JPH0331764B2 - - Google Patents

Info

Publication number
JPH0331764B2
JPH0331764B2 JP58163708A JP16370883A JPH0331764B2 JP H0331764 B2 JPH0331764 B2 JP H0331764B2 JP 58163708 A JP58163708 A JP 58163708A JP 16370883 A JP16370883 A JP 16370883A JP H0331764 B2 JPH0331764 B2 JP H0331764B2
Authority
JP
Japan
Prior art keywords
rolling
less
annealing
slab
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58163708A
Other languages
Japanese (ja)
Other versions
JPS6056021A (en
Inventor
Yoshiaki Iida
Ujihiro Nishiike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP58163708A priority Critical patent/JPS6056021A/en
Publication of JPS6056021A publication Critical patent/JPS6056021A/en
Publication of JPH0331764B2 publication Critical patent/JPH0331764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling

Description

【発明の詳細な説明】 この発明は圧延方向に優れた磁気特性を有する
一方向性珪素鋼板を効率的に製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently manufacturing a grain-oriented silicon steel sheet having excellent magnetic properties in the rolling direction.

従来一般に一方向性珪素鋼板は、約0.020%以
上のCと3%程度のSi、およびSやSe等のイン
ヒビター形成元素を含有するスラブを、約1300℃
以上の高温で長時間加熱し、熱間圧延後1回また
は中間焼鈍を挟む2回以上の冷間圧延を施して最
終板厚とし、脱炭焼鈍を行なつた後、焼鈍分離剤
を塗布して高温仕上焼鈍を施し、さらに絶縁コー
テイングを施すことにより製造するのが通常であ
る。
Conventionally, unidirectional silicon steel sheets are produced by heating slabs containing about 0.020% or more of C, about 3% of Si, and inhibitor-forming elements such as S and Se at about 1300℃.
The plate is heated for a long time at a high temperature above, and after hot rolling, it is cold rolled once or twice or more with intermediate annealing to achieve the final thickness, and after decarburization annealing, an annealing separator is applied. It is usually manufactured by subjecting it to high-temperature finish annealing and then applying an insulating coating.

上述のごとき一方向性珪素鋼板は、高温仕上焼
鈍の過程において、{110}<001>方位のいわゆる
ゴス方位を有する結晶粒が2次再結晶することに
より、圧延方向に優れた磁気特性が与えられるも
のであるが、このようなゴス方位の2次再結晶粒
を先鋭かつ高集精度で生成させるためには、微細
かつ均一に分散したMnS、MnSe、AlNなどの正
常粒成長抑制剤、すなわちインヒビターが適当量
存在すること、および1次再結晶組織が微細かつ
均質であることが必要である。
The above-mentioned unidirectional silicon steel sheet has excellent magnetic properties in the rolling direction due to secondary recrystallization of crystal grains having the {110}<001> orientation, the so-called Goss orientation, during the high-temperature finish annealing process. However, in order to generate such Goss-oriented secondary recrystallized grains with sharpness and high concentration accuracy, it is necessary to use normal grain growth inhibitors such as MnS, MnSe, and AlN that are finely and uniformly dispersed. It is necessary that an appropriate amount of the inhibitor be present and that the primary recrystallized structure be fine and homogeneous.

従来上述のような必要条件を満足させるため、
第1には、スラブを約1300℃以上の高温で長時間
加熱して、Mn、S、Se等のインヒビター形成元
素を充分に固溶させ、熱延から仕上焼鈍までの間
においてインヒビターを適切に析出分散させる方
策、および第2には、Cを素材に約0.020%以上
含有せしめておき、熱延過程において局部的にオ
ーステナイト層を生成させ、それによりスラブ加
熱段階で数十mmの大きさに粗大化した結晶粒を分
裂・破壊させて、熱延組織中の伸長粒の厚さを微
小にする方策、以上の2方策が組合せて用いられ
ていた。そしてこれらの方策により、磁気特性の
優れた一方向性珪素鋼板の製造が可能となつてい
たのであるが、このような従来の方策では、素材
にCを約0.020%以上含有させることから、次の
ような問題が生じた。
Conventionally, in order to satisfy the above-mentioned requirements,
First, the slab is heated at a high temperature of approximately 1,300°C or higher for a long period of time to fully dissolve inhibitor-forming elements such as Mn, S, and Se, and the inhibitors are properly removed from hot rolling to final annealing. The second method is to contain approximately 0.020% or more of C in the material and locally generate an austenite layer during the hot rolling process, which results in a layer of several tens of millimeters in size during the slab heating stage. A combination of the above two methods has been used to split and destroy coarse grains to reduce the thickness of elongated grains in the hot-rolled structure. These measures have made it possible to manufacture unidirectional silicon steel sheets with excellent magnetic properties, but these conventional measures require the material to contain approximately 0.020% or more of C. A problem like this arose.

すなわち、素材のC含有量が多くなればそれに
伴つてインヒビター形成元素を充分に解離固溶さ
せるために必要なスラブ加熱温度が高くなり、そ
の結果燃料原単位が増大し、またスケール発生量
が多くなつて歩留りが低下し、さらにはノロ推積
などにより加熱炉補修頻度が増加するなど、製造
工程上の各種の問題が生じて、製造コストの大幅
な増加を招いている。また品質面から見れば、前
述のようにスラブ加熱温度が高くなることによつ
て、高温加熱中の表面酸化や粒界酸化に起因する
ヘゲが発生し易くなり、その結果製品外観を劣悪
にすること、あるいはC含有量が多ければ熱延中
に局部的にではあるがα−Υ変態が生じて、熱延
集合組織を、良好な製品磁気特性を得るには不都
合な、ゴス方位強度の弱いものとしてしまうなど
の問題がある。
In other words, as the C content of the material increases, the slab heating temperature required to sufficiently dissociate and dissolve the inhibitor-forming elements increases, resulting in an increase in fuel consumption and an increase in the amount of scale generated. This causes various problems in the manufacturing process, such as a decrease in yield and an increase in the frequency of heating furnace repairs due to slag estimation, resulting in a significant increase in manufacturing costs. In addition, from a quality perspective, as the slab heating temperature increases as mentioned above, flaking due to surface oxidation and grain boundary oxidation during high-temperature heating becomes more likely to occur, resulting in poor product appearance. Otherwise, if the C content is high, α-Υ transformation occurs locally during hot rolling, changing the hot-rolling texture and increasing the Goss orientation strength, which is inconvenient for obtaining good product magnetic properties. There are problems such as making it look weak.

この発明は以上の事情に鑑みてなされたもの
で、上述のような諸問題を招くことなく、磁気特
性が優れかつ外観品質も優れた一方向性珪素鋼板
を効率良く低コストで製造する方法を提供するこ
とを目的とするものである。
This invention was made in view of the above circumstances, and provides a method for efficiently manufacturing unidirectional silicon steel sheets with excellent magnetic properties and excellent appearance quality at a low cost without causing the problems described above. The purpose is to provide

本発明者等は、前述の問題を解決するために
は、素材のC含有量を減少させることが有効であ
ると判断した。従来は、前述のようにスラブの結
晶粒を分裂・破壊させて熱延組織中の伸長性を微
細化せしめる手段として素材に多量のCを含有せ
しめることが行なわれており、低C素材では良好
な磁気特性を得ることが困難であつたが、本発明
者等は種々実験・検討を重ねた結果、スラブ素材
の連続鋳造時の2次冷却水の注水比、スラブ加熱
温度、および粗圧延条件を適切に選ぶことによつ
て、素材に多量のCを含有させることなく、適切
な2次再結晶組織を有する優れた磁気特性の一方
向性珪素鋼板が得られることを見出し、この発明
を完成するに至つたのである。
The present inventors have determined that it is effective to reduce the C content of the material in order to solve the above-mentioned problems. Conventionally, as mentioned above, a large amount of C was added to the material as a means of splitting and destroying the crystal grains of the slab to refine the elongation in the hot-rolled structure. Although it was difficult to obtain suitable magnetic properties, the present inventors conducted various experiments and studies, and as a result, the injection ratio of secondary cooling water during continuous casting of slab material, slab heating temperature, and rough rolling conditions were determined. The present invention was completed based on the discovery that a unidirectional silicon steel sheet with an appropriate secondary recrystallization structure and excellent magnetic properties could be obtained by appropriately selecting the material without containing a large amount of C. That's what I came to do.

すなわちこの発明の一方向性珪素鋼板の製造方
法は、C0.020%以下、Si2.5〜4.0%、Mn0.01〜
0.020%を含有しかつS、Seの少なくとも1種を
合計で0.005〜0.10%含有する一方向性珪素鋼板
用溶鋼を連続鋳造用鋳型に注入し、その鋳型から
出たスラブを注入比1.6/Kg以上、4.0/Kg以
下で2次冷却し、次いでスラブを1100〜1320℃に
加熱した後、圧下率30%以上、90%以下でしかも
歪速度0.5sec-1以上、20sec-1以下の圧延パスを少
なくとも1パス以上含む粗圧延を行ない、続いて
仕上圧延を行なつた後、1回の冷間圧延もしくは
中間焼鈍を挟む2回以上の冷間圧延を施して最終
板厚とし、必要に応じて脱炭焼鈍を行なつた後、
焼鈍分離剤を塗布して仕上焼鈍を施すことを特徴
とするものである。
In other words, the method for producing a unidirectional silicon steel sheet of the present invention includes C0.020% or less, Si2.5~4.0%, Mn0.01~
Molten steel for unidirectional silicon steel sheet containing 0.020% and at least one of S and Se in a total of 0.005 to 0.10% is poured into a continuous casting mold, and the slab that comes out of the mold is poured at a pouring ratio of 1.6/Kg. After secondary cooling at 4.0/Kg or less, and then heating the slab to 1100 to 1320℃, rolling passes with a reduction rate of 30% or more and 90% or less, and a strain rate of 0.5sec -1 or more and 20sec -1 or less. After performing rough rolling including at least one pass or more, followed by finish rolling, one cold rolling or two or more cold rollings with intermediate annealing is performed to obtain the final plate thickness, and as necessary. After decarburizing and annealing,
This is characterized by applying an annealing separator and performing final annealing.

以下この発明についてさらに具体的に説明す
る。
This invention will be explained in more detail below.

先ず本発明者等の実験による新規な知見につい
て説明すると、本発明者等は、Siを2.9〜3.2%、
Mnを0.006〜0.008%、S0.020〜0.030%をそれぞ
れ含有する溶鋼を用いて連続鋳造によりスラブを
作成するにあたり、タンデイツシユに種々の量の
グラフアイトを投入する方法によりC含有量を変
化させるとともに、2次冷却水の注水比を種々変
化させて、スラブ厚さ150mm〜300mmにわたるスラ
ブを製造し、その後C含有量が0.020%以下のス
ラブは1250℃で加熱し、C含有量が0.020%を越
えるスラブは従来と同様に1350℃で加熱し、以後
従来の常法にしたがつて一方向性珪素鋼板の製品
を製造した。得られた各製品の2次再結晶不良率
に及ぼす2次冷却水注水比の影響を調べた結果を
第1図に示す。但しここで2次再結晶不良率と
は、粒径が1mm以下の細粒の占める面積率を指
す。第1図から、C含有量が0.020%を越えるス
ラブの場合には、連続鋳造2次冷却水の注水比が
2次再結晶不良率にほとんど影響を及ぼしていな
い反面、C含有量が0.020%以下のスラブでは2
次冷却水の注水比が2次再結晶不良に大きく影響
を及ぼし、注水比が1.6/Kg以上で2次再結晶
不良率が低く、優れた製品が得られることが明ら
かである。なお注水比が4.0/Kgを越えれば、
過冷却されてコーナー部に割れが生じ、耳割れの
発生原因となる。したがつて連続鋳造2次冷却水
の注水比は1.6/Kg以上、4.0/Kg以下とする
必要がある。
First, to explain the new findings from experiments conducted by the present inventors, the present inventors discovered that Si content of 2.9 to 3.2%,
When creating slabs by continuous casting using molten steel containing 0.006 to 0.008% Mn and 0.020 to 0.030% S, the C content is varied by adding various amounts of graphite to the tundish. By varying the injection ratio of secondary cooling water, slabs with thicknesses ranging from 150 mm to 300 mm were manufactured, and then slabs with a C content of 0.020% or less were heated at 1250°C to reduce the C content to 0.020%. The overlapping slab was heated to 1350°C in the same manner as before, and unidirectional silicon steel products were manufactured using conventional methods. Figure 1 shows the results of investigating the influence of the secondary cooling water injection ratio on the secondary recrystallization defect rate of each product obtained. However, the secondary recrystallization failure rate here refers to the area ratio occupied by fine grains with a grain size of 1 mm or less. From Figure 1, in the case of slabs with a C content exceeding 0.020%, the injection ratio of continuous casting secondary cooling water has almost no effect on the secondary recrystallization defect rate, while the C content exceeds 0.020%. In the slab below, 2
It is clear that the water injection ratio of the secondary cooling water has a large effect on secondary recrystallization defects, and that when the water injection ratio is 1.6/Kg or more, the secondary recrystallization defect rate is low and an excellent product can be obtained. Furthermore, if the water injection ratio exceeds 4.0/Kg,
Overcooling causes cracks to form at the corners, causing edge cracks. Therefore, the water injection ratio of continuous casting secondary cooling water needs to be 1.6/Kg or more and 4.0/Kg or less.

さらに本発明者等は、上記同様の方法で製造し
たスラブから切出した小鋼片を、1000℃〜1400℃
の範囲内の種々の温度で加熱し、小型圧延機で熱
間圧延して、以後常法にしたがつて一方向性珪素
鋼板の製品を製造した。得られた各製品の2次再
結晶不良率に及ぼすスラブ加熱温度の影響を第2
図に示す。第2図から、C含有量が0.020%を越
えるスラブでは1300℃程度以上の高温でスラブ加
熱することが2次再結晶不良率を少なくする上で
必要であるが、C含有量が0.020%以下のスラブ
では、従来よりも低い1100〜1320℃の範囲内の温
度でスラブ加熱することが好適であることが明ら
かである。
Furthermore, the present inventors cut out small steel pieces from slabs manufactured by the same method as above, and heated them at 1000°C to 1400°C.
The material was heated at various temperatures within the range of 1, hot rolled in a small rolling mill, and unidirectional silicon steel sheets were produced in a conventional manner. The influence of slab heating temperature on the secondary recrystallization defect rate of each product obtained was investigated in the second study.
As shown in the figure. From Figure 2, it is necessary to heat the slab at a high temperature of about 1300°C or higher for slabs with a C content exceeding 0.020% in order to reduce the secondary recrystallization defect rate, but when the C content is below 0.020%. It is clear that it is preferable to heat the slab at a temperature in the range of 1100 to 1320°C, which is lower than conventional slabs.

また本発明者等は上記同様にして得られた小鋼
片を1250℃でスラブ加熱後、熱間圧延するに際し
て、1パスの圧下率および歪速度を種々変化さ
せ、かつ同一の鋼片に対しては同じ圧下率、歪速
度のパスを1〜14回繰返して、粗圧延としての累
積圧下率85%の圧延を行なつた後、仕上げ圧延を
行ない、以後常法にしたがつて一方向性珪素鋼板
の製品を製造した。得られた各製品における2次
再結晶不良率と熱延粗圧延条件との関係を調べた
結果を第3図に示す。但し第3図において○印は
素材中のC含有量が0.020%以下で2次再結晶不
良率が10%未満の場合、●印は同じく素材中のC
含有量が0.020%以下で2次再結晶不良率が10%
以上の場合、△印は素材中のC含有量が0.020%
を越え、2次再結晶不良率が10%未満の場合、▲
印は同じく素材中のC含有量が0.020%を越え、
2次再結晶不良率が10%以上の場合をそれぞれ示
す。第3図から、素材中のC含有量が0.020%を
越える場合には、粗圧延条件の如何にかかわらず
良好な製品が得られるが、素材中のC含有量が
0.020%以下の場合には、粗圧延において圧下率
30%以上でしかも歪速度20sec-1以下の圧延パス
を加えた場合にはじめて2次再結晶不良率の低
い、良好な製品が得られることが明らかである。
なお、粗圧延は一般には単に減厚することだけを
目的としており、生産性の点からは圧延速度を高
めること、したがつて歪速度を高めることが有利
であり、そのため従来は圧下率30%以上、歪速度
20sec-1以下のごとき低速圧延は全く採用されて
おらず、このような低速圧延条件はC含有量の少
ない一方向性珪素鋼スラブにおいてはじめて重要
な意味を持つことを本発明者等が見出したのであ
る。なお上述の粗圧延における低速圧延のパスの
圧下率が90%を越えれば、急激な圧下のために耳
荒れが生じ、製品歩留りを著しく低下させ、また
歪速度が0.5sec-1に満たない超低歪速度のパスで
低下すれば、熱延中の板温度の低下が過度とな
り、2次再結晶不完全部分を生じて磁気特性の低
下を招く。したがつて粗圧延のパスは、圧下率が
30%以上、90%以下でかつ歪速度が0.5sec-1
上、20sec-1以下とする必要がある。
In addition, when hot rolling small steel slabs obtained in the same manner as above at 1250°C, the inventors varied the rolling reduction rate and strain rate in one pass, and Then, repeat rolling with the same rolling reduction and strain rate 1 to 14 times to achieve a cumulative rolling reduction of 85% as rough rolling, then finish rolling, and then perform unidirectional rolling according to the usual method. Manufactured silicon steel plate products. FIG. 3 shows the results of investigating the relationship between the secondary recrystallization defect rate and hot rolling rough rolling conditions for each product obtained. However, in Figure 3, the ○ mark indicates that the C content in the material is 0.020% or less and the secondary recrystallization defect rate is less than 10%, and the ● mark indicates that the C content in the material is less than 10%.
Secondary recrystallization defect rate is 10% when the content is 0.020% or less
In the above cases, △ indicates that the C content in the material is 0.020%.
, and the secondary recrystallization defect rate is less than 10%, ▲
The mark also indicates that the C content in the material exceeds 0.020%,
The cases where the secondary recrystallization defect rate is 10% or more are shown. From Figure 3, when the C content in the material exceeds 0.020%, a good product can be obtained regardless of the rough rolling conditions;
If it is 0.020% or less, the reduction rate in rough rolling is
It is clear that a good product with a low secondary recrystallization defect rate can be obtained only when a rolling pass with a strain rate of 30% or more and a strain rate of 20 sec -1 or less is applied.
Generally speaking, the purpose of rough rolling is simply to reduce the thickness, and from the standpoint of productivity, it is advantageous to increase the rolling speed and, therefore, the strain rate. Above, strain rate
Low speed rolling such as 20 sec -1 or less has not been adopted at all, and the inventors discovered for the first time that such low speed rolling conditions have an important meaning in unidirectional silicon steel slabs with low C content. It is. In addition, if the rolling reduction ratio of the low-speed rolling pass in the rough rolling described above exceeds 90%, roughness will occur due to the rapid rolling, which will significantly reduce the product yield. If it decreases in a pass with a low strain rate, the plate temperature decreases excessively during hot rolling, causing incomplete areas of secondary recrystallization, resulting in a decrease in magnetic properties. Therefore, in the rough rolling pass, the rolling reduction is
The strain rate must be 30% or more and 90% or less, and the strain rate must be 0.5sec -1 or more and 20sec -1 or less.

以上のように、C含有量が0.020%以下と従来
よりも少ない素材を用いて良好な2次再結晶組織
を有する一方向性珪素鋼板を製造するためには、
C含有量の多い素材を用いていた従来の製造方法
とは異なる方法、すなわち連続鋳造における2次
冷却水の注水比1.6/Kg以上、4.0/Kg以下と
いう高注水比と、スラブ加熱温度1100〜1320℃と
いう低温スラブ加熱と、粗圧延における圧下率30
%以上、90%以下でかつ歪速度0.5sec-1以上、
20sec-1以下のパスという低速圧延パスとを組合
せた方法を適用する必要があることを本発明者等
は新規に知見し、かつこのような方法によつて良
好な磁気特性および製品外観を有する一方向性珪
素鋼板を安価に製造することが可能となつたので
ある。
As mentioned above, in order to manufacture a grain-oriented silicon steel sheet with a good secondary recrystallization structure using a material with a C content of 0.020% or less, which is lower than conventional materials,
A method different from the conventional manufacturing method that used materials with a high C content, namely a high water injection ratio of secondary cooling water of 1.6/Kg or more and 4.0/Kg or less in continuous casting, and a slab heating temperature of 1100 ~ Slab heating at a low temperature of 1320℃ and rolling reduction of 30 during rough rolling
% or more and 90% or less and strain rate 0.5sec -1 or more,
The present inventors have newly found that it is necessary to apply a method that combines a low-speed rolling pass of 20 sec -1 or less, and by such a method, good magnetic properties and product appearance can be obtained. It became possible to manufacture unidirectional silicon steel plates at low cost.

なお熱間圧延における粗圧延段階のパスは通常
数パス以上となることが多く、この場合粗圧延段
階のパスの全てを前述のように30%以上、90%以
下の圧下率、0.5sec-1以上、20sec-1以下の歪速度
とすることが最も望ましいが、要は前記条件を満
たすパスが1パス以上含まれていれば良く、その
場合でもその条件範囲内のパス数に応じた効果が
得られる。
Note that the passes in the rough rolling stage in hot rolling are usually several passes or more, and in this case, all the passes in the rough rolling stage are performed at a reduction rate of 30% or more and 90% or less, 0.5sec -1 as described above. As mentioned above, it is most desirable to set the strain rate to 20 sec -1 or less, but the point is that it is sufficient if there is at least one pass that satisfies the above conditions, and even in that case, the effect will be proportional to the number of passes within the condition range. can get.

次にこの発明の方法における素材成分限定理由
を説明する。
Next, the reason for limiting the material components in the method of this invention will be explained.

C:Cは0.020%を越えれば、インヒビター形成
元素を固溶させるために必要なスラブ加熱温度
が高くなり過ぎ、低コストで一方向性珪素鋼板
を製造するというこの発明の目的から外れるか
ら、Cを0.020以下に限定した。
C: If C exceeds 0.020%, the slab heating temperature required to form a solid solution of the inhibitor-forming elements becomes too high, which deviates from the purpose of this invention, which is to produce a grain-oriented silicon steel sheet at low cost. was limited to 0.020 or less.

Si:Siは2.5%未満では充分に低い鉄損値が得ら
れず、逆に、4.0%を越えれば脆くなつて冷延
での破断が急増するから、2.5〜4.0%の範囲に
限定した。
Si: If Si is less than 2.5%, a sufficiently low iron loss value cannot be obtained, and if it exceeds 4.0%, it becomes brittle and fractures during cold rolling increase rapidly, so it was limited to a range of 2.5 to 4.0%.

Mn、S、Se:これらは2次再結晶段階において
正常粒成長を抑制することによりゴス方位の2
次再結晶粒の生成を促進するためのインヒビタ
ーとしてのMnS、MnSeを形成するに必要な元
素であるが、Mnが0.01%未満、Sおよび/ま
たはSeが合計量で0.005%未満では2次再結晶
組織の発達に必要なインヒビターの量が不足
し、良好な2次再結晶組織が得られず、一方
Mnが0.02%、Sおよび/またはSeの合計量が
0.10%を越えればこれらの元素の完全固溶のた
めのスラブ加熱温度が高くなり、この発明の目
的に反する。したがつてMnは0.01〜0.20%、
Sおよび/またはSeは合計量で0.005〜0.10%
の範囲に限定した。
Mn, S, Se: These suppress the normal grain growth in the secondary recrystallization stage, thereby increasing the Goss orientation.
MnS acts as an inhibitor to promote the formation of secondary recrystallized grains, and is an element necessary to form MnSe. However, if Mn is less than 0.01% and S and/or Se are less than 0.005% in total, The amount of inhibitor necessary for the development of crystalline structure is insufficient, and a good secondary recrystallized structure cannot be obtained.
Mn is 0.02%, total amount of S and/or Se is
If it exceeds 0.10%, the slab heating temperature for complete solid solution of these elements becomes high, which is contrary to the purpose of the present invention. Therefore, Mn is 0.01-0.20%,
S and/or Se in total amount 0.005-0.10%
limited to the range of

なお前記各成分のほか、インヒビターの効果を
補強する目的で粒界偏析型元素、例えばSb、As、
Bi、Pb、Te、Mo、W等を単独または複合して
添加することは差し支えない。
In addition to the above-mentioned components, grain boundary segregation type elements such as Sb, As,
Bi, Pb, Te, Mo, W, etc. may be added alone or in combination.

この発明の製造方法では、上述のような成分を
含有する一方向性珪素鋼板用溶鋼を連続鋳造用鋳
型に注入し、連鋳スラブとする。この連続鋳造に
おいては、鋳型から出たスラブを2次冷却する際
の注入比、すなわちスラブ1Kgあたりの2次冷却
水シヤワー水量を前述のように1.6/Kg以上、
4.0/Kg以下とする。なおスラブ厚みは、150mm
〜300mm程度とする。またこの連続鋳造に際して
は、等軸晶率を高めて中心偏析を軽減するため、
公知の方法で鋳造内溶鋼に対し電磁撹拌を施すこ
とが望ましい。
In the manufacturing method of the present invention, unidirectional silicon steel plate molten steel containing the above-mentioned components is poured into a continuous casting mold to form a continuous casting slab. In this continuous casting, the injection ratio for secondary cooling of the slab coming out of the mold, that is, the amount of secondary cooling water shower per 1 kg of slab, is set to 1.6/Kg or more as described above.
4.0/Kg or less. The slab thickness is 150mm.
~300mm. In addition, during this continuous casting, in order to increase the equiaxed crystallinity and reduce center segregation,
It is desirable to apply electromagnetic stirring to the molten steel in the casting by a known method.

次いでスラブに対しては前述のように1100〜
1320℃の温度に加熱し、粗圧延および仕上圧延か
らなる熱間圧延を施して厚さ1.5〜3.5mmの熱延コ
イルとする。ここで粗圧延段階は、前述のように
圧下率30%以上、90%以下でかつ歪速度0.5sec-1
以上、20sec-1以下のパスを少くとも1パス以上
含む圧延スケジユールで実施する。
Next, for slabs, 1100~
It is heated to a temperature of 1320°C and subjected to hot rolling consisting of rough rolling and finish rolling to form a hot rolled coil with a thickness of 1.5 to 3.5 mm. Here, the rough rolling stage is performed at a reduction rate of 30% or more and 90% or less and a strain rate of 0.5sec -1 as described above.
The above rolling schedule is carried out using a rolling schedule that includes at least one pass of 20 sec -1 or less.

上記の如く、連続鋳造における2次冷却水の注
水比、スラブ加熱温度、粗圧延の圧下率および歪
速度を設定することは、C含有量が0.020%以下
の低C素材を用いて2次再結晶不良率の少ない磁
気特性の優れた製品を得るために必要である。
As mentioned above, setting the injection ratio of secondary cooling water, slab heating temperature, rolling reduction ratio and strain rate of rough rolling in continuous casting is important for secondary recycling using a low C material with a C content of 0.020% or less. This is necessary to obtain a product with excellent magnetic properties and a low crystal defect rate.

熱延コイルに対しては、700℃〜1100℃の温度
で短時間連続焼鈍後急冷してから冷間圧延を施す
ことが望ましく、このように熱延コイルに焼鈍を
施すことによつてより一層優れた磁気特性を得る
ことができる。冷間圧延は、常法にしたがつて1
回あるいは700〜1100℃での短時間連続焼鈍によ
る中間焼鈍を挟み2回以上施し、最終板厚とす
る。
For hot-rolled coils, it is desirable to perform continuous annealing for a short time at a temperature of 700°C to 1100°C, then rapidly cool the coil, and then cold-roll the coil. Excellent magnetic properties can be obtained. Cold rolling was carried out according to the conventional method.
The final plate thickness is obtained by performing intermediate annealing twice or more with short-time continuous annealing at 700 to 1100°C.

冷間圧延により最終板厚とした冷延板に対して
は、700〜900℃の湿潤水素中にて脱炭を主目的と
した連続焼鈍を施すのが通常である。この焼鈍に
よる脱炭および表面酸化層生成の効果によつて、
製品の磁気特性およびグラス皮膜生成を安定化さ
せることができる。但しこの発明では素材中のC
含有量が少ないから、場合によつてはこのような
脱炭焼鈍を省くこともでき、したがつて脱炭焼鈍
は必要に応じて行なえば良い。このように必要に
応じて脱炭焼鈍を行なつた後、MgOを主体する
スラリー状の焼鈍分離剤をコイル両面に塗布乾燥
し、次いで水素気流中で1000℃以上の温度で高温
仕上焼鈍を行ない、一方向性珪素鋼板の製品とす
る。
A cold-rolled sheet that has been cold-rolled to its final thickness is usually subjected to continuous annealing in wet hydrogen at 700 to 900°C with the main purpose of decarburization. Due to the effects of decarburization and surface oxide layer formation due to this annealing,
The magnetic properties and glass film formation of the product can be stabilized. However, in this invention, C in the material
Since the content is small, such decarburization annealing can be omitted in some cases, and therefore decarburization annealing can be performed as necessary. After performing decarburization annealing as necessary, a slurry-like annealing separator mainly composed of MgO is applied to both sides of the coil and dried, followed by high-temperature finish annealing at a temperature of 1000°C or higher in a hydrogen stream. , a product made of unidirectional silicon steel sheet.

以下にこの発明の実施例を記す。 Examples of this invention are described below.

実施例 1 C0.005%、Si3.05%、Mn0.04%、S0.015%を含
有する溶鋼を200mm厚のスラブに連続鋳造し、か
つその連続鋳造における2次冷却水を注水比1.8
/Kgとしてスラブを2次冷却し、次いで1180℃
において30分間スラブ加熱した後、圧下率40%、
歪速度10sec-1のパスを4パス繰返して粗圧延し、
さらに仕上圧延して2.2mm厚の熱延コイルとした。
次いで950℃×1分間の中間焼鈍を挟む2回の冷
間圧延により0.30mmの最終板厚とし、続いて
MgOスラリーを塗布乾燥し、水素中において
1200℃で10時間仕上焼鈍した。得られた製品の磁
気特性は、磁束密度B10値が1.85テスラ、鉄損
W1750値が1.31w/Kgと良好な値を示し、かつ
完全に再結晶していることが確認された。
Example 1 Molten steel containing 0.005% C, 3.05% Si, 0.04% Mn, and 0.015% S was continuously cast into a 200 mm thick slab, and the secondary cooling water in the continuous casting was poured at a water injection ratio of 1.8.
/Kg, and then cooled the slab to 1180℃.
After heating the slab for 30 minutes at
Rough rolling was performed by repeating 4 passes at a strain rate of 10 sec -1 .
It was further finished rolled into a 2.2 mm thick hot rolled coil.
Next, the final plate thickness was 0.30 mm by cold rolling twice with intermediate annealing at 950°C for 1 minute, and then
Apply MgO slurry, dry it, and place it in hydrogen.
Finish annealing was performed at 1200°C for 10 hours. The magnetic properties of the obtained product are as follows: magnetic flux density B10 value is 1.85 Tesla, iron loss
It was confirmed that the W 17 / 50 value was 1.31 w/Kg, which was a good value, and was completely recrystallized.

実施例 2 C0.015%、Si2.95%、Mn0.04%、Se0.015%を
含有する溶鋼を、鋳型内のメニスカスから2.1m
の位置で電磁撹拌を付加しつつ連続鋳造し、かつ
2次冷却水の注水比を1.8/Kgとして2次冷却
し、得られた230mm厚のスラブを1250℃で30分間
加熱し、次いで粗圧延5パスのうち最終パスが圧
下率70%、歪速度6sec-1なる条件で粗圧延を行な
い、さらに仕上圧延を施して2.7mm厚の熱延コイ
ルとした。次いで900℃×2分間の連続焼鈍を施
した後、950℃×1分間の中間焼鈍を挟む2回の
冷間圧延により最終板厚0.35mmとし、さらに湿水
素中にて800℃×1分間の脱炭焼鈍を行ない、
MgOスラリーを塗布乾燥後、水素中において
1200℃で10時間仕上焼鈍を施した。得られた製品
の磁気特性は、磁束密度B10値が1.87テスラ、鉄
損W1750値が1.33W/Kgと良好な値を示し、か
つ完全な2次再結晶組織が得られていることが確
認された。
Example 2 Molten steel containing 0.015% C, 2.95% Si, 0.04% Mn, and 0.015% Se was poured 2.1 m from the meniscus in the mold.
Continuous casting was carried out with electromagnetic stirring at the position , and secondary cooling was performed at a secondary cooling water injection ratio of 1.8/Kg. The resulting 230 mm thick slab was heated at 1250°C for 30 minutes, and then rough rolled. Rough rolling was performed under the conditions that the final pass of the 5 passes had a reduction rate of 70% and a strain rate of 6 sec -1 , and then finish rolling was performed to obtain a 2.7 mm thick hot rolled coil. Next, after continuous annealing at 900°C for 2 minutes, cold rolling was performed twice with intermediate annealing at 950°C for 1 minute to give a final thickness of 0.35 mm, and further annealing at 800°C for 1 minute in wet hydrogen was performed. Perform decarburization annealing,
After applying MgO slurry and drying, place it in hydrogen.
Finish annealing was performed at 1200°C for 10 hours. The magnetic properties of the obtained product showed good values, with a magnetic flux density B 10 value of 1.87 Tesla and an iron loss W 17 / 50 value of 1.33 W/Kg, and a perfect secondary recrystallized structure was obtained. This was confirmed.

以上の説明で明らかなようにこの発明の一方向
性珪素鋼板の製造方法によれば、従来優れた磁気
特性を得ることが困難とされていたC含有量の少
ない素材を用い、連続鋳造における2次冷却水の
注水比、スラブ加熱温度、および熱延粗圧延のパ
ス条件を適切に設定することにより、従来と同等
の優れた磁気特性を有する一方向性珪素鋼板を得
ることが可能となつた。そしてこの発明の方法で
は上述のように素材中のC含有量が少なく、スラ
ブ加熱温度が1100〜1320℃と従来よりも低いた
め、燃料原単位が小さいとともにスケール発生量
も少なく、さらにはスラブ加熱炉の耐久性も高い
など、製造コストを従来よりも安価とすることが
でき、また外観品質も良好となるなど、各種の効
果が得られる。
As is clear from the above explanation, according to the method for manufacturing a unidirectional silicon steel sheet of the present invention, a material with a low carbon content, which has been difficult to obtain in the past, is used, and By appropriately setting the secondary cooling water injection ratio, slab heating temperature, and hot rolling rough rolling pass conditions, it has become possible to obtain grain-oriented silicon steel sheets with excellent magnetic properties equivalent to conventional ones. . As mentioned above, in the method of this invention, the C content in the material is low and the slab heating temperature is 1,100 to 1,320°C, lower than conventional methods, so the fuel consumption is small and the amount of scale generated is small. Various effects can be obtained, such as the durability of the furnace being high, manufacturing costs being lower than conventional methods, and appearance quality being improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続鋳造における2次冷却水の注水比
と2度再結晶不良率との関係を示す相関図、第2
図はスラブ加熱温度と2次再結晶不良率との関係
を示す相関図、第3図は熱延粗圧延段階における
1パスの圧下率および歪速度が2次再結晶不良率
に及ぼす影響を示す相関図である。
Figure 1 is a correlation diagram showing the relationship between the injection ratio of secondary cooling water and the defective rate of second recrystallization in continuous casting.
The figure is a correlation diagram showing the relationship between the slab heating temperature and the secondary recrystallization failure rate, and Figure 3 shows the influence of the rolling reduction rate and strain rate of one pass in the hot rolling rough rolling stage on the secondary recrystallization failure rate. It is a correlation diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 C0.020%(重量%、以下同じ)以下、Si2.5
〜4.0%、Mn0.01〜0.20%を含有しかつS、Seの
少くとも1種を合計で0.005〜0.10%含有する一
方向性珪素鋼板用溶鋼を連続鋳造用鋳型に注入
し、その鋳型から出たスラブを1.6/Kg以上、
4.0/Kg以下の注水比で2次冷却し、次いでス
ラブを1100〜1320℃に加熱した後、圧下率30%以
上、90%以下でしかも歪速度0.5sec-1以上、
20sec-1以下のパスを少なくとも1パス以上含む
粗圧延を行ない、続いて仕上熱延を行なつた後、
1回の冷間圧延もしくは中間焼鈍を挟む2回以上
の冷間圧延を施して最終板厚とし、必要に応じて
脱炭焼鈍を行なつた後、焼鈍分離剤を塗布して仕
上焼鈍を施すことを特徴とする一方向性珪素鋼板
の製造方法。
1 C0.020% (weight%, same below) or less, Si2.5
~4.0%, Mn0.01~0.20%, and at least one of S and Se in a total of 0.005~0.10%. Molten steel for unidirectional silicon steel plate is poured into a continuous casting mold, and from the mold. 1.6/Kg or more of the slab that came out,
After secondary cooling with a water injection ratio of 4.0/Kg or less, and then heating the slab to 1100 to 1320℃, the rolling reduction is 30% or more and 90% or less, and the strain rate is 0.5sec -1 or more.
After performing rough rolling including at least one pass of 20 sec -1 or less, followed by finish hot rolling,
The final plate thickness is achieved by performing one cold rolling or two or more cold rollings with intermediate annealing in between, and after performing decarburization annealing as necessary, an annealing separator is applied and final annealing is performed. A method for producing a unidirectional silicon steel sheet, characterized in that:
JP58163708A 1983-09-06 1983-09-06 Production of grain oriented silicon steel sheet Granted JPS6056021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58163708A JPS6056021A (en) 1983-09-06 1983-09-06 Production of grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58163708A JPS6056021A (en) 1983-09-06 1983-09-06 Production of grain oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPS6056021A JPS6056021A (en) 1985-04-01
JPH0331764B2 true JPH0331764B2 (en) 1991-05-08

Family

ID=15779120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58163708A Granted JPS6056021A (en) 1983-09-06 1983-09-06 Production of grain oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS6056021A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482107A (en) * 1994-02-04 1996-01-09 Inland Steel Company Continuously cast electrical steel strip
IT1396714B1 (en) * 2008-11-18 2012-12-14 Ct Sviluppo Materiali Spa PROCEDURE FOR THE PRODUCTION OF MAGNETIC SHEET WITH ORIENTED GRAIN FROM THE THIN BRAMMA.
JP5428780B2 (en) * 2009-11-11 2014-02-26 新日鐵住金株式会社 Steel continuous casting method
CN107365940B (en) * 2017-08-16 2019-11-15 北京科技大学 A kind of preparation method and application of 700MPa grades of Ultra-fine Grained high-strength weathering steel
KR102164329B1 (en) * 2018-12-19 2020-10-12 주식회사 포스코 Grain oriented electrical steel sheet and method for manufacturing therof

Also Published As

Publication number Publication date
JPS6056021A (en) 1985-04-01

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
JPS60145318A (en) Heating method of grain-oriented silicon steel slab
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
EP0019289B1 (en) Process for producing grain-oriented silicon steel strip
JP4268042B2 (en) Method for producing (110) [001] grain-oriented electrical steel using strip casting
JPS631371B2 (en)
US4592789A (en) Process for producing a grain-oriented electromagnetic steel sheet or strip
JPS6160895B2 (en)
JPH0331764B2 (en)
JPH01306523A (en) Production of non-oriented electrical sheet having high magnetic flux density
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JPS5843446B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH02259016A (en) Production of grain-oriented silicon steel sheet free from surface blister defect
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH03260017A (en) Manufacture of nonoriented electromagnetic steel strip
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH0351770B2 (en)
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPS5935415B2 (en) Rolling method for hot-rolled steel strip for producing unidirectional silicon steel sheets
JPH03285018A (en) Manufacture of grain-oriented high magnetic flux density magnetic steel sheet
JPS62284017A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS60200916A (en) Manufacture of anisotropic silicon steel plate
JPH0257125B2 (en)
JPH0663032B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties and surface properties