JPH0331664B2 - - Google Patents

Info

Publication number
JPH0331664B2
JPH0331664B2 JP55152759A JP15275980A JPH0331664B2 JP H0331664 B2 JPH0331664 B2 JP H0331664B2 JP 55152759 A JP55152759 A JP 55152759A JP 15275980 A JP15275980 A JP 15275980A JP H0331664 B2 JPH0331664 B2 JP H0331664B2
Authority
JP
Japan
Prior art keywords
particle size
porosity
ceramic
mixture
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55152759A
Other languages
Japanese (ja)
Other versions
JPS5776402A (en
Inventor
Terumizu Murai
Manabu Ando
Setsu Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55152759A priority Critical patent/JPS5776402A/en
Publication of JPS5776402A publication Critical patent/JPS5776402A/en
Publication of JPH0331664B2 publication Critical patent/JPH0331664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/03Stationary work or tool supports
    • B23Q1/032Stationary work or tool supports characterised by properties of the support surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B1/00Measuring instruments characterised by the selection of material therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Workshop Equipment, Work Benches, Supports, Or Storage Means (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、無機焼結超精密測定台に関するもの
である。 機械工作における基本の一つは、基準を正確に
維持することであり、その基準面として使用され
るのが基準定盤と呼ばれる測定台である。機械工
作は、この定盤の上で工作物の位置寸法を計測し
てこれを定め、必要なけがきを行つて工作する
が、このけがき作業や計測に用いる装置は、定盤
の上で移動させて正確に位置を定めるために、軽
くて滑かに移動できることが重要な条件であると
同時に、その基準となる面が温度によつて伸縮し
たり変形してはならない。しかも、常時使用する
ことから、耐摩耗性を有することも必要である。 しかるに、従来から用いられている鉄製の定盤
では、温度膨張による形状寸法の変化が著しく、
高精度を得るためには恒温湿の部屋を必要とす
る。また、はんれい岩からなる天然石定盤も用い
られているが、十分な硬度、耐摩耗性を有してい
ないという欠点がある。 本発明は、このような従来の定盤における欠点
を排除した測定台を得ようとするものであり、酸
化物や非酸化物を素材として高温で焼結した無機
焼結体即ちある種のセラミツクスによつて測定台
を形成し、熱変形をなくすと共にすぐれた硬度と
耐蝕性、耐熱性、耐摩耗性をもたせたことを特徴
とするものである。 また、本発明の測定台は、硬度が高く適当な表
面積及び体積を有する粗粒と、気孔を調整するた
めの中粒や微粒によつて構成し、上記粗粒の研磨
表面により、精度ある基準面としての機能を果た
すための安定的な受圧面を形成させ、それを気孔
が調整された基材内に分散させることにより、表
面をキサグ面と同様な機能を有する多孔質に形成
した点に特徴を有するものである。 粒径が1μm程度の微粒アルミナを主成分とし
て焼成したセラミツクスでは、その表面が気孔の
ない緻密なものとなり、それを鏡面研磨したとき
には、その研磨面上に置くブロツクゲージ等の他
の鏡面物体がそれに吸着(リンギング)して簡単
に動かすことができず、緻密であることが作業性
等において却つて欠点となる。このような欠点を
排除するためには、粒径の大きい素材を用いれば
よいが、その場合には、セラミツクスが超精密測
定台に要求される緻密さを失い、それに伴つて他
の各種問題点が発生することになる。 一方、一般的に、大、中、小のように複数の径
をもつ球の多数を容器等に充填する場合に、最小
の空〓率を得るためには、それらの球の径比に応
じて、大きさを異にする球の最適な混合割合が決
まることが知られている。このような考え方をセ
ラミツクス素材の粒径に適用すると、セラミツク
スの緻密さを制御できると同時に、適切な気孔率
を得ることが可能になる。 本発明は、このような観点から、セラミツクス
を構成する素材の粒径及び混合比として最適な値
を選定することにより、表面に安定的な受圧面を
形成すると同時に、気孔を調整し、それによつて
表面における鏡面物体の滑りを円滑化し、硬度、
加工性をも適切に保つようにしたことを特徴とす
るものである。 以下、図面を参照して本発明をさらに具体的に
説明する。 第1図及び第2図は本発明の作業台の具体的な
構成例としての定盤及びVブロツクを示すもので
ある。これらを構成するセラミツクスの素材は、
コランダム、アランダム、ムライト、炭化硅素、
またはそれらの複数の混合物を主成分とし、必要
に応じて窒化硅素等を加え、あるいは後述する着
色のための添加物を混入させたもので、粒径が
0.2〜5mm程度の粗粒によつて形成される骨材と、
同材料で粒径が5μm以下の微粒によつて形成さ
れる基材を用い、これらを適当な割合で混合して
いる。特に、上記骨材は、例えば粒経が5mm、2
mm、1mm、0.5mm、0.2mm程度の5種類のものを適
宜混合して使用し、粒径の大きい骨材の間に順次
粒径の小さい骨材が充填された状態とする。さら
に、それらの間には微粒によつて形成された基材
を充填して結合させるが、この微粒の粒径は1μ
m以下とするのが望ましく、また必要に応じて粘
土、長石、陶土等を混入することもできる。而し
て、上記骨材の粒径分布によつて気孔率が調整さ
れ、比較的大きな骨材の間に基材が充填された状
態とすることにより気孔率を高めれば、被測定物
等の滑りをよくすることができる。この場合、上
記骨材は定盤やVブロツクの研摩された作業面1
a,1bにおいて鋳物定盤のキサゲ面と同様な断
続接触面を形成し、この点で作業面に対する被測
定物の滑りがよくなることになる。さらに、上記
作業面は、その表面の研磨により、多数の比較的
大きな骨材の間に、微粒によつて形成された基材
が充填された状態を呈し、その比較的大きな骨材
の研磨面が、気孔率の高い基材中にあつて、精度
ある基準面としての機能を果たすための安定的な
受圧面を形成することになり、また骨材はその粒
径を適当に選定することになり、また骨材はその
粒径を適当に選定することにより、セラミツクス
の硬度、加工性の調整を行うこともできる。 上記骨材及び基材の粒径及び混合比は、セラミ
ツクスの焼結後において気孔率が0.1〜20%にな
るように調整するのが、作業台の使用目的から適
切である。即ち、気孔率がその上限を越えると、
セラミツクスが緻密性を損なうことになり、また
その下限を越えると他の鏡面物体との間に過度の
吸着(リンキング)が生じて作業性を阻害するこ
とになる。また、上記骨材と基材の混合物は、図
面に示すような形状に成形して焼結するが、その
焼結温度は1300〜1500℃が最適であり、この焼結
により超硬材料よりも高いHRA93〜94以上の硬
度を得ることができる。 このようにして焼結した測定台は、その作業面
1a,1bを平坦にラツプ研摩して製品とする。
而して、以上においては、本発明の測定台を定盤
またはVブロツクとして構成する場合について説
明したが、それらの他に、例えばイケール、ヤゲ
ン台等として構成することもできる。 なお、上述した気孔率の調整によつてセラミツ
クスを比較的多孔に形成すると、作業面1a,1
bを除く外壁2a,2b等にプラスチツク塗装を
施した場合のプラスチツクの密着性が良好とな
り、外部からの衝撃を吸収して破損を防止するこ
とができる。図中、3aは補強用リブである。 また、目の疲労を防ぎ、あるいは精度を表示す
るために測定台を適宜着色することが可能であ
る。例えば、0.5〜10%のクロームを予め混合し
ておくことによつて焼結後の測定台を青色にする
ことができ、1〜8%の鉄によつて茶色に、0.5
〜5%の鉄とコバルトにより黒色に着色すること
ができる。 以上に詳述したように本発明によれば、熱変形
がないばかりでなく、極めて高い硬度を有し、耐
蝕性、耐熱性、耐摩耗性にすぐれた超精密測定台
を、安価に提供することができる。 さらに、本発明によれば、コランダム等の粒径
0.5〜5mmの粗粒と、粒径5μm以下の微粒とを混
合するようにしたので、それらを混合した物の気
孔率の調整が容易となり、しかも気孔率を0.1〜
20%に調整して焼結し、作業面を平坦に研磨加工
するようにしたので、表面における他の鏡面物体
の滑り、精度ある基準面としての機能を果たすた
めの安定的な受圧面、作業面の硬度及び加工性が
極めて良好に保持される。 次に、本発明の実施例を示す。 試験的な実施において、セラミツクス素材とし
ては、アルミナ(コランダム)の粗粒及び中粒か
らなる骨材、並びにアルミナの微粉からなる基材
の混合物に、さらに磁器質材料の微粉を混合した
ものを用いた。上記粗粒としては、粒径が700〜
50μmのものを、中粒としては粒径が50〜10μm
のものを、また微粉としては5μm以下のものを
使用した。上記アルミナの粗粒、中粒、及び微粉
の配合割合は、それらが20〜30wt%、30〜40wt
%、35〜50wt%の範囲内にあるように混合し、
さらに、これらのアルミナの75wt%に対して磁
器質材料の25wt%を混合した。上述した混合物
は、十分な撹拌混合の後に圧縮し、1350℃で焼成
した。 上述したような配合において焼成した燒結体
は、その気孔率を15%程度に調整することができ
た。 得られた燒結体は、各種の物性値において超精
密測定台に適した値を示し、例えば、熱膨張は比
較的小さく、一般のアルミナ質の熱膨張係数(25
〜800℃1/℃×10-6)が7.4〜8.0であるのに対
し、上記燒結体においては5.9の熱膨張係数(25
〜800℃1/℃×10-6)を得ることができた。こ
のように、熱膨張の影響が非常に小さいことは、
超精密測定治具やそれに関連する部材のための素
材として、極めて有利なものである。 また、上記燒結体は、摩擦係数(対FC25)に
おいても、第1表に示すように、アルミナの一般
品に比して優れた値を示している。
The present invention relates to an inorganic sintered ultra-precision measuring stand. One of the basics of machining is to maintain accurate standards, and the measuring table called a reference surface plate is used as the reference surface. In machine work, the position and dimensions of the workpiece are measured and determined on this surface plate, and the necessary markings are made and machined, but the equipment used for this marking work and measurement is moved on the surface plate. In order to accurately determine the position, it is important that it be light and able to move smoothly, and at the same time, the reference surface must not expand, contract, or deform due to temperature. Moreover, since it is used constantly, it is also necessary to have wear resistance. However, with conventionally used iron surface plates, the shape and dimensions change significantly due to temperature expansion.
To obtain high accuracy, a room with constant temperature and humidity is required. Natural stone surface plates made of gabbro are also used, but they have the drawback of not having sufficient hardness and wear resistance. The present invention aims to provide a measuring table that eliminates the drawbacks of conventional surface plates, and uses an inorganic sintered body made of oxide or non-oxide material and sintered at high temperature, that is, a certain type of ceramic. The measuring table is formed by the method, and is characterized by eliminating thermal deformation and having excellent hardness, corrosion resistance, heat resistance, and abrasion resistance. In addition, the measuring table of the present invention is composed of coarse grains with high hardness and appropriate surface area and volume, and medium grains and fine grains for adjusting pores, and the polished surface of the coarse grains provides a high precision standard. By forming a stable pressure-receiving surface that functions as a surface and dispersing it in a base material with adjusted pores, the surface is made porous with the same function as a kissing surface. It has characteristics. Ceramics made of fired ceramics mainly composed of fine alumina particles with a particle size of about 1 μm have a dense surface with no pores, and when polished to a mirror finish, other mirror-finished objects such as block gauges placed on the polished surface will It cannot be moved easily due to adsorption (ringing), and the fact that it is dense is a disadvantage in terms of workability. In order to eliminate these drawbacks, it is possible to use a material with a large particle size, but in that case, the ceramic loses the fineness required for an ultra-precision measuring table, and along with this, various other problems arise. will occur. On the other hand, in general, when filling a container with a large number of balls with multiple diameters such as large, medium, and small, in order to obtain the minimum void ratio, it is necessary to It is known that the optimal mixing ratio of spheres of different sizes is determined by Applying this concept to the particle size of ceramic materials makes it possible to control the density of ceramics and at the same time obtain an appropriate porosity. From this point of view, the present invention creates a stable pressure-receiving surface on the surface by selecting the optimum values for the particle size and mixing ratio of the materials that make up the ceramic, and at the same time adjusts the pores. It smoothes the sliding of specular objects on the surface, hardness,
It is characterized in that workability is also maintained appropriately. Hereinafter, the present invention will be explained in more detail with reference to the drawings. FIGS. 1 and 2 show a surface plate and a V-block as specific examples of the construction of the workbench of the present invention. The ceramic materials that make up these
corundum, alundum, mullite, silicon carbide,
or a mixture of multiple of these as the main component, with silicon nitride added as necessary, or additives for coloring as described below.
Aggregate formed by coarse particles of about 0.2 to 5 mm,
A base material made of fine particles of the same material with a particle size of 5 μm or less is used, and these are mixed in an appropriate ratio. In particular, the above-mentioned aggregate has a grain size of, for example, 5 mm and 2 mm.
Five types of aggregates, approximately mm, 1 mm, 0.5 mm, and 0.2 mm, are mixed and used as appropriate, and aggregates with smaller particle sizes are sequentially filled between aggregates with larger particles. Furthermore, a base material formed of fine particles is filled and bonded between them, and the particle size of these fine particles is 1 μm.
It is desirable to keep it below m, and if necessary, clay, feldspar, china clay, etc. can be mixed. Therefore, the porosity is adjusted by the particle size distribution of the aggregate, and if the porosity is increased by filling the base material between the relatively large aggregates, the porosity of the object to be measured, etc. It can improve slippage. In this case, the above aggregate is used on the polished working surface 1 of the surface plate or V-block.
An intermittent contact surface similar to the scraped surface of a casting surface plate is formed at a and 1b, and the object to be measured can easily slide against the work surface at this point. Further, by polishing the surface, the working surface exhibits a state in which a base material formed by fine particles is filled between a large number of relatively large aggregates, and the polished surface of the relatively large aggregates. However, in the base material with high porosity, it forms a stable pressure-receiving surface that functions as a precise reference surface, and the particle size of the aggregate must be selected appropriately. Furthermore, by appropriately selecting the particle size of the aggregate, the hardness and workability of the ceramic can be adjusted. It is appropriate to adjust the particle size and mixing ratio of the above-mentioned aggregate and base material so that the porosity will be 0.1 to 20% after sintering the ceramics, considering the intended use of the workbench. That is, when the porosity exceeds its upper limit,
The density of the ceramic will be impaired, and if the lower limit is exceeded, excessive adsorption (linking) will occur between the ceramic and other mirror-finished objects, impeding workability. In addition, the mixture of aggregate and base material mentioned above is molded into the shape shown in the drawing and sintered. A high hardness of HR A 93-94 or higher can be obtained. The measuring table thus sintered is made into a product by lap-polishing its working surfaces 1a and 1b to make it flat.
In the above, the case where the measuring table of the present invention is constructed as a surface plate or a V-block has been described, but in addition to these, it can also be constructed as, for example, a tombstone or a bevel table. Note that if the ceramic is made relatively porous by adjusting the porosity as described above, the working surfaces 1a, 1
When the outer walls 2a, 2b, etc., except for b, are coated with plastic, the adhesion of the plastic is good, and external shocks can be absorbed and damage can be prevented. In the figure, 3a is a reinforcing rib. Furthermore, the measuring table can be colored appropriately to prevent eye fatigue or to indicate accuracy. For example, by pre-mixing 0.5-10% chromium, the measuring platform after sintering can be made blue, 1-8% iron can make it brown, and 0.5-10% iron can make it brown.
It can be colored black with ~5% iron and cobalt. As detailed above, according to the present invention, it is possible to provide an ultra-precision measuring stand that is not only free from thermal deformation but also has extremely high hardness and excellent corrosion resistance, heat resistance, and abrasion resistance at a low cost. be able to. Furthermore, according to the present invention, the particle size of corundum etc.
By mixing coarse particles with a particle size of 0.5 to 5 mm and fine particles with a particle size of 5 μm or less, it is easy to adjust the porosity of the mixture.
The sintering process was adjusted to 20%, and the work surface was polished to a flat surface, which prevents other mirror-finished objects from sliding on the surface, making it a stable pressure-receiving surface to serve as a precise reference surface, and for work. Surface hardness and workability are maintained extremely well. Next, examples of the present invention will be shown. In the experimental implementation, the ceramic material used was a mixture of aggregate consisting of coarse and medium particles of alumina (corundum) and a base material consisting of fine alumina powder, and a mixture of fine powder of porcelain material. there was. The above coarse particles have a particle size of 700~
Particle size of 50μm is 50-10μm as medium grain.
A fine powder with a particle size of 5 μm or less was used. The blending ratio of the above alumina coarse particles, medium particles, and fine particles is 20 to 30 wt% and 30 to 40 wt%.
%, mixed to be within the range of 35-50wt%,
Furthermore, 25 wt% of the porcelain material was mixed with 75 wt% of these aluminas. The above-mentioned mixture was sufficiently stirred and mixed, then compressed and calcined at 1350°C. The porosity of the sintered body fired with the above-mentioned composition could be adjusted to about 15%. The obtained sintered body exhibits various physical properties suitable for ultra-precision measuring tables. For example, the thermal expansion is relatively small, and the thermal expansion coefficient (25
~800℃1/℃×10 -6 ) is 7.4 to 8.0, whereas the above sintered body has a thermal expansion coefficient of 5.9 (25
~800°C1/°C×10 -6 ) could be obtained. In this way, the influence of thermal expansion is extremely small.
It is extremely advantageous as a material for ultra-precision measuring jigs and related components. Furthermore, the above-mentioned sintered body also exhibits a superior value in terms of coefficient of friction (vs. FC25) compared to general alumina products, as shown in Table 1.

【表】 このような物性値ばかりでなく、上記燒結体
は、骨材と基材の適切な粒径分布により表面に無
数の微細な気孔が形成され、それによつて他の鏡
面物体が吸着して動かすのが困難になるのを防止
すると同時に、摩擦係数を減じ、滑り性を改善す
ることができる。第3図及び第4図各A,Bは上
記燒結体における研削面及び破断面の顕微鏡写
真、第5図及び第6図各A,Bは、比較例として
の微粒径のアルミナ材使用のセラミツクス定盤に
おける研削面及び破断面の顕微鏡写真で、各図の
Aは350倍、同Bは3500倍の倍率である。いずれ
の拡大写真によつても、上記本発明に基づく燒結
体において多数の気孔が形成され、これに対して
比較例においては殆ど気孔が形成されていないこ
とが分かる。
[Table] In addition to these physical properties, the sintered body has countless fine pores formed on its surface due to the appropriate particle size distribution of the aggregate and base material, which makes it possible for other specular objects to be adsorbed. At the same time, it can reduce the coefficient of friction and improve slipperiness. Figures A and B in Figures 3 and 4 are micrographs of the ground and fractured surfaces of the sintered body, Figures A and B in Figures 5 and 6 are micrographs of alumina material with fine grain size as a comparative example. These are micrographs of the ground surface and fractured surface of a ceramic surface plate, with A in each figure being 350x magnification and B being 3500x magnification. It can be seen from all the enlarged photographs that a large number of pores are formed in the sintered body according to the present invention, whereas almost no pores are formed in the comparative example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の実施態様の一例を
示す定盤の一部破断斜視図及びVブロツクの斜視
図、第3図及び第4図各A,Bは本発明の実施例
における研削面及び破断面の粒子結合構造を示す
図面代用顕微鏡写真、第5図及び第6図各A,B
は比較例における研削面及び破断面の粒子結合構
造を示す図面代用顕微鏡写真である。
1 and 2 are a partially cutaway perspective view of a surface plate and a perspective view of a V block showing an example of an embodiment of the present invention, and FIGS. 3 and 4 respectively A and B show an embodiment of the present invention. Micrographs substituted for drawings showing the particle bonding structure of the ground surface and fractured surface, Figures 5 and 6 A and B, respectively.
is a photomicrograph substituted for a drawing showing the particle bonding structure of a ground surface and a fractured surface in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 コランダム、アランダム、ムライト、炭化硅
素、またはそれらの複数の混合物を主成分とする
粒径0.2〜5mmの粗粒と同材料の粒径5μm以下の
微粒との混合物を、気孔率を0.1〜20%に調整し
て1300〜1500℃で焼結し、作業面を平坦に研摩加
工したことを特徴とする無機焼結超精密測定台。
1 A mixture of coarse particles with a particle size of 0.2 to 5 mm and fine particles of the same material with a particle size of 5 μm or less, the main component of which is corundum, alundum, mullite, silicon carbide, or a mixture of multiple thereof, is mixed with a porosity of 0.1 to 5 μm. An inorganic sintered ultra-precision measuring table that is sintered at 1,300 to 1,500 degrees Celsius at a temperature of 20% and polished to a flat work surface.
JP55152759A 1980-10-30 1980-10-30 Inorganic sintered ultraprecision measuring table Granted JPS5776402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55152759A JPS5776402A (en) 1980-10-30 1980-10-30 Inorganic sintered ultraprecision measuring table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55152759A JPS5776402A (en) 1980-10-30 1980-10-30 Inorganic sintered ultraprecision measuring table

Publications (2)

Publication Number Publication Date
JPS5776402A JPS5776402A (en) 1982-05-13
JPH0331664B2 true JPH0331664B2 (en) 1991-05-08

Family

ID=15547525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55152759A Granted JPS5776402A (en) 1980-10-30 1980-10-30 Inorganic sintered ultraprecision measuring table

Country Status (1)

Country Link
JP (1) JPS5776402A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220302A (en) * 1983-05-30 1984-12-11 飯田工業株式会社 Material transfer table for woodworking machine
JPS60587U (en) * 1983-06-02 1985-01-05 新潟精機株式会社 Fixing device for workpiece mounting table on measuring table
JPS60186183U (en) * 1984-05-17 1985-12-10 東陶機器株式会社 Ceramic surface plate
JP2537222B2 (en) * 1987-01-31 1996-09-25 株式会社東芝 Blockage
JPS63282178A (en) * 1987-05-13 1988-11-18 Mitsubishi Heavy Ind Ltd Production of porous ceramics body
JPH0326730U (en) * 1989-07-24 1991-03-19
JPH0332036U (en) * 1989-08-04 1991-03-28
GB2437270B (en) * 2007-04-26 2008-05-07 David Albert Puremont Portable work base
CN111928793B (en) * 2020-07-06 2021-07-16 西安飞机工业(集团)有限责任公司 Method for detecting inner shape of wall plate with ribs

Also Published As

Publication number Publication date
JPS5776402A (en) 1982-05-13

Similar Documents

Publication Publication Date Title
Feilden et al. Robocasting of structural ceramic parts with hydrogel inks
KR102360055B1 (en) Shaped abrasive particles and methods of forming same
JP3336015B2 (en) Manufacturing method of highly permeable whetstone
CA2127328C (en) A sol-gel alumina abrasive wheel with improved corner holding
US5203886A (en) High porosity vitrified bonded grinding wheels
JPH0331664B2 (en)
WO2001085393A1 (en) Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
WO1990008744A1 (en) Alumina ceramic, abrasive material, and production thereof
CA1272872A (en) Very smooth and flat polycrystalline alumina substrates from direct firing
JP2017035779A (en) Bonded abrasive body and method of forming the same
JP2002241176A (en) Ceramic material, producing method therefor and molding thereof
CN112135710A (en) Ceramic grindstone with coarse structure homogeneous structure
JPH06256069A (en) Ceramic porous material and its production
JP4445286B2 (en) Ceramic porous body
JPS5882677A (en) Super particle grindstone
JPH0265974A (en) Super abrasive grain vitrified grindstone having ceramic sintered holding body part
JPH03184771A (en) Porous vitrified grinding wheel and manufacture thereof
JP3203311B2 (en) Whetstone and its manufacturing method
JP2007152484A (en) Manufacturing method of vitrified grinding wheel
KR100502815B1 (en) Porous Ceramic Material with Double Pore Structures and Manufacturing Process therefor
JPH0421564A (en) Alumina substrate, production of the same alumina substrate and wiring board using the same alumina substrate
EP0396766B1 (en) Casting mold for slip casting
US2495789A (en) Gauge
JPS58204883A (en) Mechanical part with ceramic sliding portion
US2525324A (en) Method of producing ceramic gauges