JPH0331679B2 - - Google Patents

Info

Publication number
JPH0331679B2
JPH0331679B2 JP60174016A JP17401685A JPH0331679B2 JP H0331679 B2 JPH0331679 B2 JP H0331679B2 JP 60174016 A JP60174016 A JP 60174016A JP 17401685 A JP17401685 A JP 17401685A JP H0331679 B2 JPH0331679 B2 JP H0331679B2
Authority
JP
Japan
Prior art keywords
carbon
silicon nitride
silicon carbide
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60174016A
Other languages
Japanese (ja)
Other versions
JPS6236100A (en
Inventor
Shinichi Sakata
Katsuro Masunaga
Yasuhiko Kamitoku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60174016A priority Critical patent/JPS6236100A/en
Publication of JPS6236100A publication Critical patent/JPS6236100A/en
Publication of JPH0331679B2 publication Critical patent/JPH0331679B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭化珪素ウイスカーの製造に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to the production of silicon carbide whiskers.

(従来の技術及びその問題点) 炭化珪素ウイスカーは欠陥のない繊維状に成長
した単結晶であつて、非常に高い引張強度及び弾
性率を有しており、複合材料、特に高い温度で用
いられる金属又はセラミツクス複合材料用の素材
として期待されている。
(Prior art and its problems) Silicon carbide whiskers are defect-free single crystals grown in the form of fibers and have very high tensile strength and elastic modulus, and are used in composite materials, especially at high temperatures. It is expected to be used as a material for metal or ceramic composite materials.

炭化珪素ウイスカーの製法としては、 (1) 珪素源として二酸化珪素と使用し、これを炭
材と共に不活性気流中で加熱反応させる方法、 (2) テトラクロロシラン、テトラメチルシランの
ような珪素化合物と、メタン、プロパン、四塩
化炭素のような炭素化合物の蒸気とを水素気流
によつて高温雰囲気の反応器に搬送し、気相で
反応させた後、反応器の下流側の低温部に析出
させる方法、 (3) 金属珪素と炭素源とを反応させる方法などが
知られている。
Methods for producing silicon carbide whiskers include: (1) using silicon dioxide as a silicon source and reacting it with carbon material by heating in an inert gas stream; (2) using a silicon compound such as tetrachlorosilane or tetramethylsilane; , vapors of carbon compounds such as methane, propane, and carbon tetrachloride are transported by a hydrogen stream to a reactor in a high-temperature atmosphere, reacted in the gas phase, and then precipitated in a low-temperature section downstream of the reactor. (3) A method of reacting metallic silicon with a carbon source is known.

これらの方法には、粒状結晶の副生が多いと
か、気相反応であるため反応時間の割にはウイス
カーの収量が少ないとかの欠点がある。
These methods have drawbacks such as the production of many granular crystals as a by-product and the fact that the yield of whiskers is low considering the reaction time because the reaction is a gas phase reaction.

(問題点を解決するための手段) 本発明は上記欠点のない炭化珪素ウイスカーの
製法を提供する。
(Means for Solving the Problems) The present invention provides a method for producing silicon carbide whiskers that does not have the above drawbacks.

本発明によれば、非晶質窒化珪素粉末に特定量
の鉄、ニツケル、コバルト及びそれらの化合物か
ら選ばれる添加剤が配合された混合物、あるいは
これにさらに炭素が配合された混合物を、一酸化
炭素及び/又は二酸化炭素を含有する非酸化性ガ
ス雰囲気下で焼成することを特徴とする炭化珪素
ウイスカーの製法が提供される。
According to the present invention, a mixture in which amorphous silicon nitride powder is blended with a specific amount of an additive selected from iron, nickel, cobalt, and their compounds, or a mixture in which carbon is further blended with monoxide. A method for producing silicon carbide whiskers is provided, which is characterized by firing in a non-oxidizing gas atmosphere containing carbon and/or carbon dioxide.

本発明で使用される非晶質窒化珪素粉末は、そ
れ自体公知の方法、例えば、四ハロゲン化珪素と
アンモニアとを、液相又は気相で反応させた反応
生成物を加熱処理することによつて得ることがで
き、通常のX線回折によつて明確な回析現象が現
れない、いわゆる非晶質の粉末である。
The amorphous silicon nitride powder used in the present invention can be obtained by a method known per se, for example, by heating a reaction product obtained by reacting silicon tetrahalide and ammonia in a liquid phase or a gas phase. It is a so-called amorphous powder that does not show any clear diffraction phenomenon in ordinary X-ray diffraction.

鉄化合物、ニツケル化合物及びコバルト化合物
としては、焼成時に少なくとも一部が分解してそ
れぞれ鉄、ニツケル及びコバルトを生成するもの
を使用することができるが、焼成時に容易に鉄、
ニツケル又はコバルトに分解するものが好まし
い。その具体例としては、鉄、ニツケル、コバル
トの酸化物、ハロゲン化物、硫化物、オキシハロ
ゲン化物、及び鉄、ニツケル又はコバルトを一成
分とする合金が挙げられる。添加剤の配合量は、
窒化珪素粉末100重量部当たり、金属換算で0.05
〜10重量部、好ましくは0.1〜2重量部である。
添加剤の配合量が前記範囲をはずれるとウイスカ
ーの収量が低下するようになる。
As the iron compound, nickel compound, and cobalt compound, those that at least partially decompose during firing to produce iron, nickel, and cobalt, respectively, can be used.
Those that decompose into nickel or cobalt are preferred. Specific examples thereof include oxides, halides, sulfides, and oxyhalides of iron, nickel, and cobalt, and alloys containing iron, nickel, or cobalt as one component. The amount of additives is
0.05 metal equivalent per 100 parts by weight of silicon nitride powder
~10 parts by weight, preferably 0.1 to 2 parts by weight.
If the blending amount of the additive is out of the above range, the yield of whiskers will decrease.

本発明で使用されることのある炭素について
は、その形態に特に制限はなく、粉末のものから
塊状のものまで使用することができるが、細かい
粉状の炭素が好ましい。炭素を使用すると、非晶
質窒化珪素の炭化が促進されるため、より低い温
度での焼成が可能となる。炭素の使用量は原料窒
化珪素粉末に対して3倍モル以下である。炭素の
使用量が上記範囲をはずれると、焼成後の脱炭工
程が必要となる。
There are no particular restrictions on the form of carbon that may be used in the present invention, and it may be in the form of powder or lumps, but fine powder carbon is preferred. When carbon is used, carbonization of amorphous silicon nitride is promoted, allowing firing at a lower temperature. The amount of carbon used is 3 times or less by mole based on the raw material silicon nitride powder. If the amount of carbon used is outside the above range, a decarburization step after firing will be required.

非晶質窒化珪素粉末と添加剤、場合により炭素
との混合物を調製する方法については特に制限は
なく、それ自体公知の方法、例えば、各原料を乾
式混合する方法、不活性液体中で各原料を湿式混
合した後に不活性液体を除去する方法などを適宜
採用し得る。混合装置としては、V型混合機、ボ
ールミル又は振動ボールミルが好ましく使用され
る。上記混合物の別の調製方法としては、非晶質
窒化珪素粉末の前駆体、例えば、シリコンジイミ
ドないしシリコンテトラミドに添加剤及び場合に
より炭素を混合分散させ、この分散物を加熱処理
する方法を採用することもできる。これらの各調
製方法においては、非晶質窒化珪素及びその前駆
体は酸素や水に対して極めて敏感であるので、制
御された不活性雰囲気下で取り扱うことが必要と
される。
There are no particular restrictions on the method for preparing the mixture of amorphous silicon nitride powder, additives, and optionally carbon, and methods known per se may be used, such as dry mixing of each raw material, or mixing of each raw material in an inert liquid. A method of removing an inert liquid after wet mixing may be adopted as appropriate. As the mixing device, a V-type mixer, a ball mill or a vibrating ball mill is preferably used. Another method for preparing the above mixture is to mix and disperse additives and optionally carbon into a precursor of amorphous silicon nitride powder, such as silicon diimide or silicon tetraamide, and then heat-treat the dispersion. You can also do that. Each of these preparation methods requires handling under a controlled inert atmosphere since amorphous silicon nitride and its precursors are extremely sensitive to oxygen and water.

焼成時の非酸化性ガス雰囲気を構成する非酸化
性ガスの具体例としては、窒素、アルゴン、アン
モニア、あるいはこれらの混合ガスが挙げられ
る。一酸化炭素及び/又は二酸化炭素と非酸化性
ガスとの比は、容積比で1:0.5〜2であること
が好ましい。
Specific examples of the non-oxidizing gas constituting the non-oxidizing gas atmosphere during firing include nitrogen, argon, ammonia, or a mixed gas thereof. The ratio of carbon monoxide and/or carbon dioxide to non-oxidizing gas is preferably 1:0.5 to 2 by volume.

焼成条件としては、混合粉末が1000℃から最高
温度までに数秒ないし数十時間、好ましくは1〜
20時間で昇温されるような条件を選択することが
望ましい。最高温度は通常1900℃以下、好ましく
は1650℃以下である。
The firing conditions are such that the mixed powder is heated from 1000℃ to the maximum temperature for several seconds to several tens of hours, preferably for 1 to 10 hours.
It is desirable to select conditions that allow the temperature to rise in 20 hours. The maximum temperature is usually below 1900°C, preferably below 1650°C.

混合粉末の焼成の際に使用される炉については
特に制限がなく、例えば、高周波誘導加熱方式又
は抵抗加熱方式などによるバツチ式炉、ロータリ
ー炉、流動化炉、プツシヤー炉などを使用するこ
とができる。
There are no particular restrictions on the furnace used for firing the mixed powder, and for example, batch type furnaces, rotary furnaces, fluidization furnaces, pusher furnaces, etc. using a high frequency induction heating method or resistance heating method can be used. .

(実施例) 以下に実施例を示す。(Example) Examples are shown below.

実施例 1 シリコンジイミドを1200℃で加熱分解して得ら
れた非晶質窒化珪素粉末5g、硫化鉄0.02gを窒
素雰囲気下で振動ボールミルに入れ1時間混合し
た。混合物を内径40mm、内容積50c.c.の黒鉛製ルツ
ボに入れ、抵抗加熱炉中にセツトした。上記ルツ
ボを、窒素と一酸化炭素との比が1:1である混
合ガス雰囲気下に、室温から1650℃までを250
℃/分で昇温し、さらに1650℃に5時間保持し
た。
Example 1 5 g of amorphous silicon nitride powder obtained by thermally decomposing silicon diimide at 1200° C. and 0.02 g of iron sulfide were placed in a vibrating ball mill under a nitrogen atmosphere and mixed for 1 hour. The mixture was placed in a graphite crucible with an inner diameter of 40 mm and an inner volume of 50 c.c., and the crucible was set in a resistance heating furnace. The above crucible was heated from room temperature to 1650℃ for 250℃ in a mixed gas atmosphere with a ratio of nitrogen and carbon monoxide of 1:1.
The temperature was raised at a rate of 1650° C./min and further maintained at 1650° C. for 5 hours.

得られた炭化珪素粉末をX線回折によつて調べ
たところ結晶形態は主としてβ型であり、わずか
にα型が認められた。走査型電子顕微鏡による観
察では長さ10〜20μ、径0.1〜2μのウイスカー形状
であつた。
When the obtained silicon carbide powder was examined by X-ray diffraction, the crystal form was mainly β type, with a slight α type observed. When observed using a scanning electron microscope, it was in the shape of a whisker with a length of 10-20μ and a diameter of 0.1-2μ.

実施例 2 硫化鉄に代えて、鉄粉0.02gを使用した以外は
実施例と同様の方法を繰り返した。
Example 2 The same method as in Example was repeated except that 0.02 g of iron powder was used instead of iron sulfide.

長さ10〜20μ、径0.1〜5μのウイスカー状の炭化
珪素粉末が得られた。
A whisker-like silicon carbide powder having a length of 10 to 20 μm and a diameter of 0.1 to 5 μm was obtained.

実施例 3 硫化鉄に代えて、塩化ニツケル0.02gを使用し
た以外は実施例と同様の方法を繰り返した。
Example 3 The same method as in Example was repeated except that 0.02 g of nickel chloride was used instead of iron sulfide.

長さ10〜40μ、径0.1〜2μのウイスカー状の炭化
珪素粉末が得られた。
A whisker-like silicon carbide powder having a length of 10 to 40 μm and a diameter of 0.1 to 2 μm was obtained.

実施例 4 硫化鉄に代えて、硫化コバルト0.02gを使用し
た以外は実施例と同様の方法を繰り返した。
Example 4 The same method as in Example was repeated except that 0.02 g of cobalt sulfide was used instead of iron sulfide.

長さ10〜20μ、径0.1〜2μのウイスカー状の炭化
珪素粉末が得られた。
A whisker-like silicon carbide powder with a length of 10 to 20 μm and a diameter of 0.1 to 2 μm was obtained.

実施例 5 一酸化炭素に代えて二酸化炭素を使用した以外
は実施例1と同様の方法を繰り返した。
Example 5 The same method as Example 1 was repeated except that carbon dioxide was used instead of carbon monoxide.

得れらた結晶はβ型及び少量のα型の炭化珪素
ウイスカーであり、その長さは5〜10μ、径は0.1
〜1μであつた。
The obtained crystals are β-type and a small amount of α-type silicon carbide whiskers, with a length of 5 to 10μ and a diameter of 0.1
It was ~1μ.

実施例 6 実施例1における混合物にさらに活性炭0.96g
が配合された混合物を、焼成温度を1600℃に変え
た以外は実施例1と同様に処理した。
Example 6 0.96 g of activated carbon was added to the mixture in Example 1.
The mixture containing the following was treated in the same manner as in Example 1 except that the firing temperature was changed to 1600°C.

得られた結晶はβ型及び少量のα型の炭化珪素
ウイスカーであり、その長さは5〜10μ、径は0.1
〜1μであつた。
The obtained crystals are β-type and a small amount of α-type silicon carbide whiskers, with a length of 5 to 10μ and a diameter of 0.1
It was ~1μ.

比較例 1 硫化鉄に代えて、粉末状炭素1gを使用した以
外は実施例1と同様の方法を繰り返した。
Comparative Example 1 The same method as in Example 1 was repeated except that 1 g of powdered carbon was used instead of iron sulfide.

得られた炭化珪素粉末を走査型電子顕微鏡によ
り観察したところ、粒状の炭化珪素であつた。
When the obtained silicon carbide powder was observed with a scanning electron microscope, it was found to be granular silicon carbide.

Claims (1)

【特許請求の範囲】 1 非晶質窒化珪素粉末100重量部に、鉄、ニツ
ケル、コバルト及びそれらの化合物から選ばれる
添加剤が金属換算で0.05〜10重量部配合された混
合物を、一酸化炭素及び/又は二酸化炭素を含有
する非酸化性ガス雰囲気下で焼成することを特徴
とする炭化珪素ウイスカーの製造法。 2 非晶質窒化珪素粉末100重量部に、鉄、ニツ
ケル、コバルト及びそられの化合物から選ばれる
添加剤が金属換算で0.05〜10重量部配合され、さ
らに非晶質窒化珪素に対して3倍モル以下の炭素
が配合された混合物を、一酸化炭素及び/又は二
酸化炭素を含有する非酸化性ガス雰囲気下で焼成
することを特徴とする炭化珪素ウイスカーの製造
法。
[Scope of Claims] 1 A mixture of 100 parts by weight of amorphous silicon nitride powder and 0.05 to 10 parts by weight of an additive selected from iron, nickel, cobalt, and their compounds in terms of metal is mixed with carbon monoxide. and/or a method for producing silicon carbide whiskers, characterized by firing in a non-oxidizing gas atmosphere containing carbon dioxide. 2 Additives selected from iron, nickel, cobalt, and their compounds are added to 100 parts by weight of amorphous silicon nitride powder in an amount of 0.05 to 10 parts by weight in terms of metal, and the amount is three times that of the amorphous silicon nitride. A method for producing silicon carbide whiskers, which comprises firing a mixture containing less than a molar amount of carbon in a non-oxidizing gas atmosphere containing carbon monoxide and/or carbon dioxide.
JP60174016A 1985-08-09 1985-08-09 Production of silicon carbide whisker Granted JPS6236100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60174016A JPS6236100A (en) 1985-08-09 1985-08-09 Production of silicon carbide whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60174016A JPS6236100A (en) 1985-08-09 1985-08-09 Production of silicon carbide whisker

Publications (2)

Publication Number Publication Date
JPS6236100A JPS6236100A (en) 1987-02-17
JPH0331679B2 true JPH0331679B2 (en) 1991-05-08

Family

ID=15971164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60174016A Granted JPS6236100A (en) 1985-08-09 1985-08-09 Production of silicon carbide whisker

Country Status (1)

Country Link
JP (1) JPS6236100A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918073B2 (en) 2001-06-25 2007-05-23 独立行政法人科学技術振興機構 Method for synthesizing 3C-SiC nanowhiskers and 3C-SiC nanowhiskers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131899A (en) * 1983-12-16 1985-07-13 Tokai Kounetsu Kogyo Kk Manufacture of silicon carbide whisker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131899A (en) * 1983-12-16 1985-07-13 Tokai Kounetsu Kogyo Kk Manufacture of silicon carbide whisker

Also Published As

Publication number Publication date
JPS6236100A (en) 1987-02-17

Similar Documents

Publication Publication Date Title
US5340417A (en) Process for preparing silicon carbide by carbothermal reduction
US4619905A (en) Process for the synthesis of silicon nitride
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
JPH0411519B2 (en)
JPS62241812A (en) Manufacture of silicon nitride
JPH0331679B2 (en)
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
Real et al. Synthesis of silicon carbide whiskers from carbothermal reduction of silica gel by means of the constant rate thermal analysis (CRTA) method
EP0754782B1 (en) Manufacture of titanium carbide, nitride and carbonitride whiskers
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS61205699A (en) Production of silicon nitride whisker
JPS6111885B2 (en)
JPS6126600A (en) Preparation of beta type silicon carbide whisker
EP0179670A2 (en) Production of silicon carbide cobweb whiskers
JPS61295300A (en) Preparation of silicon nitride whisker
JPH03232800A (en) Production of silicon carbide whisker
JPH02111700A (en) Production of silicon carbide whisker
JPH05326B2 (en)
JPS6259049B2 (en)
JPS61295213A (en) Production of silicon nitride
JPH03193617A (en) Production of silicon carbide powder
JPH01275416A (en) Production of beta-type sic powder controlled 2halpha phase having high purity
JP2604753B2 (en) Method for producing silicon carbide whiskers
JPS63100098A (en) Production of silicon nitride whisker