JPH0330863A - Cooling blow duct apparatus - Google Patents

Cooling blow duct apparatus

Info

Publication number
JPH0330863A
JPH0330863A JP16727589A JP16727589A JPH0330863A JP H0330863 A JPH0330863 A JP H0330863A JP 16727589 A JP16727589 A JP 16727589A JP 16727589 A JP16727589 A JP 16727589A JP H0330863 A JPH0330863 A JP H0330863A
Authority
JP
Japan
Prior art keywords
duct
air
fan
discharge lamp
control plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16727589A
Other languages
Japanese (ja)
Inventor
Tsutomu Fuchiwaki
渕脇 務
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP16727589A priority Critical patent/JPH0330863A/en
Publication of JPH0330863A publication Critical patent/JPH0330863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Duct Arrangements (AREA)
  • Coating Apparatus (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)

Abstract

PURPOSE:To uniformize cooling capacity by equal wind velocity by connecting a fan case having an axial fan to a duct having an inclined surface toward a ventilation port by a connection part having a blow passage formed thereto and forming an airflow control plate to the blow passage. CONSTITUTION:The ventilation port 8 of a duct device 7 is opened to the upper part of the frame body 4 of an irradiation ventilating unit 2 equipped with a reflecting body 3 having a high voltage discharge lamp 1 enclosed therein. An axial fan 10 is driven by the lighting of the high voltage discharge lamp 1 and the air sucked from the opening part of a fan case 11 is sent to a duct 14 through a blow passage 15 of a connection part 16 to cool the reflecting body 3 of the frame body 4. The air stream is controlled by the airflow control plate 18 formed to the blow passage 15 in the vicinity of the wing part 17 of the axial fan 10 in a direction of 60-90 deg. and the flow rate of the air flowing toward the center of the duct 14 increases. By this constitution, the velocity of cooling air becomes almost uniform over the total length of the duct in the longitudinal direction of the emitting port and cooling can be made uniform.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、冷却用送風ダクト装置に係り、例えばプリン
ト合板、プリント配線基板あるいは新聞印刷などの印刷
工程において、紫外線硬化性の塗料、インク等を塗布し
た基体に紫外線を照射し、この塗料、インク等を硬化さ
せる紫外線照射装置の紫外線照射高圧放電ランプなどを
冷却するために用いる冷却風のダクト装置に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention relates to a cooling air duct device, and is used in the printing process of, for example, printed plywood, printed wiring boards, or newspaper printing. This invention relates to a cooling air duct device used to cool an ultraviolet irradiation high-pressure discharge lamp of an ultraviolet irradiation device that irradiates ultraviolet rays onto a substrate coated with paint, ink, etc. to cure the paint, ink, etc.

(従来の技術) 従来の紫外線照射装置の紫外線を照射する、例えば、高
圧水銀ランプ、メタルハラルドランプのような高圧放電
ランプが用いられ、この高圧放電ランプは、一般にその
発光管長が長い直管形が多く用いられている。しかしな
がら、最近では単位長さ当りのワット数の大きい高出力
タイプが用いられ、この高圧放電ランプは紫外線ととも
に可視光線および赤外線などの熱線も放射し、この熱線
の放射量も多いため、この高圧放電ランプを内包する反
射体などの装置が温度上昇し、装置を熱損傷させたり、
被照射物に熱損傷を与える問題がある。
(Prior Art) Conventional ultraviolet irradiation devices emit ultraviolet rays using, for example, high-pressure discharge lamps such as high-pressure mercury lamps and metal Harald lamps, and these high-pressure discharge lamps are generally of the straight tube type with a long arc tube length. is often used. However, recently, high-power discharge lamps with a large wattage per unit length have been used, and these high-pressure discharge lamps emit not only ultraviolet rays but also heat rays such as visible and infrared rays. The temperature of equipment such as the reflector containing the lamp may rise, causing thermal damage to the equipment, or
There is a problem of thermal damage to the irradiated object.

そこで、従来の紫外線照射装置では、前記反射体の上部
に高圧放電ランプの長手方向略全域に沿って高圧放電ラ
ンプの内包空間に連通する排気通路を設け、この排気通
路を通じて高圧放電ランプの周囲の空気を排気して照射
開口などから外気を吸込み、高圧放電ランプや反射体な
どを冷却するようにした構造が知られている。この従来
の紫外線照射装置では、排気通路を通じて高圧放電ラン
プの長手方向略全域の内包空間の空気を排気するように
しているため、特に高圧放電ランプの発光管長が長い場
合には、排気通路の排気能力が長手方向で異なり、高圧
放電ランプの冷却が長手方向で均一になりに<<、高圧
放電ランプの表面温度分布が長手方向で不均一になり、
高圧放電ランプの点灯状態すなわち紫外線照射能力が不
安定になる問題を有している。
Therefore, in the conventional ultraviolet irradiation device, an exhaust passage is provided above the reflector and communicates with the internal space of the high-pressure discharge lamp along almost the entire length in the longitudinal direction of the high-pressure discharge lamp. A structure is known in which air is exhausted and outside air is sucked in through an irradiation opening or the like to cool a high-pressure discharge lamp, a reflector, or the like. In this conventional ultraviolet irradiation device, the air in the internal space of almost the entire length of the high-pressure discharge lamp is exhausted through the exhaust passage. The capacity differs in the longitudinal direction, and the cooling of the high-pressure discharge lamp becomes uniform in the longitudinal direction.<<, the surface temperature distribution of the high-pressure discharge lamp becomes uneven in the longitudinal direction,
There is a problem that the lighting state of the high pressure discharge lamp, that is, the ultraviolet irradiation ability becomes unstable.

そこで、軸流ファンを用いて冷却風を発生させ、この冷
却風をダクトから供給する構成が考えられる。
Therefore, a configuration can be considered in which cooling air is generated using an axial fan and this cooling air is supplied from a duct.

(発明が解決しようとする課題) 上記軸流ファンから発生した冷却風をダクトから供給す
る装置では、ダクトの長手方向の両端側に比べて中央部
の風速が低く、風量が不均等となり、例えば、紫外線照
射装置では、高圧放電ランプの冷却が長手方向で不均一
になって、高圧放電ランプの表面温度分布が長手方向で
不均一になり、高圧放電ランプの点灯状態すなわち紫外
線照射能力が不安定になるとともに、高圧放電ランプの
再起動性が悪い問題がある。
(Problems to be Solved by the Invention) In the device that supplies the cooling air generated by the axial fan from the duct, the wind speed at the center is lower than at both ends in the longitudinal direction of the duct, resulting in uneven air volume. In ultraviolet irradiation equipment, the cooling of the high-pressure discharge lamp becomes uneven in the longitudinal direction, and the surface temperature distribution of the high-pressure discharge lamp becomes uneven in the longitudinal direction, making the lighting state of the high-pressure discharge lamp, that is, the ultraviolet irradiation ability unstable. At the same time, there is a problem in that the restartability of high-pressure discharge lamps is poor.

本発明は、上記問題点に鑑みなされたもので、ダクトの
吐出口が長手方向に長い場合でも、略全長に亘って均等
な風速で冷却風が吐出され、吐出口の長手方向の略全長
に亘って均一な風量が供給でき、冷却能力を略全長に亘
って均一にできる冷却用送風ダクト装置を提供するもの
である。
The present invention has been made in view of the above-mentioned problems, and even when the discharge port of the duct is long in the longitudinal direction, cooling air is discharged at an even speed over substantially the entire length, and the cooling air is discharged over substantially the entire length of the discharge port in the longitudinal direction. It is an object of the present invention to provide a cooling air duct device that can supply a uniform amount of air over the entire length and make the cooling capacity uniform over substantially the entire length.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の冷却用送風ダクト装置は、軸流ファンを内部に
配設したファンケースと、送気側から細幅溝状の吐出口
に向って長手方向の端面を傾斜状に拡げるとともに幅方
向の側面を傾斜状に縮幅したダクトと、前記ファンケー
スの吐出側とダクトの送気側とを連結する送風路を内部
に形成した連結部とからなり、この連結部に形成された
送風路の両端側の前記軸流ファンの翼部の基部近傍の位
置から前記ダクト側に向って幅方向の風量制御板をそれ
ぞれ形成し、この風量制御板はこの風量制御板のファン
ケース側の基部内側の水平面から前記軸流ファンの軸方
向となる垂直方向に向けて略60°〜9G’の方向に形
成したことを特徴とするものである。
(Means for Solving the Problems) The cooling air duct device of the present invention includes a fan case in which an axial fan is disposed, and an end face in the longitudinal direction from the air supply side toward the narrow groove-shaped discharge port. The duct is made up of a duct whose width is expanded in an inclined manner and the width of the duct is narrowed in an inclined manner, and a connecting part in which an air passage is formed to connect the discharge side of the fan case and the air supply side of the duct. Air volume control plates are formed in the width direction from a position near the base of the blade of the axial fan on both ends of the air passage formed in the connecting part toward the duct side, and the air volume control plates control the air volume. It is characterized in that it is formed in a direction of approximately 60° to 9G' from the horizontal plane inside the base on the fan case side of the plate toward the vertical direction that is the axial direction of the axial fan.

(作用) 本発明では、軸流ファンの駆動により発生した冷却風は
ファンケースから連結部の送風路を経てダクトに送風さ
れ、このダクトの吐出口から吐出される。そしてダクト
の吐出口から吐出される冷却風は連結部の軸流ファンの
翼部の基部近傍の位置から前記ダクト側に向って風量制
御板により制御され、この風量制御板はこの風量制御板
のファンケース側の基部内側の水平面から前記軸流ファ
ンの軸方向となる垂直方向に向けて略60°〜9(10
の方向に形成したことにより、ダクトの吐出口の長手方
向の略全長に亘って均等な風速で冷却風が吐出され、冷
却風の風量が高められる。
(Function) In the present invention, the cooling air generated by driving the axial fan is blown from the fan case to the duct via the air passage of the connecting portion, and is discharged from the outlet of the duct. The cooling air discharged from the outlet of the duct is controlled by an air volume control plate from a position near the base of the blade of the axial fan in the connection part toward the duct side. Approximately 60 degrees to 9 (10
By forming the cooling air in the direction of , cooling air is discharged at a uniform wind speed over substantially the entire length in the longitudinal direction of the discharge opening of the duct, and the volume of cooling air is increased.

(実施例) 以下、本発明の一実施例の構成を紫外線照射装置に実施
した冷却用送風ダクト装置について説明する。
(Example) Hereinafter, a cooling air duct device in which the configuration of an example of the present invention is implemented in an ultraviolet irradiation device will be described.

第1図および第2図において、紫外線照射装置は、直管
形の高圧放電ランプ1と、照射通気ユニット2とを備え
ている。
In FIGS. 1 and 2, the ultraviolet irradiation device includes a straight tube-shaped high-pressure discharge lamp 1 and an irradiation ventilation unit 2.

前記高圧放電ランプ1は、例えば高圧水銀ランプ、メタ
ルハラルドランプなどからなり、この高圧放電ランプ1
の点灯で、紫外線、可視光線および赤外線等が放射され
る。
The high pressure discharge lamp 1 is made of, for example, a high pressure mercury lamp, a metal Harald lamp, etc.
When turned on, ultraviolet rays, visible light, infrared rays, etc. are emitted.

前記照射通気ユニット2は、高圧放電ランプ1を内包す
る反射体3と、この反射体3を下方に拡開開口状態に支
持する枠体4とを備え、この反封体3の内側に前記高圧
放電ランプ1の内包空間5が形成され、枠体4の下面に
照射開口6が開口され、上部中央にダクト装置7の吐出
口8が前記ランプ1の長手方向に沿って形成されている
。そして、前記反射体3は、石英ガラスなどからなる基
体の高圧放電ランプ1に対向する面に、例えば酸化チタ
ン(TiO2) 、酸化ジルコニウム(2rO2)等か
らなる高屈折率層と、シリカ(SiO□)、フッ化マグ
ネシウム(Mgh )などからなる低屈折率層とを交互
に重層した多層干渉被膜が蒸着形成されている。この多
層干渉被膜が形成された反射体3は、高圧放電ランプ1
から放射される波長的200〜400n11の紫外線を
効果的に反射し、波長約?QQnm以上の赤外線を透過
させるとともに一部の可視光線も多少透過させる。
The irradiation ventilation unit 2 includes a reflector 3 that includes a high-pressure discharge lamp 1 and a frame 4 that supports the reflector 3 downward in an enlarged opening state. An internal space 5 for the discharge lamp 1 is formed, an irradiation opening 6 is opened in the lower surface of the frame 4, and a discharge port 8 of a duct device 7 is formed in the upper center along the longitudinal direction of the lamp 1. The reflector 3 includes a high refractive index layer made of, for example, titanium oxide (TiO2), zirconium oxide (2rO2), etc., and a silica (SiO□ ), low refractive index layers made of magnesium fluoride (Mgh), etc. are deposited alternately. The reflector 3 on which this multilayer interference coating is formed is a high-pressure discharge lamp 1.
It effectively reflects ultraviolet rays with wavelengths of 200 to 400n11 emitted from It allows infrared rays of QQnm or higher to pass through, and also allows some visible light rays to pass through.

また、前記ダクト装置7は、電動軸流ファン10を内部
に配設したファンケース11と、送気側から細幅溝状の
前記吐出口8に向って長手方向の両端面12を傾斜状に
拡げると之もに幅方向の両側面13を傾斜状に縮幅し下
端の吐出口8の形状が細長溝状で上端の送気側形状が略
正方形のダクト14と、前記ファンケース11の吐出側
とダクトの送気側とを連結する送風路15を内部に形成
した連結部16とから構成されている。
The duct device 7 also includes a fan case 11 in which an electric axial fan 10 is disposed, and both end surfaces 12 in the longitudinal direction inclined from the air supply side toward the narrow groove-shaped discharge port 8. When expanded, both sides 13 in the width direction are reduced in width in an inclined manner, and a duct 14 is formed in which the discharge port 8 at the lower end is shaped like a long and narrow groove and the air supply side at the upper end is approximately square in shape, and the fan case 11 has a discharge outlet. The connecting portion 16 has an air passage 15 formed therein to connect the side and the air sending side of the duct.

そして、前記連結部16に形成された送風路15の両端
側の前記軸流ファン10の翼部17の基部近傍の位置と
なる前記軸流ファン10の軸受(図示せず)の外側位置
から前記ダクト14側に向って幅方向の風量制御板18
がそれぞれ形成されている。この風量制御板18はこの
風量制御板18のファンケース11側の基部内側の水平
面から前記軸流ファン10の軸方向となる垂直方向に向
けて略60’〜9G’の方向に、最適角度としては、略
80°のθ角度方向に形成されている。
Then, from a position outside the bearing (not shown) of the axial fan 10, which is a position near the base of the blade part 17 of the axial fan 10 on both end sides of the air passage 15 formed in the connecting part 16, Air volume control plate 18 in the width direction toward the duct 14 side
are formed respectively. The air volume control plate 18 is oriented approximately 60' to 9G' from the horizontal plane inside the base on the fan case 11 side of the air volume control plate 18 in the vertical direction, which is the axial direction of the axial fan 10, at an optimal angle. is formed in the θ angle direction of approximately 80°.

なお、前記ダクト装置7の吐出口8の長手方向の長さが
長い場合には、ダクト装置7を長手方向に複数のユニッ
ト状に分割形成することもできる。
In addition, when the length of the discharge port 8 of the duct device 7 in the longitudinal direction is long, the duct device 7 can also be divided into a plurality of units in the longitudinal direction.

次に、この実施例の作用を説明する。Next, the operation of this embodiment will be explained.

高圧放電ランプ1の点灯により、紫外線、可視光線およ
び赤外線が放射され、そして、紫外線は直接または反射
体3で反射して照射開口6から被照射物に照射され、ま
た、反射体3に向かう可視光線の一部と赤外線などの熱
線はその反射体3を透過して枠体4の内部で吸収される
When the high-pressure discharge lamp 1 is turned on, ultraviolet rays, visible rays, and infrared rays are emitted. A portion of the light rays and heat rays such as infrared rays pass through the reflector 3 and are absorbed inside the frame 4.

一方、高圧放電ランプ1の点灯時には、ダクト装置7の
軸流ファン10が駆動され、ファンケース11の上面開
口部19から吸い込まれた空気は連結部16の送風路1
5を経てダクト14の送気側に供給される。そしてダク
ト14の送風側に供給された空気は冷却風となって吐出
口8からランプ1の内包空間5に排気され、冷却風は高
圧放電ランプ1と、反射体3などが冷却される。
On the other hand, when the high-pressure discharge lamp 1 is lit, the axial fan 10 of the duct device 7 is driven, and the air sucked in from the top opening 19 of the fan case 11 is transferred to the air passage 1 of the connecting portion 16.
5 to the air supply side of the duct 14. The air supplied to the blowing side of the duct 14 becomes cooling air and is exhausted from the discharge port 8 into the enclosed space 5 of the lamp 1, and the cooling air cools the high-pressure discharge lamp 1, the reflector 3, and the like.

この時、この連結部16に形成された送風路15の両端
側の前記軸流ファン10の翼部17の基部近傍の位置か
ら前記ダクト14側に向って幅方向の風量制御板18が
それぞれ形成されているため、ダクト14に供給される
空気流は風量制御板18に制御されてダクト14の長手
方向の中心側に流れる風量が増し、しかも、この風量制
御板18はこの風量制御板18のファンケースll側の
基部内側の水平面から前記軸流ファン10の軸方向とな
る垂直方向に向けて略60’〜90°の方向に形成され
ているため、吐出口8から排気される空気流の冷却風は
長手方向全長に亘って均等な風速となり、高圧放電ラン
プ1の発光管長が長い場合でも、ランプ1の長手方向の
空気流の風量が少なく、冷却能力が均一になり、高圧放
電ランプ1の長手方向の表面温度分布を均一にでき、高
圧放電ランプ1の点灯状態すなわち紫外線照射能力を安
定させることができる。
At this time, air volume control plates 18 in the width direction are formed from positions near the base of the blade portions 17 of the axial fan 10 on both ends of the air passage 15 formed in the connecting portion 16 toward the duct 14 side. Therefore, the airflow supplied to the duct 14 is controlled by the airflow control plate 18, and the airflow flowing towards the center in the longitudinal direction of the duct 14 increases. Since it is formed in a direction of about 60' to 90 degrees from the horizontal plane inside the base on the fan case II side to the vertical direction which is the axial direction of the axial fan 10, the airflow exhausted from the discharge port 8 is The cooling air has a uniform wind speed over the entire length in the longitudinal direction, and even if the arc tube length of the high-pressure discharge lamp 1 is long, the amount of air flow in the longitudinal direction of the lamp 1 is small, and the cooling capacity is uniform, so that the high-pressure discharge lamp 1 The surface temperature distribution in the longitudinal direction can be made uniform, and the lighting state of the high-pressure discharge lamp 1, that is, the ultraviolet irradiation ability can be stabilized.

なお、各ダクト装置7を長手方向に複数のユニットに分
割形成した場合には、各ファンlOの駆動は、例えば高
圧放電ランプ1の両端部と中央部とでは発熱が異なるな
ど、高圧放電ランプ1の長手方向の各箇所で発熱が異な
るので、高圧放電ランプ1の長手方向の各箇所に対応し
て調整設定するが、または、高圧放電ランプ1の長手方
向の各箇所におけるに発熱温度に応じて各ファン10の
運転を個々に制御することもできる。
In addition, when each duct device 7 is divided into a plurality of units in the longitudinal direction, the drive of each fan 10 is different from that of the high-pressure discharge lamp 1 because, for example, heat generation is different between both ends and the center of the high-pressure discharge lamp 1. Since heat generation differs at each location in the longitudinal direction of the high-pressure discharge lamp 1, adjustment settings are made corresponding to each location in the longitudinal direction of the high-pressure discharge lamp 1. The operation of each fan 10 can also be controlled individually.

次に発明者の実験結果について説明する。Next, the inventor's experimental results will be explained.

実験に用いたダクト装置7は、第3図に示すように、軸
流ファン10は0.85m ’ /ninを用い、連結
部16の高さは25W1ダクト14の吐出口8の長手方
向の長さは 125mmとし、ダクト口径は80mmと
した。またダクト14の両端面12の傾斜は70°であ
る。
In the duct device 7 used in the experiment, as shown in FIG. The length was 125 mm, and the duct diameter was 80 mm. Further, the inclination of both end surfaces 12 of the duct 14 is 70°.

そして第3図に示すこの吐出口8の長手方向の各位置の
風速を測定した結果、次のような結果が確認された。
As a result of measuring the wind speed at each position in the longitudinal direction of the discharge port 8 shown in FIG. 3, the following results were confirmed.

風量制御板18のθが90°の場合 量は0. 31425m371nとなった。When θ of the air volume control board 18 is 90° The amount is 0. It became 31,425m371n.

風量制御板18のθが80’の場合 そして最大風速平均と最低風速平均との差は0.34n
/Sで、平均風速は3.98n/Sで、風量は0. 2
985m’ /linとなった。
When θ of the air volume control board 18 is 80', the difference between the average maximum wind speed and the average minimum wind speed is 0.34n.
/S, the average wind speed is 3.98n/S, and the air volume is 0. 2
It became 985m'/lin.

風量制御板18のθが70″の場合 そして最大風速平均と最低風速平均との差は0.39n
/Sで、平均風速は4.19+*/Sで、風風量制御板
18のθが40’ の場合 そして最大風速平均と最低風速平均との差は0.39n
/Sで、平均風速は3.74n/Sで、風量は0. 2
805m’ /l1inとなった。
When θ of the air volume control board 18 is 70'', the difference between the average maximum wind speed and the average minimum wind speed is 0.39n.
/S, the average wind speed is 4.19+*/S, and when θ of the air flow control plate 18 is 40', the difference between the maximum average wind speed and the minimum average wind speed is 0.39n.
/S, the average wind speed is 3.74n/S, and the air volume is 0. 2
The distance was 805m'/l1in.

風量制御板18のθが6G’の場合 そして最大風速平均と最低風速平均との差は0.81n
/Sで、平均風速は3.02n/Sで、風量は0.22
65m’/sinとなった。
When θ of the air volume control board 18 is 6G', the difference between the average maximum wind speed and the average minimum wind speed is 0.81n.
/S, the average wind speed is 3.02n/S, and the air volume is 0.22
It became 65 m'/sin.

風量制御板18がない場合 そして最大風速平均と最低風速平均との差は0.57n
/Sで、平均風速は3.67II/Sで、風量は0.2
7525m3/l1inとなった。
When there is no air volume control plate 18, the difference between the average maximum wind speed and the average minimum wind speed is 0.57n.
/S, the average wind speed is 3.67II/S, and the air volume is 0.2
It became 7525m3/l1in.

そして最大風速平均と最低風速平均との差は2.53n
+/Sで、平均風速は3.72m/Sで、風量は0. 
279 m3/l1inとなった。
And the difference between the average maximum wind speed and the average minimum wind speed is 2.53n
+/S, the average wind speed is 3.72m/S, and the air volume is 0.
It became 279 m3/l1in.

以上の実験から風量制御板18を形成することにより最
大風速平均と最低風速平均との差が小さくなり、ダクト
14の吐出口8の長手方向の略全長に亘って風速が均等
化されることが明かである。
From the above experiments, it was found that by forming the air volume control plate 18, the difference between the average maximum wind speed and the average minimum wind speed becomes smaller, and the wind speed is made equal over substantially the entire length of the discharge port 8 of the duct 14 in the longitudinal direction. It's obvious.

また、風量制御板18の角度θを60°〜90°とする
ことにより、平均風速の低下がなく、特に、風量制御板
18の角度θを80°とすることにより、最大風速平均
と最低風速平均との差が小さく、ダクト14の吐出口8
の長手方向の略全長に亘って風速が最も均等化されるこ
とが明らかである。
In addition, by setting the angle θ of the air volume control plate 18 to 60° to 90°, there is no decrease in the average wind speed, and in particular, by setting the angle θ of the air volume control plate 18 to 80°, the average maximum wind speed and the minimum wind speed The difference from the average is small, and the discharge port 8 of the duct 14
It is clear that the wind speed is most equalized over substantially the entire length in the longitudinal direction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸流ファンを内部に配設したファンケ
ースの吐出側と、送気側から細幅溝状の吐出口に向って
長手方向の端面を傾斜状に拡げるとともに幅方向の側面
を傾斜状に縮幅したダクトの送気側とを連結する送風路
を内部に形成した連結部は、送風路の両端側の前記軸流
ファンの翼部の基部近傍の位置から前記ダクト側に向っ
て幅方向の風量制御板をそれぞれ形成し、この風量制御
板はこの風量制御板のファンケース側の基部内側の水平
面から前記軸流ファンの軸方向となる垂直方向に向けて
略60°〜9G’の方向に形成したので、簡単な構成で
、ダクトの吐出口からの冷却風の風速はダクト吐出口の
長手方向の略全長に亘って略均等になり、均一の風量が
得られ、長手方向の空気の通気差を少なくして冷却能力
を均一にでき、高圧放電ランプの長手方向の表面温度分
布を均一にできるものである。
According to the present invention, the end face in the longitudinal direction is expanded in an inclined manner from the discharge side and the air supply side of the fan case in which the axial fan is disposed inside toward the narrow groove-shaped discharge port, and the side face in the width direction The connection part, which has an air passage formed inside that connects the duct with the air supply side of the duct whose width has been reduced in an inclined manner, extends from a position near the base of the blade of the axial fan on both ends of the air passage to the duct side. They form air volume control plates in the width direction, and the air volume control plates are arranged at an angle of about 60° to a vertical direction, which is the axial direction of the axial fan, from the horizontal plane inside the base on the fan case side of the air volume control plates. Since it is formed in the direction of 9G', with a simple configuration, the speed of the cooling air from the duct outlet is approximately equal over the entire length in the longitudinal direction of the duct outlet, and a uniform air volume can be obtained. The cooling capacity can be made uniform by reducing the difference in air ventilation in the direction, and the surface temperature distribution in the longitudinal direction of the high-pressure discharge lamp can be made uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の冷却用送風ダクト装置を実施した紫外
線照射装置の一実施例を示す縦断正面図、第2図は同上
縦断側面図、第3図は同上実験説明図である。 7・・ダクト装置、8・・吐出口、1o・・軸流ファン
、11争・ファンケース、14・・ダクト、15・・送
風路、16・・連結部、17・・翼部、18・・風量制
御板。
FIG. 1 is a longitudinal sectional front view showing an embodiment of an ultraviolet irradiation device implementing the cooling air duct device of the present invention, FIG. 2 is a longitudinal sectional side view of the same, and FIG. 3 is an explanatory diagram of the same experiment. 7. Duct device, 8. Discharge port, 1o. Axial fan, 11. Fan case, 14. Duct, 15. Air duct, 16. Connecting section, 17. Wing section, 18.・Air volume control board.

Claims (1)

【特許請求の範囲】[Claims] (1)軸流ファンを内部に配設したファンケースと、送
気側から細幅溝状の吐出口に向って長手方向の端面を傾
斜状に拡げるとともに幅方向の側面を傾斜状に縮幅した
ダクトと、前記ファンケースの吐出側とダクトの送気側
とを連結する送風路を内部に形成した連結部とからなり
、 この連結部に形成された送風路の両端側の前記軸流ファ
ンの翼部の基部近傍の位置から前記ダクト側に向って幅
方向の風量制御板をそれぞれ形成し、 この風量制御板はこの風量制御板のファンケース側の基
部内側の水平面から前記軸流ファンの軸方向となる垂直
方向に向けて略60°〜90°の方向に形成したことを
特徴とした冷却用送風ダクト装置。
(1) A fan case with an axial fan installed inside, and a longitudinal end face that expands in an inclined manner from the air supply side toward a narrow groove-shaped discharge port, and a widthwise side face that narrows in an inclined manner. the axial flow fan, and a connecting part having an air passage formed therein that connects the discharge side of the fan case and the air supply side of the duct; An air volume control plate is formed in the width direction from a position near the base of the blade section toward the duct side, and this air volume control plate is formed from a horizontal plane on the inside of the base on the fan case side of the air volume control plate of the axial fan. A cooling air duct device characterized in that it is formed in a direction of approximately 60° to 90° in the vertical direction, which is the axial direction.
JP16727589A 1989-06-29 1989-06-29 Cooling blow duct apparatus Pending JPH0330863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16727589A JPH0330863A (en) 1989-06-29 1989-06-29 Cooling blow duct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16727589A JPH0330863A (en) 1989-06-29 1989-06-29 Cooling blow duct apparatus

Publications (1)

Publication Number Publication Date
JPH0330863A true JPH0330863A (en) 1991-02-08

Family

ID=15846725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16727589A Pending JPH0330863A (en) 1989-06-29 1989-06-29 Cooling blow duct apparatus

Country Status (1)

Country Link
JP (1) JPH0330863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183080A (en) * 2011-05-11 2011-09-14 西安建筑科技大学 Top horizontal attached-type air supplying method suitable for capsule hotel
US8342191B2 (en) 2006-02-24 2013-01-01 Mm&R Products, Inc. Hair styling tool with rotatable cylinder
CN109282379A (en) * 2018-08-24 2019-01-29 嘉兴美斯克电气科技有限公司 A kind of air purifier air duct structure
CN114228336A (en) * 2021-12-17 2022-03-25 深圳市隆阳自动化设备有限公司 Full-automatic CCD sheet counterpoint printing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8342191B2 (en) 2006-02-24 2013-01-01 Mm&R Products, Inc. Hair styling tool with rotatable cylinder
US8360076B2 (en) 2006-02-24 2013-01-29 Mm&R Products, Inc. Hair styling tool with rotatable cylinder
CN102183080A (en) * 2011-05-11 2011-09-14 西安建筑科技大学 Top horizontal attached-type air supplying method suitable for capsule hotel
CN109282379A (en) * 2018-08-24 2019-01-29 嘉兴美斯克电气科技有限公司 A kind of air purifier air duct structure
CN114228336A (en) * 2021-12-17 2022-03-25 深圳市隆阳自动化设备有限公司 Full-automatic CCD sheet counterpoint printing machine

Similar Documents

Publication Publication Date Title
TWI391235B (en) Light irradiation device
WO2010013307A1 (en) Display device
JPS63502730A (en) Floater dryer and how to improve its functionality
KR20140115328A (en) Drying furnace unit and drying furnace
TW202043056A (en) Light illuminating apparatus
JP5743160B2 (en) UV irradiation equipment
JPH0330863A (en) Cooling blow duct apparatus
CN100495217C (en) Exposure device
JP2014240070A (en) Irradiation device and liquid discharge apparatus
JP4117606B2 (en) UV curing device
WO2016042974A1 (en) Light illumination device
JP2008130302A (en) Light irradiation device
JP2001079388A (en) Ultraviolet ray irradiation device
JP2011025164A (en) Droplet discharge apparatus
TW201318878A (en) Irradiation device and irradiation method
JP2000157925A (en) Ultraviolet hardening device
JPS5849258A (en) Ultraviolet irradiator
JP3870389B2 (en) Electrodeless lamp cooling device
WO2016151902A1 (en) Patterning apparatus and organic electroluminescent element patterning method using same
JP5581621B2 (en) Droplet discharge apparatus and drawing method
JP2532695Y2 (en) UV irradiation device
JPH03238041A (en) Ultraviolet-ray irradiation apparatus
JP2019123512A (en) Label heating device
JPH06215615A (en) Cooling of ultraviolet lamp
JP3123284B2 (en) UV lamp cooling method