed by powder lamination molding is made of a thermoplastic resin having a softening point of 150 to 200 ° C., and is softened and melted away in the dewaxing step (I). In addition, as the heating conditions progress, the thermal degradation decomposition combustion burns away. If burnt down enough, the ash remaining in the gypsum mold will be very small. A small amount of ash remaining in the model-shaped space in the plaster mold can be easily removed by blowing air.

数個の模型程度なら粉末積層造形にて製作できるが、数十個以上の模型を制作するとなると造形機の占有時間が長くなるために、1個の3次元立体光造形模型をマスターモデルとし、シリコンゴム型に反転しシリコンゴム型へ液状樹脂を真空注型することにて、数十個の複製樹脂模型を制作するものである。1個のマスターモデルをしっかり製作すれば、複数のシリコンゴム型にて数百個程度の複製された樹脂模型(a)を短期間に制作することは、さほど難しいことではない。   If it is about several models, it can be manufactured by powder additive manufacturing, but if you make tens or more models, the occupying time of the modeling machine will be longer, so one 3D stereo modeling model will be the master model, Dozens of replicated resin models are produced by inverting the silicon rubber mold and vacuum casting the liquid resin into the silicon rubber mold. If one master model is produced firmly, it is not so difficult to produce several hundreds of replicated resin models (a) in a short time with a plurality of silicon rubber molds.

尚、樹脂模型(a)には鋳造用湯口形状が付加されているものである。湯口形状の付加は、粉末積層造形や光造形時に樹脂模型に一体付加させた3次元立体造形模型としてもよいし、湯口模型を先行製作し、樹脂模型(a)に接着剤にて接合してもよい。好ましくは、一体付加状態にて造形するのが最も早い方法である。   The resin model (a) is provided with a casting gate shape. The addition of the gate shape may be a three-dimensional three-dimensional model that is integrally added to the resin model during powder additive manufacturing or optical modeling, or the gate model is pre-manufactured and bonded to the resin model (a) with an adhesive. Also good. Preferably, it is the fastest method to form in an integrally added state.

複製された樹脂模型(a)は、2液反応硬化性ウレタン樹脂を実施使用するものである。一般にウレタン樹脂は耐熱性80℃程度であり、加熱劣化分解溶融流出し易い樹脂であり、精密鋳造用模型として適合性が高いものである。この2液反応硬化ウレタン樹脂液にはロウ・ワックス成分(b)及びまたは可塑剤成分(c)が配合使用される。これにて、脱ロウ工程(I)の段階にてまず、ロウ・ワックス成分(b)及びまたは可塑剤成分(c)が流失し、ウレタン樹脂は収縮した状態にて石膏型(P)に残留する。次いで、加熱条件の進展に従って、ウレタン樹脂が熱分解溶融し、その一部は液化流出し、その一部は燃焼し焼失する。十分焼失させれば、石膏型(P)内に残留する灰分は微量となる。石膏型(P)内の模型形状空間部位に残留した微量の灰分は、空気を吹き込むことにより簡単に除去することができる。   The replicated resin model (a) is one in which a two-component reaction curable urethane resin is used. In general, a urethane resin has a heat resistance of about 80 ° C., is a resin that easily decomposes, melts, flows out, and is highly compatible as a precision casting model. In this two-component reaction-cured urethane resin solution, a wax component (b) and / or a plasticizer component (c) are blended and used. Thus, in the dewaxing step (I), the wax component (b) and / or the plasticizer component (c) are first washed away, and the urethane resin remains in the gypsum mold (P) in a contracted state. To do. Next, as the heating conditions progress, the urethane resin is thermally decomposed and melted, a part of which is liquefied and discharged, and a part of it is burned and burned out. If it is burnt down sufficiently, the amount of ash remaining in the gypsum mold (P) will be very small. A small amount of ash remaining in the model shape space in the plaster mold (P) can be easily removed by blowing air.

2液反応硬化性樹脂は工業用試作デザインモデルの複製材料として使用されており、その製作作業性・硬化性・形状保持性・切削加工性に優れている。硬化促進用触媒を添加することにより急速硬化・脱型することができるし、可塑剤成分(c)として液状可塑剤を配合することも可能であるし、ロウ・ワックス成分(b)としてその微粉末を配合することも可能である。   The two-component reaction curable resin is used as a replica material for an industrial prototype design model, and has excellent manufacturing workability, curability, shape retention, and cutting workability. It can be rapidly cured and demolded by adding a catalyst for acceleration of curing, and a liquid plasticizer can be added as a plasticizer component (c), and a fine wax wax component (b). It is also possible to mix powder.

このような2液反応硬化性ウレタン樹脂を用いた精密鋳造用樹脂模型の詳細は、本発明者達により、特開平2003−211257号公報及び特開平2003−290871号公報に開示されている。   Details of the resin model for precision casting using such a two-component reaction curable urethane resin are disclosed by the present inventors in Japanese Patent Application Laid-Open Nos. 2003-212257 and 2003-290871.

次に石膏型製作工程(A)の実施の形態について説明する。   Next, an embodiment of the gypsum mold manufacturing process (A) will be described.

精密鋳造用石膏は各種上市されており、その代表的な石膏はサンエス石膏(株)の「キャスター8」を実施使用した。石膏/水=100部/50部にて混合し、型枠内に樹脂模型(a)を配置し、図2に示すように、石膏/水混合物を流し込み、樹脂模型(a)を埋没させた。室温にて数時間放置し石膏を硬化せしめ、その後、型枠を外して樹脂模型埋没石膏型(P)を取り出した。   Various types of precision casting plaster have been put on the market, and the representative plaster used is “Caster 8” of San-S Gypsum Co., Ltd. Mixing with gypsum / water = 100 parts / 50 parts, placing the resin model (a) in the mold, pouring the gypsum / water mixture as shown in FIG. 2, and burying the resin model (a) . The gypsum was allowed to stand for several hours at room temperature, and then the mold was removed and the resin model-embedded gypsum mold (P) was taken out.

樹脂模型(a)を型枠(F)に設置するに際し、樹脂模型(a)に付加した湯口(OP)を型枠底面(FB)に瞬間接着剤にて軽く固定設置した。これにて、型枠(F)を外した石膏型(P)の底面部位表面(PB)には、図3に示すように、空気抜き孔(O)及び湯口(OP)が顔を出している状態となる。尚、Dは鋳込み口用受け皿である。   When installing the resin model (a) on the mold (F), the gate (OP) added to the resin model (a) was lightly fixed and installed on the mold bottom (FB) with an instantaneous adhesive. Now, as shown in FIG. 3, the air vent hole (O) and the gate (OP) are exposed on the bottom surface (PB) of the gypsum mold (P) from which the mold (F) has been removed. It becomes a state. In addition, D is a saucer for casting ports.

次に石膏型(P)を乾燥させる工程(B)の実施形態について説明する。   Next, an embodiment of the step (B) for drying the gypsum mold (P) will be described.

石膏の硬化には化学反応に必要な水があればよいが、十分な流動性を保持し、型枠に注入できる作業性が必要である。そこで、どうしても余剰水分を必要とし、この余剰水分を石膏型より除くことが必要となる。   The gypsum needs only to have water necessary for a chemical reaction, but it must have sufficient fluidity and workability that can be poured into a mold. Therefore, it is inevitably necessary to have excess water, and it is necessary to remove this excess water from the gypsum mold.

石膏型の塊から余剰水分を除く石膏型の初期乾燥は室温放置とされている。石膏の結晶粒子間に存在する遊離水分子は、石膏型の表面より除々に蒸発飛散する。石膏型表面の遊離水分が飛散すると石膏結晶粒子間に毛細管が生成され、石膏表面の下部層に存在する遊離水分がその毛細管を通って表面に移行し、空気中へ順次飛散すると言った水分移行飛散乾燥過程が繰り返されて、除々に石膏型内部まで乾燥するものである。   The initial drying of the gypsum mold, which removes excess water from the gypsum mold lump, is allowed to stand at room temperature. Free water molecules present between the gypsum crystal particles gradually evaporate from the surface of the gypsum mold. When free moisture on the gypsum mold surface is scattered, capillaries are formed between the gypsum crystal particles, and the free moisture present in the lower layer of the gypsum surface moves to the surface through the capillaries and is sequentially scattered into the air. The scattering drying process is repeated to gradually dry the gypsum mold.

石膏型を迅速に乾燥させるためには、その表面積を大きくすれば良い。しかしながら、石膏型の外形を決定するのは型枠であり、石膏と水を混合した石膏・水混合物を注入する枠は木枠または金属枠が使用され、4つの側面と底部面の5面で構成された箱型である。型枠を構成する5面はビス留めにて簡単に組み立てができるものである。よって、石膏型は直方体として製作され、最も簡単な製作法となる。   In order to dry the gypsum mold quickly, the surface area may be increased. However, the outer shape of the gypsum mold is determined by the mold, and the frame for injecting the gypsum / water mixture in which gypsum and water are mixed is a wooden frame or a metal frame, with four sides and five sides. It is a configured box type. The five faces that make up the formwork can be easily assembled with screws. Therefore, the plaster mold is manufactured as a rectangular parallelepiped, which is the simplest manufacturing method.

石膏型の形状を表面積大となるように複雑形状にするならば、型枠自体が複雑になり、型枠製作に長時間を要することとなり、メリットが見出せない。   If the shape of the gypsum mold is made complex so as to increase the surface area, the mold itself becomes complicated, and it takes a long time to produce the mold, and no merit can be found.

樹脂模型(a)を埋没した直方体の石膏型は、上記の通りその表面積が小さい。   The rectangular gypsum mold in which the resin model (a) is embedded has a small surface area as described above.

大型複雑形状の樹脂模型(a)の場合には、石膏型も大きくなり、重量あたりの表面積は益々小さくなり、石膏型中心部位の乾燥は非常に不利となる。特に樹脂模型(a)の形状が開口を持った中空体となると、模型の開口部より中空部位に進入硬化した石膏は結果的に模型の材質にほぼ覆われた状態となる。模型の材質は水をほとんど吸収しない樹脂成分からなるため、樹脂模型(a)の中空部位に位置する石膏に存在する遊離水分は、石膏表面へ移行し蒸発乾燥されるには非常に不利な状態にある。   In the case of the resin model (a) having a large and complex shape, the gypsum mold also becomes large, the surface area per weight becomes smaller and the drying of the central part of the gypsum mold becomes very disadvantageous. In particular, when the shape of the resin model (a) is a hollow body having an opening, the gypsum that has entered and hardened into the hollow portion from the opening of the model is eventually almost covered with the material of the model. Since the material of the model consists of a resin component that hardly absorbs water, the free water present in the gypsum located in the hollow part of the resin model (a) is in a very disadvantageous state for moving to the gypsum surface and evaporating to dryness. It is in.

こういった理由から、大型中空複雑形状の樹脂模型(a)では数日間の室温乾燥条件では石膏型の中心部位まで迅速に乾燥させることは非常に困難である。   For these reasons, it is very difficult for the large hollow complex resin model (a) to rapidly dry up to the central part of the gypsum mold under room temperature drying conditions for several days.

石膏の硬化性を阻害することなく、迅速に乾燥を促進するための方法を鋭意検討した結果、図4で示すように、型枠(F)より脱型した石膏型(P)を減圧槽(V)に設置し、キャピラリー(CP)より窒素ガスを流しながら、200〜750mmHgの減圧にて、温度20〜80℃で数時間、減圧微加熱乾燥する方法が最も有効であることを見出した。   As a result of intensive studies on a method for promptly accelerating drying without impairing the curability of the gypsum, as shown in FIG. 4, the gypsum mold (P) demolded from the mold (F) is removed from the decompression tank ( V) was found to be most effective when it is dried by heating under reduced pressure at a temperature of 20 to 80 ° C. for several hours at a reduced pressure of 200 to 750 mmHg while flowing nitrogen gas from a capillary (CP).

つまり、石膏型(P)が硬化した後、石膏型(P)を減圧状態に置くことにより石膏表面の遊離水分を迅速に蒸発飛散させるものである。また、石膏型(P)内部の遊離水分を減圧にて表面へ吸い出そうとするものである。石膏表面より飛散した水分は、キャピラリー(CP)よりながれる乾燥気体に乗って系外へ運ばれるものである。石膏型(P)の表面より遊離水分飛散にて石膏型(P)表面温度が低下し、遊離水分の蒸発飛散が低下するので、石膏型(P)をやや加熱状態に保持することが有効である。石膏型(P)を加熱状態に保持するために、減圧槽(V)自体を電熱ヒーター(H)にて暖める方式・減圧槽(V)のガラス窓より赤外線を石膏型(P)に照射し石膏型(P)を加熱する方式・キャピラリー(CP)より導入する乾燥気体を加熱する方式などが有効である。この実施例では、伝熱ヒーター(H)を用いている。また、図4中において、(HR)は、前記石膏型(P)を保持する保持台である。   That is, after the gypsum mold (P) is cured, the free water on the gypsum surface is quickly evaporated and scattered by placing the gypsum mold (P) in a reduced pressure state. In addition, free moisture inside the gypsum mold (P) is to be sucked out to the surface under reduced pressure. Moisture scattered from the gypsum surface is transported out of the system on a dry gas flowing from the capillary (CP). Since the surface temperature of the gypsum mold (P) decreases due to free water scattering from the surface of the gypsum mold (P), and the evaporation and scattering of free water decreases, it is effective to keep the gypsum mold (P) slightly heated. is there. In order to keep the gypsum mold (P) in a heated state, the decompression tank (V) itself is heated by an electric heater (H). Irradiation is applied to the gypsum mold (P) from the glass window of the decompression tank (V). A method of heating the gypsum mold (P), a method of heating dry gas introduced from the capillary (CP), and the like are effective. In this embodiment, a heat transfer heater (H) is used. Moreover, in FIG. 4, (HR) is a holding stand for holding the plaster mold (P).

キャピラリー(CP)はガラス管をバーナーで加熱溶融させて一気に引き伸ばし、引き伸ばし部位が細いエナメル線状となし、切断することにて簡単に製作される。ガラス管から上記方法にてキャピラリー(CP)を製作する限り、キャピラリー(CP)の先端まで管状となる。キャピラリー(CP)の先端を水につけ他端に空気圧をかけると、キャピラリー(CP)先端より水中へ空気が放出され気泡が発生することにてキャピラリー(CP)の完成が確認される。   A capillary (CP) is easily manufactured by cutting a glass tube by heating and melting it with a burner and stretching it at a stretch, forming a thin enamel wire at the stretched portion. As long as the capillary (CP) is manufactured from the glass tube by the above method, the capillary tube (CP) is tubular. When the tip of the capillary (CP) is put into water and air pressure is applied to the other end, air is released from the tip of the capillary (CP) into the water and bubbles are generated, confirming the completion of the capillary (CP).

次いで、脱ロウ工程(C)の実施形態について説明する。   Next, an embodiment of the dewaxing step (C) will be described.

脱ロウ工程(C)は湯口(OP)を付加した樹脂模型(a)を溶融液化せしめ、石膏型(P)の湯口部位(B)より溶融流失させ、模型形状の内部空間を石膏型(P)に設けることを目的とするものである。当然、石膏の乾燥も同時並行的に進行するものである。   In the dewaxing step (C), the resin model (a) to which the gate (OP) is added is melted and liquefied and melted and discharged from the gate part (B) of the gypsum mold (P). ). Naturally, the drying of gypsum also proceeds in parallel.

よって、図5で示すように、石膏型(P)は湯口(OP)が顔を出した底面を下方にして燃焼炉(FN)内に設置され、電気またはガスにて加熱される。   Therefore, as shown in FIG. 5, the gypsum mold (P) is installed in the combustion furnace (FN) with the bottom surface from which the pouring gate (OP) comes out facing down, and is heated by electricity or gas.

樹脂模型(a)がポリスチレン粉体積層造形物である場合、ポリスチレンの軟化溶融温度以上の炉内温度150〜200℃で脱ロウされるが、急激に炉内温度を150〜200℃に昇温すると、残存する遊離水や結晶水が石膏内部で水蒸気化し、その圧力にて石膏型(P)が割れることがあるため、段階的に昇温する必要がある。   When the resin model (a) is a polystyrene powder layered product, it is dewaxed at a furnace temperature of 150 to 200 ° C. above the softening and melting temperature of polystyrene, but the furnace temperature is rapidly raised to 150 to 200 ° C. Then, since the remaining free water or crystal water is vaporized inside the gypsum and the gypsum mold (P) may be broken by the pressure, it is necessary to raise the temperature stepwise.

樹脂模型(a)が2液反応硬化性樹脂の場合、配合された溶融液化する近辺のより高温の120〜150℃で炉内温度を30分以上保持し、液状の可塑剤(c)と共にロウ・ワックス成分(b)を液化流出させるものである。その後段階的に炉内温度を昇温し、脱ロウを促進するものである。   When the resin model (a) is a two-component reaction curable resin, the furnace temperature is maintained for 30 minutes or more at a higher temperature of 120 to 150 ° C. near the blended and melted liquid, and the resin model (a) is waxed with the liquid plasticizer (c). -The wax component (b) is liquefied and discharged. Thereafter, the temperature in the furnace is raised stepwise to promote dewaxing.

炉内温度120〜150℃の時点で石膏型(P)を取り出し冷却後切断し、その断面を観察した結果、ロウ・ワックス成分(b)と液状の可塑剤成分(c)は湯口(OP)より自然落下にて僅かに流失し始めていると共に、石膏型(P)内壁部へ浸透していることが確認された。樹脂模型(a)はロウ・ワックス成分(b)と液状の可塑剤成分(c)が抜け出しているため、スポンジ状で収縮した樹脂骨格が残留していた。   When the temperature in the furnace is 120 to 150 ° C., the gypsum mold (P) is taken out, cooled and cut, and the cross section is observed. As a result, the wax component (b) and the liquid plasticizer component (c) are the gate (OP). Further, it was confirmed that it started to be slightly washed away by natural fall and penetrated into the gypsum mold (P) inner wall. In the resin model (a), the wax / wax component (b) and the liquid plasticizer component (c) were removed, so that a resin skeleton contracted in a sponge shape remained.

こう言った観察事実から、石膏型(P)に埋没している樹脂模型(a)の、加熱による挙動変化を明確化することができる。つまり、これは、樹脂模型(a)が加熱されることにより、樹脂模型(a)の内部に抱含されているロウ・ワックス成分(b)と液状の可塑剤成分(c)が樹脂模型(a)の内部から滲み出して石膏型(P)内壁に含浸する。樹脂模型(a)の樹脂骨格はロウ・ワックス成分(b)と液状の可塑剤成分(c)が樹脂模型(a)の内部から滲み出した形跡を保持したスポンジ状にて収縮する。樹脂模型(a)が加熱により膨張しようとする内圧はこの現象にて緩和される。更に加熱が続行されると、樹脂模型(a)に付した湯口形状部位から脱ロウが始まり、順次内部の樹脂模型(a)からにじみ出たロウ・ワックス成分(b)と液状の可塑剤成分(c)がスムースに湯口形状の石膏型(P)から流出自然落下するものであると解釈されることに到達した。   From these observation facts, it is possible to clarify the behavior change of the resin model (a) embedded in the plaster mold (P) due to heating. That is, this is because when the resin model (a) is heated, the wax component (b) and the liquid plasticizer component (c) contained in the resin model (a) are transformed into the resin model (a). It exudes from the inside of a) and impregnates the gypsum mold (P) inner wall. The resin skeleton of the resin model (a) contracts in a sponge shape that retains the trace of the wax / wax component (b) and the liquid plasticizer component (c) oozing from the inside of the resin model (a). The internal pressure at which the resin model (a) tries to expand by heating is relieved by this phenomenon. When the heating is further continued, dewaxing starts from the gate shape part attached to the resin model (a), and the wax and wax component (b) oozing out from the resin model (a) in the inside and the liquid plasticizer component ( It was reached that c) was smoothly interpreted as flowing out of the gypsum mold (P) having a gate shape.

石膏は約130℃近辺で結晶水の一部を放出し、半水石膏に変化する。よって、それよりもやや高温の炉内温度150℃近辺で30分保持する段階で、結晶水が放出され半水石膏化するものであろう。この時点では、石膏型内部に埋没した樹脂模型(a)は脱ロウ状態にあり、石膏型(P)中心内部から発生する結晶水の放出は脱ロウ通路を経由して、脱ロウ成分を押し出しながら石膏型(P)の湯口(OP)から加熱炉(FN)内に放出されることになる。尚、図5において、(FH)は加熱用ヒーターであり、(MP)は金属製の受け皿であり、(AB)は脱ロウ工程中の流出物である。   Gypsum releases a portion of crystal water around 130 ° C. and turns into hemihydrate gypsum. Therefore, at a stage where the temperature in the furnace is slightly higher than 150 ° C. and is maintained for 30 minutes, crystal water will be released and become semi-hydrated gypsum. At this point, the resin model (a) buried in the gypsum mold is in a dewaxed state, and the release of crystal water generated from the center of the gypsum mold (P) pushes out the dewaxed component via the dewaxing passage. However, it is discharged from the gate (OP) of the plaster mold (P) into the heating furnace (FN). In FIG. 5, (FH) is a heater, (MP) is a metal tray, and (AB) is an effluent during the dewaxing process.

つまり、石膏型(P)から放出される水蒸気は、段階的加熱を確実に進行させる限り石膏内部に内圧を排除し、石膏型(P)が割れることを回避することができる。特に市販ロストワックスよりも融点の低い液状の可塑剤(c)やロウ・ワックス成分(b)を含有する2液反応硬化性ウレタン樹脂から成る樹脂模型(a)の場合は、石膏型(P)が割れることを回避できる性能に優れていると言えることが判った。   That is, the water vapor released from the gypsum mold (P) can eliminate internal pressure in the gypsum and prevent the gypsum mold (P) from cracking as long as the stepwise heating proceeds reliably. In particular, in the case of a resin model (a) made of a two-component reaction curable urethane resin containing a liquid plasticizer (c) having a lower melting point than commercially available lost wax and a wax component (b), a plaster mold (P) It can be said that it can be said that it is excellent in performance capable of avoiding cracking.

次いで、焼成工程(D)の実施形態について説明する。   Next, an embodiment of the firing step (D) will be described.

脱ロウ工程(C)終了後、引き続き炉内温度を徐々に700〜750℃に昇温し、石膏型(P)に埋没した樹脂模型(a)の液状の可塑剤(c)やロウ・ワックス成分(b)の抜け殻である収縮した樹脂骨格を燃焼せしめる。この時、石膏型(P)内壁に含浸付着した液状の可塑剤(c)やロウ・ワックス成分(b)も燃焼させるものである。また、石膏型(P)自体に存在した、遊離水・放出結晶水は除去され、鋳造に使用可能な石膏型が完成する。   After the dewaxing step (C), the furnace temperature is gradually raised to 700 to 750 ° C., and the liquid plasticizer (c) and wax / wax of the resin model (a) embedded in the plaster mold (P) The contracted resin skeleton which is the shell of component (b) is burned. At this time, the liquid plasticizer (c) impregnated and adhered to the inner wall of the plaster mold (P) and the wax component (b) are also combusted. Further, the free water and the released crystal water present in the gypsum mold (P) itself are removed, and a gypsum mold that can be used for casting is completed.

石膏型湯口(OP)より内部へ空気を噴射し、石膏型(P)内部に残存する微量灰分を除去する。直ちに鋳造装置に設置し、溶融金属の鋳込みに備える。   Air is injected into the interior from the gypsum mold (OP) to remove trace ash remaining in the gypsum mold (P). Immediately install in casting equipment and prepare for casting molten metal.

特に石膏型(P)は水分除去が重要であり、石膏型(P)よりの水分除去が不十分な状態で溶融金属を鋳込むと石膏型(P)の水分と溶融金属が反応し爆発を起こすので、十分な注意が必要である。   In particular, it is important to remove moisture from the gypsum mold (P). If the molten metal is cast in a state where moisture removal from the gypsum mold (P) is insufficient, the water in the gypsum mold (P) reacts with the molten metal to cause explosion. Sufficient care is required as it will occur.

本発明実施例として用いた2気筒吸引口のモデルの全体斜視図である。1 is an overall perspective view of a model of a two-cylinder suction port used as an embodiment of the present invention. 湯口を付加した2気筒吸引口形状樹脂模型を型枠に設置し、石膏・水混合物を型枠内へ注いでいる状態断面図である。FIG. 3 is a cross-sectional view of a state in which a two-cylinder suction port-shaped resin model to which a gate has been added is installed in a mold and a gypsum / water mixture is poured into the mold. 2気筒吸引口形状樹脂模型が埋没した石膏型の断面図である。It is sectional drawing of the gypsum type | mold with which the 2-cylinder suction port shape resin model was embed | buried. 2気筒吸引口形状樹脂模型が埋没した石膏型を、湯口を下方にて、減圧加熱乾燥を実施している断面図である。It is sectional drawing which is carrying out the reduced pressure heating drying of the gypsum type | mold with which the 2-cylinder suction port shape resin model was buried below the pouring gate. 加熱炉にて脱ロウ工程を実施している断面図である。It is sectional drawing which is implementing the dewaxing process in a heating furnace.

符号の説明Explanation of symbols

a 樹脂模型
F 型枠
FB 枠体底部
FN 加熱炉
O 空気抜き孔
OP 湯口
P 石膏型
V 減圧槽
a Resin model F Formwork FB Frame body bottom FN Heating furnace O Air vent OP Opening gate P Gypsum mold V Depressurization tank

Claims (7)

精密鋳造におけるプラスターモールド法において、
型枠(P)内に湯口模型を付した樹脂模型(a)を設置し、精密鋳造用石膏を流し込み硬化させる石膏型製作工程(A)と、
石膏硬化後型枠を外し、減圧状態(I)において樹脂模型(a)が埋没した石膏型(P)を乾燥させる乾燥工程(B)と、
樹脂模型(a)が埋没した石膏型(P)を、湯口(O)を下方にして階段状加熱(II)し、樹脂模型(a)の熱溶融分解液化成分を湯口(O)より流出させる脱ロウ工程(C)と、
樹脂模型(a)を燃焼焼失させ、且つ石膏の余剰水分を除去する焼成工程(D)とから成ることを特徴とする精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。
In the plaster mold method in precision casting,
Placing a resin model (a) with a gate model in the mold (P), pouring gypsum for precision casting and hardening the plaster mold (A),
After the gypsum is cured, the mold is removed, and a drying step (B) for drying the gypsum mold (P) in which the resin model (a) is buried in the reduced pressure state (I),
The gypsum mold (P) in which the resin model (a) is buried is heated stepwise with the gate (O) facing downward (II), and the hot melt decomposition liquefaction component of the resin model (a) flows out from the gate (O). A dewaxing step (C);
A method for drying, dewaxing and firing a plaster mold for precision casting, comprising: a firing step (D) for burning and burning the resin model (a) and removing excess water from the gypsum.
前記樹脂模型(a)がポリスチレン粉末積層造形模型であることを特徴とする請求項1記載の精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。   The method for drying, dewaxing, and firing a plaster mold for precision casting according to claim 1, wherein the resin model (a) is a polystyrene powder additive manufacturing model. 前記樹脂模型(a)が、ロウ・ワックス成分(b)及び/若しくは可塑剤成分(c)を含有する2液反応硬化性ポリウレタン樹脂模型であることを特徴とする請求項1記載の精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。   2. The precision casting according to claim 1, wherein the resin model (a) is a two-component reaction curable polyurethane resin model containing a wax component (b) and / or a plasticizer component (c). Plaster mold drying, dewaxing and firing methods. 前記減圧状態(I)とは、乾燥気体が細孔キャピラリー(CP)より石膏型(P)が配置された空間へ流入可能な状態であることを特徴とする請求項1、2又は3記載の精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。   4. The reduced pressure state (I) is a state in which dry gas can flow into a space where a gypsum mold (P) is disposed from a pore capillary (CP). Drying, dewaxing and firing methods for precision casting plaster molds. 前記階段状加熱(II)は、第1の温度帯域において所定時間保持され、前記第1の温度帯域よりも所定値高い第2の温度帯域において所定時間保持されるような加熱経過を経ることを特徴とする請求項1〜4のいずれか一つに記載の精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。   The stepwise heating (II) passes through a heating process such that it is held for a predetermined time in the first temperature zone and is held for a predetermined time in a second temperature zone that is higher than the first temperature zone by a predetermined value. The method for drying, dewaxing, and firing a plaster mold for precision casting according to any one of claims 1 to 4. 前記樹脂模型(a)に含有されるロウ・ワックス成分(b)は、融点50〜130℃の微粉末であることを特徴とする請求項1〜4のいずれか一つに記載の精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。   The precision casting according to any one of claims 1 to 4, wherein the wax component (b) contained in the resin model (a) is a fine powder having a melting point of 50 to 130 ° C. Plaster mold drying, dewaxing and firing methods. 前記樹脂模型(a)に含有される可塑剤成分(c)は、0℃において液状であることを特徴とする請求項1〜4のいずれか一つに記載の精密鋳造用プラスターモールドの乾燥・脱ロウ・焼成方法。
The plasticizer component (c) contained in the resin model (a) is in a liquid state at 0 ° C, and the plaster mold for precision casting according to any one of claims 1 to 4, is dried. Dewaxing and firing method.
JP2004137981A 2004-05-07 2004-05-07 Drying, dewaxing and firing methods for precision casting plaster molds Expired - Lifetime JP4374575B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004137981A JP4374575B2 (en) 2004-05-07 2004-05-07 Drying, dewaxing and firing methods for precision casting plaster molds
PCT/JP2005/006044 WO2005107976A1 (en) 2004-05-07 2005-03-30 Process of drying, pattern melting, and burning for the plaster molds for precision casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137981A JP4374575B2 (en) 2004-05-07 2004-05-07 Drying, dewaxing and firing methods for precision casting plaster molds

Publications (2)

Publication Number Publication Date
JP2005319474A true JP2005319474A (en) 2005-11-17
JP4374575B2 JP4374575B2 (en) 2009-12-02

Family

ID=35320095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137981A Expired - Lifetime JP4374575B2 (en) 2004-05-07 2004-05-07 Drying, dewaxing and firing methods for precision casting plaster molds

Country Status (2)

Country Link
JP (1) JP4374575B2 (en)
WO (1) WO2005107976A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855466A (en) * 2017-11-09 2018-03-30 太湖县众瑞精密铸造有限公司 It is exclusively used in the dewaxing technique of essence casting Ludox

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105903898B (en) * 2016-06-12 2017-12-05 蔡政达 Shell mould sintering method and device
CN114247849A (en) * 2021-11-15 2022-03-29 苏州美迈快速制造技术有限公司 Lattice mechanism gypsum forming process
CN114160759A (en) * 2021-12-06 2022-03-11 嘉兴市佳特金属制品股份有限公司 Production process of connecting sleeve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07256392A (en) * 1994-03-17 1995-10-09 Toyota Motor Corp Gypsum mold and its manufacture
JP2000117415A (en) * 1998-10-16 2000-04-25 Noritake Co Ltd Method for removing molding material and manufacture of network structure of metallic body
JP2002153943A (en) * 2000-11-22 2002-05-28 Nissan Motor Co Ltd Method for manufacturing mold for precision casting and model used for the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855466A (en) * 2017-11-09 2018-03-30 太湖县众瑞精密铸造有限公司 It is exclusively used in the dewaxing technique of essence casting Ludox

Also Published As

Publication number Publication date
WO2005107976A1 (en) 2005-11-17
JP4374575B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US6951239B1 (en) Methods for manufacturing investment casting shells
JP6275324B2 (en) How to cast casting parts
ATE509714T1 (en) METHOD FOR PRODUCING A CASTING
JP4374575B2 (en) Drying, dewaxing and firing methods for precision casting plaster molds
JP6114121B2 (en) Freezing mold for casting and method for producing casting
JP3133077B2 (en) Ceramic mold forming method using thermoreversible material
JP2008507410A5 (en)
JP2004090046A (en) Precision casting method, its cast product and rotary machine
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
ES2262845T3 (en) PROCEDURE FOR THE PERFORMANCE OF MOLDED PARTS, COLADA SAND AND ITS USE FOR THE PUTTING INTO PRACTICE OF THE PROCEDURE.
JP2006247685A (en) Molding material for photo-setting resin lost model, mold formed thereof, and casting method using the mold
Deore et al. A study of core and its types for casting process
JP4623465B2 (en) Self-hardening mold making using disappearance model
JP4034119B2 (en) Low carbon steel casting production method and mold
KR102263436B1 (en) precision casting method for shell of internal passage
KR102263466B1 (en) Aluminum Lost foam pattern casting method
GB2090181A (en) Manufacturing a Blade or Vane for a Gas Turbine Engine
JPH08332547A (en) Casting method and mold and its production
TWI695747B (en) Precision casting process capable of accelerating heat dissipation of concave part of shell mold
KR101233476B1 (en) Manufacturing Method of the ceramic core on the gas turbine hot components during sintering And Support plate for Sintering of ceramic core
JP2003053479A (en) Method for manufacturing mold for precision casting
TWI681829B (en) Precise casting process with supporting step of shell mold recess
JPS63295037A (en) Molding method for mold for casting
JP2007191343A (en) Mold for solidifying silicon and its manufacturing method
JPH0318450A (en) Manufacture of ceramic mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090827

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120918