JPH0330883Y2 - - Google Patents
Info
- Publication number
- JPH0330883Y2 JPH0330883Y2 JP11997584U JP11997584U JPH0330883Y2 JP H0330883 Y2 JPH0330883 Y2 JP H0330883Y2 JP 11997584 U JP11997584 U JP 11997584U JP 11997584 U JP11997584 U JP 11997584U JP H0330883 Y2 JPH0330883 Y2 JP H0330883Y2
- Authority
- JP
- Japan
- Prior art keywords
- unmanned vehicle
- traveling
- output
- point
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 25
- 230000006698 induction Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Description
産業上の利用分野
本考案は、分岐路を有する走行路に敷設した誘
導線の発生する誘導磁界を、車体の左右に設けた
ピツクアツプコイルL、Rで検知し、該コイルの
出力差によつて操舵装置を動かし、該コイルの出
力差が等しくなるように自分の走行路を保つて走
行する無人車のコースアウト検出装置に関する。
従来の技術
従来のコースアウト検出装置は、左右のピツク
アツプコイルL、Rの出力が入力される加算器
と、その加算器の出力が一定の基準レベル以下に
なつたらコースアウトの信号を出力するコンパレ
ータより構成されるか、左右のピツクアツプコイ
ルL、Rの中央にコースアウト検出専用ピツクア
ツプコイルを設け、該コイルの出力が一定の基準
レベル以下になつたらコースアウトの信号を出力
するコンパレータより構成され、それらのコンパ
レータより出力があると無人車を停止させるよう
になつている。
考案が解決しようとする問題点
無人車の分岐点における走行路選択制御は大別
すると、第8図−aに示すように、走行路Aと走
行路Bに同一周波数の電流を流し、切替スイツチ
22を作動させて走行路を選択させる誘導線切替
方式と、第8図−bに示すように、走行路Aには
周波数1、走行路Bには周波数2の異なつた電流
を流し、無人車に受信周波数の切替指令を与えて
走行路を選択させる周波数切替方式とがある。
ところが従来のコースアウト検出装置では、誘
導線切替方式の場合、切替スイツチ22が何らか
の原因で動作せず走行路Bへ行く予定の無人車が
誤つて走行路Aに入つてもコースアウトと判断で
きず、周波数切替方式の場合も、無人車が受信周
波数1からf2への切替指令を見落として、走行路
Bへ行く予定の無人車が誤つて走行路Aに入つて
もコースアウトと判断できないという問題があ
る。
本考案は、無人車が誤つた走行路に入つたら直
ちにコースアウトと判断して無人車の走行を停止
させるコースアウト検出装置を提供しようとする
ものである。
問題点を解決するための手段
分岐路を有する走行路に交流電流を流した誘導
線を敷設し、該誘導線の発生する誘導磁界を車体
の左右に設けたピツクアツプコイルにより検知
し、該コイルの出力差によつて操舵装置を動か
し、該コイルの出力差が等しくなるように自分の
走行路を保つて走行する無人車において、該無人
車の出発地点から前記分岐地点までの距離データ
と、該分岐地点における無人車の進行方向のデー
タとを予め記憶するメモリと、該無人車が前記出
発地点から実際に走行した距離を計測する距離検
出装置と、前記操舵装置の操舵方向を出力する操
舵方向出力装置と、該無人車の走行を停止するブ
レーキ装置と、前記メモリに記憶した出発地点か
ら分岐地点までの距離データと前記距離検出装置
が計測した走行距離が一致したとき、前記メモリ
に記憶した該分岐地点における無人車の進行方向
のデータと前記操舵方向出力装置の出力データを
比較判別し、不一致の場合には前記ブレーキ装置
に駆動制御信号を出力して無人車の走行を停止す
る制御手段とから構成した。
作 用
メモリに記憶した出発地点から分岐地点までの
距離データと距離検出装置が計測した走行距離が
一致したとき、すなわち無人車が分岐地点にさし
かかつたとき、前記メモリに記憶した該分岐地点
における無人車の進行方向のデータと操舵方向出
力装置の出力データを比較判別し、不一致、すな
わち無人車が誤つた走行路に進入しようとしてい
る場合、直ちにコースアウトと判断し、ブレーキ
装置を作動させ、無人車を停止させる。
実施例 1
以下本考案の実施例を図面に基づいて具体的に
説明する。第1図でA、B、Cは無人車1の走行
路を示すとともに、誘導線をも意味しており、地
面に敷設された誘導線A、B、Cは各々周波数
1、f2、f3の交流電源に接続されている。P1〜
P4は異なつた意味を持つ複数の運行指示ポイン
トで、P1は無人車1の出発地点、P2は走行路の
分岐地点、P3は走行路Bから走行路Aへの合流
地点、P4は走行路Cから走行路Aへの合流地点
をそれぞれ示している。
第2図に無人車1の誘導装置2及びコースアウ
ト検出装置のブロツク図を示す。ピツクアツプコ
イルLの出力は増幅された後透過周波数がf1、
f2、f3であるフイルタFL1、FL2、FL3に送られ
る。同様にピツクアツプコイルRの出力は透過周
波数がf1、f2、f3であるフイルタFR1、FR2、
FR3に送られる。無人車1が走行路Aに沿つて走
る場合は、フイルタFL1、FR1だけが動作し、他
のフイルタは動作を停止(信号を通さない即ち禁
止をかけること)させておけばよい。分岐地点に
来たとき以後は指定された走行路の周波数を透過
させるフイルタを残して他に禁止をかければよい
のである。このようにしてフイルタを通つたピツ
クアツプコイルL、Rの出力は差動アンプ3に入
る。差動アンプ3は、走行路に対して無人車1が
右へずれているときマイナス、左へずれていると
きプラスの値で、ずれ量に比例した大きさの出力
信号S1を出力する。差動アンプ3の出力信号S1
によつてサーボモータMがピツクアツプコイル
L、Rの出力が等しくなるように図外の操舵装置
を操作し、無人車1を走行路に沿つて走行させ
る。さらに信号S1は操舵方向出力装置4へ送ら
れ、右旋回判定コンパレータ5及び左旋回判定コ
ンパレータ6に入力される。右旋回判定コンパレ
ータ5は右旋回判定信号S2と前記信号S1とを比
較し、S1>S2の場合右旋回信号S4を出力し、左
旋回判定コンパレータ6は左旋回判定信号S3と
前記信号S1とを比較し、S1<S3の場合左旋回信
号S5を出力する。又、コンパレータ5,6の出
力側にはノア回路7が接続されており、前記信号
S4及びS5が共に出力されないとき、即ち直進の
場合該ノア回路7は直進信号S6を出力する。
無人車1に走行路を選択させる信号は図外の地
上側制御装置から誘導線A、B、Cに周波数1、
f2、f3の交流と重畳して印加される。走行路選択
信号は交流f1、f2、f3とは異なり、全部の誘導線
に共通に印加され、ピツクアツプコイルL、Rの
Industrial Application Fields This invention detects the induced magnetic field generated by a guiding wire laid on a running road with branching roads using pick-up coils L and R installed on the left and right sides of the vehicle body, and detects the induced magnetic field by detecting the induced magnetic field generated by the guiding wire laid on a running road with branching roads. The present invention relates to an out-of-course detection device for an unmanned vehicle that moves a steering device and maintains its own travel path so that the output difference between the coils is equalized. Prior Art A conventional course-out detection device consists of an adder into which the outputs of the left and right pick-up coils L and R are input, and a comparator that outputs a course-out signal when the output of the adder falls below a certain reference level. Or, a pick-up coil dedicated to course-out detection is installed in the center of the left and right pick-up coils L and R, and a comparator that outputs a course-out signal when the output of the coil falls below a certain reference level. It is designed to stop the unmanned vehicle when there is an output. Problems to be Solved by the Invention The route selection control at branch points for unmanned vehicles can be roughly divided into two parts: as shown in Figure 8-a, a current of the same frequency is passed through route A and route B, and a changeover switch is activated. As shown in Fig. 8-b, different currents are applied to the driving path A with a frequency of 1 and that of the driving path B with a frequency of 2. There is a frequency switching method in which a driving route is selected by giving a receiving frequency switching command to the vehicle. However, in the case of the conventional course-out detection device, in the case of the guide line switching method, even if the changeover switch 22 does not operate for some reason and an unmanned vehicle scheduled to go to travel route B mistakenly enters travel route A, it cannot be determined that the vehicle is off course. In the case of the frequency switching method, there is also a problem in that an unmanned vehicle overlooks the command to switch from reception frequency 1 to f2, and even if an unmanned vehicle scheduled to go to route B mistakenly enters route A, it cannot be determined that it is off course. . The present invention aims to provide an out-of-course detection device that immediately determines that an unmanned vehicle has gone off course when it enters a wrong driving path, and stops the unmanned vehicle from traveling. Means to solve the problem: An induction wire carrying an alternating current is laid on a running road with a branch road, and the induced magnetic field generated by the induction wire is detected by pick-up coils installed on the left and right sides of the vehicle body. In an unmanned vehicle that moves a steering device based on the output difference and maintains its own traveling route so that the output difference of the coils is equal, distance data from the starting point of the unmanned vehicle to the branch point and the a memory that stores in advance data on the traveling direction of the unmanned vehicle at the branch point; a distance detection device that measures the distance that the unmanned vehicle has actually traveled from the starting point; and a steering direction that outputs the steering direction of the steering device. an output device, a brake device that stops the unmanned vehicle from traveling, and when the distance data from the starting point to the branching point stored in the memory matches the traveling distance measured by the distance detecting device, the distance data stored in the memory; A control means that compares and determines the data on the traveling direction of the unmanned vehicle at the branch point and the output data of the steering direction output device, and outputs a drive control signal to the brake device to stop the traveling of the unmanned vehicle if they do not match. It was composed of. Function: When the distance data from the starting point to the branch point stored in the memory matches the traveling distance measured by the distance detection device, that is, when the unmanned vehicle approaches the branch point, the branch point stored in the memory The system compares and determines the data on the traveling direction of the unmanned vehicle and the output data of the steering direction output device, and if there is a discrepancy, that is, the unmanned vehicle is about to enter the wrong driving route, it is immediately determined that the unmanned vehicle is off course, and the brake system is activated. Stop the unmanned vehicle. Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In Fig. 1, A, B, and C indicate the driving path of the unmanned vehicle 1, and also indicate the guide lines, and the guide lines A, B, and C laid on the ground each have a frequency
1, f2, f3 connected to AC power supply. P1~
P4 is a plurality of operation instruction points with different meanings, P1 is the departure point of unmanned vehicle 1, P2 is the branching point of the driving path, P3 is the confluence point from driving path B to driving path A, and P4 is the driving path C. The merging points from the road to the driving route A are shown respectively. FIG. 2 shows a block diagram of the guidance device 2 and off-course detection device of the unmanned vehicle 1. After the output of the pick-up coil L is amplified, the transmission frequency is f1,
It is sent to filters FL1, FL2, and FL3, which are f2 and f3. Similarly, the output of the pick-up coil R is filtered by filters FR1, FR2, whose transmission frequencies are f1, f2, and f3.
Sent to FR3. When the unmanned vehicle 1 runs along the travel path A, only the filters FL1 and FR1 operate, and the other filters only need to stop operating (not passing the signal, that is, prohibiting them). When you reach a branch point, all you have to do is leave a filter that allows the frequencies of the designated travel route to pass through and prohibit other frequencies. The outputs of the pickup coils L and R that have passed through the filter in this manner enter the differential amplifier 3. The differential amplifier 3 outputs an output signal S1 having a negative value when the unmanned vehicle 1 deviates to the right with respect to the traveling road and a positive value when the unmanned vehicle 1 deviates to the left, and whose magnitude is proportional to the amount of deviation. Output signal S1 of differential amplifier 3
Accordingly, the servo motor M operates a steering device (not shown) so that the outputs of the pickup coils L and R are equalized, and the unmanned vehicle 1 is caused to travel along the traveling path. Furthermore, the signal S1 is sent to the steering direction output device 4, and is input to a right turn determination comparator 5 and a left turn determination comparator 6. The right turn judgment comparator 5 compares the right turn judgment signal S2 with the signal S1, and if S1>S2, outputs the right turn signal S4, and the left turn judgment comparator 6 compares the left turn judgment signal S3 with the signal S1. S1 is compared, and if S1<S3, a left turn signal S5 is output. Further, a NOR circuit 7 is connected to the output side of the comparators 5 and 6, and the signal
When both S4 and S5 are not output, that is, when the vehicle is traveling straight, the NOR circuit 7 outputs the straight traveling signal S6. A signal that causes the unmanned vehicle 1 to select a driving route is sent from a ground-side control device (not shown) to guide lines A, B, and C at a frequency of 1.
It is applied superimposed on the alternating currents of f2 and f3. Unlike AC f1, f2, and f3, the running route selection signal is commonly applied to all the guide wires, and is applied to the pick-up coils L and R.
【表】
前記CPU17は前記指示ポイント検出センサ
14が出発地点を示す指示ポイントP1を検出し
た後、同指示ポイントから無人車1が走行を開始
するとパルス検出センサ13から出力されるパル
スをカウントしはじめ、そのカウント値を読み出
し及び書替え可能なメモリ(以下、RAMとい
う)21に記憶する。すなわち、CPU17は無
人車1の走行距離をパルス数として理解するよう
になつている。
今無人車1が第1図の位置にあり、左方へ走行
しているとする。分岐地点に致達して、指示ポイ
ント検出センサ14が指示ポイントP2を検出し
たとき、CPU17は走行路Bへ行けという指令
を受けていた場合は、フイルタをFL1、FR2から
FL2、FR2へ切り替え、走行路Cへ行けという指
令を受けていた場合は、フイルタをFL1、FR1か
らFL3、FR3へ切り替えて無人車1を指定の走行
路へ進入させる。
ところが分岐地点において、なんらかの原因で
指示ポイント検出センサ14が指示ポイントP2
を検出しそこなうと、フイルタの切り替えが行わ
れないので、無人車1は直進しようとする。しか
しCPU17がROM18に記憶した分岐地点すな
わち、走行距離L1の地点における進行方向のデ
ータと操舵方向出力装置4から出力される実際に
無人車1が進もうとする方向とを比較判別し、不
一致であると直ちにコースアウトと判断して前記
ドライブモータ制御回路19にはコントロール信
号を、前記ブレーキ装置20には駆動制動信号を
出力して無人車1を直ちに停止させるので、誤つ
た走行路に進入する恐れはない。
なお正常にフイルタの切り替えが行われ、走行
路B又は走行路Cへ進入した無人車1は、合流地
点で指示ポイントP3又はP4を検出すると再びフ
イルタをFL1、FR1に切り替え、走行路Aを走行
して出発地点へ戻つてくる。そして指示ポイント
検出センサ14が指示ポイントP1を検出すると、
前記RAM21に記憶した走行距離(パルスのカ
ウント値)を0にリセツトして次の走行サイクル
が開始する。
なお走行路選択信号の送り方は有線、無線全く
任意で、上記実施例ではこの信号を誘導線A、
B、Cに重ねて印加したが、無人車1に予め記憶
させておいてもよい。
実施例 2
次に誘導線切替方式によつて走行路選択制御が
行われる走行路を走行する無人車1に、本考案を
適用した場合を具体的に説明する。第6図でA、
B、Cは無人車1の走行路を示すとともに、誘導
線をも意味しており、地面に敷設された誘導線
A、B、Cは同一周波数の図外の交流電源に接続
されている。P1は無人車1の出発地を示す運行
指示ポイントであり、SBは誘導線AとBの切替
スイツチ、SCは誘導線AとCの切替スイツチで
ある。
第7図に無人車1の誘導装置及びコースアウト
検出装置のブロツク図をしめす。誘導装置2′の
フイルタがFLとFRの一組になつた以外の構成は
前記実施例1と同じなので、同一符号を付して説
明は省略する。
ROM18には表2に示すような出発地点から
走行路Bの分岐地点までの距離L1、走行路Cの
分岐地点までの距離L2とそれらの分岐地点にお
ける指定走行路に応じた無人車1の進行方向が記
憶されている。[Table] After the instruction point detection sensor 14 detects the instruction point P1 indicating the starting point, the CPU 17 starts counting the pulses output from the pulse detection sensor 13 when the unmanned vehicle 1 starts traveling from the instruction point. , and stores the count value in a readable and rewritable memory (hereinafter referred to as RAM) 21. That is, the CPU 17 is designed to understand the traveling distance of the unmanned vehicle 1 as the number of pulses. Assume that the unmanned vehicle 1 is now in the position shown in FIG. 1 and is traveling to the left. When a branch point is reached and the instruction point detection sensor 14 detects instruction point P2, if the CPU 17 has received a command to go to route B, it switches the filter from FL1 and FR2.
If a command is received to switch to FL2, FR2 and go to driving route C, the filter is switched from FL1, FR1 to FL3, FR3, and the unmanned vehicle 1 enters the designated driving route. However, at the branch point, for some reason the indication point detection sensor 14 detects the indication point P2.
If the unmanned vehicle 1 fails to detect this, the filter is not switched, and the unmanned vehicle 1 attempts to go straight. However, the CPU 17 compares and determines the traveling direction data at the branching point stored in the ROM 18, that is, the point at the travel distance L1, and the direction in which the unmanned vehicle 1 is actually trying to travel, which is output from the steering direction output device 4, and determines that there is a discrepancy. If this occurs, it is immediately determined that the unmanned vehicle 1 has gone off course, and a control signal is output to the drive motor control circuit 19 and a drive braking signal is output to the brake device 20 to immediately stop the unmanned vehicle 1. Therefore, there is a risk that the unmanned vehicle 1 may enter the wrong road. There isn't. Note that when the filter has been successfully switched and the unmanned vehicle 1 has entered driving route B or driving route C and detects instruction point P3 or P4 at the merging point, it switches the filter to FL1 or FR1 again and runs on driving route A. and return to the starting point. Then, when the instruction point detection sensor 14 detects the instruction point P1,
The traveling distance (pulse count value) stored in the RAM 21 is reset to 0 and the next traveling cycle begins. Note that the route selection signal can be sent by wire or wirelessly as desired; in the above embodiment, this signal is sent to the guide line A,
Although the voltage is applied to B and C in a superimposed manner, the voltage may be stored in the unmanned vehicle 1 in advance. Embodiment 2 Next, a case in which the present invention is applied to an unmanned vehicle 1 that travels on a travel route where route selection control is performed by a guide line switching method will be specifically described. In Figure 6, A,
B and C indicate the travel path of the unmanned vehicle 1 and also refer to guide wires, and the guide wires A, B, and C laid on the ground are connected to an AC power source (not shown) having the same frequency. P1 is an operation instruction point indicating the departure point of the unmanned vehicle 1, SB is a switch for switching between guide lines A and B, and SC is a switch for switching between guide lines A and C. FIG. 7 shows a block diagram of the guidance system and off-course detection system for the unmanned vehicle 1. The structure of the guiding device 2' is the same as that of the first embodiment except that the filters are a set of FL and FR, so the same reference numerals are given and the explanation will be omitted. The ROM 18 contains the distance L1 from the departure point to the branching point of traveling route B, the distance L2 to the branching point of traveling route C, and the progress of the unmanned vehicle 1 according to the designated traveling route at those branching points, as shown in Table 2. The direction is memorized.
【表】
今無人車1が第6図の位置にあり、左方に走行
しているとする。図外の地上側制御装置から出力
された走行路選択信号は走行路Cを指定してお
り、切替スイツチSB、SCはそれぞれ無人車1が
走行路Cへ進入できるように作動している。
無人車1が出発地点から距離L1を走行したと
き、CPU17はROM18に記憶された指定走行
路がCの場合のL1地点における進行方向のデー
タと、操舵方向出力装置4の出力データとを比較
判別する。このとき切替スイツチSBがなんらか
の理由で走行路B側へ誤動作していると、無人車
1は左折しようとするが、ROM18のデータと
操舵方向出力装置4の出力データが異なるので
CPU17は直ちにコースアウトと判断して前記
ドライブモータ制御回路19にはコントローール
信号を、前記ブレーキ装置20には駆動制動信号
を出力して無人車1を直ちに停止させる。よつて
無人車1は誤つた走行路に進入する恐れはない。
この動作は走行距離L2すなわち、走行路Aと
Cの分岐地点でも同様に行われる。切替スイツチ
SB、SCが正常に動作している場合は、無人車1
は再び出発地点にもどつてくる。そして指示ポイ
ント検出センサ14が指示ポイントP1を検知す
ると、RAM21に記憶した走行距離(パルスの
カウント値)を0にリセツトして次の走行サイク
ルが開始する。
考案の効果
上記のごとく本考案のコースアウト検出装置
は、出発地点から分岐地点までの距離と、その分
岐地点における進行方向を予め無人車に記憶させ
ておき、実際にその分岐地点において無人車が進
もうとする方向と記憶した進行方向とを比較判別
し、無人車が指定されていない誤つた走行路に進
入しようとすると直ちにコースアウトと判定して
無人車を停止させるので、無人車の安全性、信頼
性を一段と高めるという極めて優れた効果を奏す
る。[Table] Assume that the unmanned vehicle 1 is now in the position shown in Figure 6 and is traveling to the left. A traveling route selection signal output from a ground-side control device (not shown) specifies traveling route C, and the changeover switches SB and SC are each operated so that the unmanned vehicle 1 can enter traveling route C. When the unmanned vehicle 1 travels a distance L1 from the starting point, the CPU 17 compares and determines the traveling direction data at the L1 point when the designated travel route is C stored in the ROM 18 and the output data of the steering direction output device 4. do. At this time, if the changeover switch SB is malfunctioning for some reason toward the road B, the unmanned vehicle 1 attempts to turn left, but the data in the ROM 18 and the output data from the steering direction output device 4 are different.
The CPU 17 immediately determines that the vehicle has gone off course and outputs a control signal to the drive motor control circuit 19 and a drive braking signal to the brake device 20 to stop the unmanned vehicle 1 immediately. Therefore, there is no risk that the unmanned vehicle 1 will enter the wrong travel route. This operation is similarly performed at the travel distance L2, that is, at the branch point of the travel routes A and C. changeover switch
If SB and SC are operating normally, unmanned vehicle 1
returns to the starting point again. When the designated point detection sensor 14 detects the designated point P1, the traveling distance (pulse count value) stored in the RAM 21 is reset to 0 and the next traveling cycle is started. Effects of the invention As described above, the course-out detection device of the present invention allows the unmanned vehicle to memorize the distance from the starting point to the branch point and the direction of travel at the branch point, and then actually moves the unmanned vehicle at the branch point. It compares the direction in which the driver is trying to proceed with the memorized direction of travel, and if an unmanned vehicle attempts to enter a wrong, undesignated driving route, it immediately determines that the vehicle is off course and stops the vehicle, thereby increasing the safety of the unmanned vehicle. This has the extremely excellent effect of further increasing reliability.
第1図は本考案の一実施例の無人車の走行路
図、第2図は本考案の一実施例の無人車の誘導装
置及びコースアウト検出装置のブロツク回路図、
第3図は無人車の距離検出装置の略体正面図、第
4図は同じく距離検出装置の略体平面図、第5図
は指示ポイント検出センサの略体正面図、第6図
は本考案の他の実施例の無人車の走行路図、第7
図は本考案の他の実施例の無人車の誘導装置及び
コースアウト検出装置のブロツク回路図、第8図
は従来技術を説明するための走行路図である。
無人車……1、操舵方向出力装置……4、ドラ
イブモータ……8、スリツト板……12、パルス
検出センサ……13、指示ポイント検出センサ…
…14、マイクロコンピユータ……15、インタ
ーフエース……16、CPU……17、ROM……
18、RAM……21、誘導線……A、B、C、
ピツクアツプコイル……L、R。
FIG. 1 is a traveling route diagram of an unmanned vehicle according to an embodiment of the present invention, and FIG. 2 is a block circuit diagram of an unmanned vehicle guidance system and a course-out detection device according to an embodiment of the present invention.
Fig. 3 is a schematic front view of a distance detection device for an unmanned vehicle, Fig. 4 is a schematic plan view of the distance detection device, Fig. 5 is a schematic front view of a pointing point detection sensor, and Fig. 6 is a schematic front view of the distance detection device of the present invention. Traveling route map for unmanned vehicles according to other embodiments, No. 7
The figure is a block circuit diagram of an unmanned vehicle guidance system and off-course detection system according to another embodiment of the present invention, and FIG. 8 is a traveling route diagram for explaining the prior art. Unmanned vehicle...1, Steering direction output device...4, Drive motor...8, Slit plate...12, Pulse detection sensor...13, Direction point detection sensor...
...14, Microcomputer...15, Interface...16, CPU...17, ROM...
18, RAM...21, Guide wire...A, B, C,
Pick up coil...L, R.
Claims (1)
線を敷設し、該誘導線の発生する誘導磁界を車体
の左右に設けたピツクアツプコイルにより検知
し、該コイルの出力差によつて操舵装置を動か
し、該コイルの出力差が等しくなるように自分の
走行路を保つて走行する無人車において、 該無人車の出発地点から前記分岐地点までの距
離データと、該分岐地点における無人車の進行方
向のデータとを予め記憶するメモリと、 該無人車が前記出発地点から実際に走行した距
離を計測する距離検出装置と、 前記操舵装置の操舵方向を出力する操舵方向出
力装置と、 該無人車の走行を停止するブレーキ装置と、 前記メモリに記憶した出発地点から分岐地点ま
での距離データと前記距離検出装置が計測した走
行距離が一致したとき、前記メモリに記憶した該
分岐地点における無人車の進行方向のデータと前
記操舵方向出力装置の出力データを比較判別し、
不一致の場合には前記ブレーキ装置に駆動制御信
号を出力して無人車の走行を停止する制御手段と
から構成した無人車のコースアウト検出装置。[Scope of Claim for Utility Model Registration] An induction wire carrying an alternating current is laid on a running road with branching roads, and the induced magnetic field generated by the induction wire is detected by pick-up coils installed on the left and right sides of the vehicle body. In an unmanned vehicle that moves a steering device based on the output difference and maintains its own traveling route so that the output difference of the coils is equal, distance data from the starting point of the unmanned vehicle to the branch point and the a memory that stores in advance data on the traveling direction of the unmanned vehicle at the branch point; a distance detection device that measures the distance that the unmanned vehicle has actually traveled from the starting point; and a steering direction that outputs the steering direction of the steering device. an output device; a brake device that stops the unmanned vehicle from traveling; Comparing and determining the data of the traveling direction of the unmanned vehicle at the branch point and the output data of the steering direction output device,
and a control means for outputting a drive control signal to the brake device to stop the unmanned vehicle from traveling if there is a mismatch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11997584U JPH0330883Y2 (en) | 1984-08-01 | 1984-08-01 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11997584U JPH0330883Y2 (en) | 1984-08-01 | 1984-08-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61120905U JPS61120905U (en) | 1986-07-30 |
JPH0330883Y2 true JPH0330883Y2 (en) | 1991-06-28 |
Family
ID=30678822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11997584U Expired JPH0330883Y2 (en) | 1984-08-01 | 1984-08-01 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0330883Y2 (en) |
-
1984
- 1984-08-01 JP JP11997584U patent/JPH0330883Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS61120905U (en) | 1986-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3612206A (en) | Automatic guidance system for warehouse trucks and the like | |
JPH0585921B2 (en) | ||
JPH0330883Y2 (en) | ||
JPS6233614B2 (en) | ||
JPH0370802B2 (en) | ||
JP4978157B2 (en) | Intersection branch control method and apparatus for automatic guided vehicle | |
JPH0749522Y2 (en) | Guidance signal detector for unmanned vehicles | |
JPS61224009A (en) | Automatic steering device of unmanned car | |
JP2823287B2 (en) | Magnetic sensor and magnetic induction device | |
JP2580672Y2 (en) | Guideway device for electromagnetically guided vehicles | |
JP2566814Y2 (en) | Automatic guided vehicle | |
JP3194543B2 (en) | Unmanned traveling system | |
JPH0313768Y2 (en) | ||
JPS62211707A (en) | Trackless carrying car system | |
JP3161257B2 (en) | Vehicle guidance system | |
JPH0423285B2 (en) | ||
JPS62200407A (en) | Control system for unmanned carrying car | |
JP3362154B2 (en) | Guided traveling vehicle | |
JPH01152386A (en) | Unmanned carrier | |
JPS6327203Y2 (en) | ||
JPH034302A (en) | Method for guiding unmanned vehicle | |
JPH0934546A (en) | Movable mark plate sensor for automated guided vehicle | |
JPH0421124Y2 (en) | ||
JP3030918B2 (en) | Travel control method for automatic guided vehicles | |
JPH0797291B2 (en) | Operation control system for automated guided vehicles |