JPH0330812Y2 - - Google Patents

Info

Publication number
JPH0330812Y2
JPH0330812Y2 JP1985111976U JP11197685U JPH0330812Y2 JP H0330812 Y2 JPH0330812 Y2 JP H0330812Y2 JP 1985111976 U JP1985111976 U JP 1985111976U JP 11197685 U JP11197685 U JP 11197685U JP H0330812 Y2 JPH0330812 Y2 JP H0330812Y2
Authority
JP
Japan
Prior art keywords
steel wire
frame
wire
shape memory
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985111976U
Other languages
Japanese (ja)
Other versions
JPS6220309U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985111976U priority Critical patent/JPH0330812Y2/ja
Publication of JPS6220309U publication Critical patent/JPS6220309U/ja
Application granted granted Critical
Publication of JPH0330812Y2 publication Critical patent/JPH0330812Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、たとえばモアレ格子や振動篩のよう
な、鋼線などのグレーテイングもしくはスクリー
ンを、精度良くかつ稠密に張る構造に関するもの
である。以下グレーテイング及びスクリーンを総
称してスクリーンと呼ぶ。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a structure in which gratings or screens made of steel wire, such as moiré gratings or vibrating screens, are stretched accurately and densely. Hereinafter, the grating and the screen will be collectively referred to as the screen.

(従来の技術) 近年の産業用部品の高精度化と超小型化に伴
い、たとえば三次元形状測定に使用されるモアレ
格子のスクリーン間隔を狭めて、測定精度の向上
を図つたり、また振動篩のスクリーンの間隔を小
さくすることにより、超微粒子の篩分けを行なう
などの要求が高まつている。
(Prior art) With the recent trend toward higher precision and miniaturization of industrial parts, for example, the screen spacing of moiré gratings used for three-dimensional shape measurement has been narrowed to improve measurement accuracy, and vibration There is an increasing demand for sieving ultrafine particles by reducing the spacing between sieve screens.

周知のようにモアレ格子のスクリーンにおいて
は、実開昭56−126509号公報の提案では、スクリ
ーンは第4図に示すように、鋼線1が枠2に等間
隔に張られている。端部は通常ネジ3などにより
固定されるが、引張による鋼線1の伸び、または
温度変化による鋼線1の線膨張がある場合は、端
部にばね4が組み込まれる。
As is well known, in the Moire lattice screen proposed in Japanese Utility Model Application Publication No. 56-126509, steel wires 1 are stretched around a frame 2 at equal intervals as shown in FIG. The ends are usually fixed with screws 3 or the like, but if the steel wire 1 stretches due to tension or linear expansion occurs due to temperature changes, a spring 4 is incorporated in the ends.

一方、第5図に示すように、鋼線1のたるみの
最大値δは、鋼線1にかかる張力H、支持スパン
l、鋼線1の長さあたりの自重wにより、δ=
wl2/8Hで表わすことができるが、スクリーンの精 度を向上させるには、この式から張力を高める必
要がある。なお支持スパンlおよび鋼線1の長さ
あたりの重量は、格子もしくは篩の寸法や、対象
物などにより決定されるものである。
On the other hand, as shown in FIG. 5, the maximum value δ of the slack of the steel wire 1 is determined by the tension H applied to the steel wire 1, the support span l, and the own weight w per length of the steel wire 1.
It can be expressed as wl 2 /8H, but to improve the accuracy of the screen, it is necessary to increase the tension from this equation. Note that the support span l and the weight per length of the steel wire 1 are determined by the dimensions of the grid or sieve, the object, etc.

このような制限下で、鋼線1のたるみを小さく
し、高精度化を実現させるのには、初期張力を大
きくとる方式か、ばね4を端部に組み込む場合
は、ばね定数を高くとる方式が実施されている。
Under these restrictions, in order to reduce the slack of the steel wire 1 and achieve high precision, there is a method to increase the initial tension, or a method to increase the spring constant when incorporating the spring 4 at the end. is being implemented.

しかし前者の方式では、使用過程における鋼線
1などの伸びや、鋼線1の線膨張があるたびに、
ひんぱんな張力調整が不可欠なもので、通常安定
した精度を維持するのは困難である。また後者の
方式で、ばね定数を高めるには、ばね線径および
ばね外径寸法が必然的に大きくなり、隣接するば
ねと干渉することから、鋼線間隔を小さくして稠
密化するには限度がある。
However, in the former method, each time there is elongation of the steel wire 1 or linear expansion of the steel wire 1 during the use process,
Frequent tension adjustment is essential, and it is usually difficult to maintain stable accuracy. In addition, in the latter method, in order to increase the spring constant, the spring wire diameter and spring outer diameter inevitably increase, which interferes with adjacent springs, so there is a limit to reducing the distance between the steel wires and increasing the density. There is.

(考案が解決しようとする問題点) 本考案は、たとえばモアレ格子や振動篩のよう
な鋼線スクリーンにおいて、鋼線に極めてコンパ
クトな張力発生部を継ぎ、安定的な精度維持と、
鋼線を稠密に張る構造を提供することを目的とす
る。
(Problems to be solved by the invention) The invention aims at maintaining stable precision by joining an extremely compact tension generating part to the steel wire in steel wire screens such as moire gratings and vibrating screens.
The purpose is to provide a structure in which steel wires are densely stretched.

(問題点を解決するための手段) 本考案はこのような問題点を有利に解決するた
め、枠体と該枠体に張設された複数本の鋼線から
構成される鋼線スクリーンにおいて、前記枠体に
張設する鋼線の他端に、予め直線形状記憶処理し
伸線加工した形状記憶合金の一端を連結し、該形
状記憶合金の他端側を枠体に固定してなる鋼線ス
クリーンの張力発生構造に関する。
(Means for Solving the Problems) In order to advantageously solve these problems, the present invention provides a steel wire screen consisting of a frame and a plurality of steel wires stretched over the frame. A steel made by connecting one end of a shape memory alloy that has been subjected to linear shape memory treatment and wire drawing to the other end of the steel wire stretched across the frame, and fixing the other end of the shape memory alloy to the frame. Concerning the tension generating structure of line screens.

以下図面に基づいて本考案の実施例を説明す
る。
Embodiments of the present invention will be described below based on the drawings.

(実施例 1) 第1図は本考案による張力発生機構の1例であ
り、張力発生のために、形状記憶合金線5を鋼線
1に連結し、枠体支持部8a,8b間に鋼線1を
張設したものである。形状記憶合金線5は、あら
かじめ直線形状記憶処理を行う。
(Example 1) Fig. 1 shows an example of a tension generation mechanism according to the present invention. In order to generate tension, a shape memory alloy wire 5 is connected to a steel wire 1, and a steel wire is connected between frame support parts 8a and 8b. Line 1 is stretched. The shape memory alloy wire 5 is subjected to a linear shape memory treatment in advance.

この線5を、望ましくは組み込み前に伸線加工
し、加熱により収縮するような長さにしておき、
両端をグリツプ6a,6bまたはロウ付けなどの
方法で、鋼線1および枠体支持部8a,8bに固
定する。形状記憶合金線5の長さおよび伸縮加工
長さは、必要な張力により決定されるものであ
る。むろん全線にわたつて、伸線加工した形状記
憶合金を使用してもよい。
Preferably, the wire 5 is drawn before assembly to a length that will shrink when heated.
Both ends are fixed to the steel wire 1 and the frame supports 8a, 8b using grips 6a, 6b or brazing. The length and stretching length of the shape memory alloy wire 5 are determined by the required tension. Of course, a wire-drawn shape memory alloy may be used over the entire wire.

(実施例 2) 第2図に鋼板形状測定用モアレ格子の側面図を
示す。該格子は、枠体11と枠体11に設けられ
たネジ12a,12b間に、鋼線1を張設してス
クリーンを形成している。鋼線1の一端は、支持
部13bに固定され、他端は予め伸線加工した形
状記憶合金線5に連結されて、支持部13aに連
結されている。この形状記憶合金線5からなる張
力発生機構の詳細を、第3図に拡大して示す。
(Example 2) FIG. 2 shows a side view of a moiré grid for measuring the shape of a steel plate. The lattice has a steel wire 1 stretched between a frame 11 and screws 12a and 12b provided on the frame 11 to form a screen. One end of the steel wire 1 is fixed to the support part 13b, and the other end is connected to a shape memory alloy wire 5 drawn in advance and connected to the support part 13a. The details of the tension generating mechanism made of the shape memory alloy wire 5 are shown in an enlarged scale in FIG.

すなわち、鋼線1はネジ12aに支持され、グ
リツプ6aを介して一端が形状記憶合金線5に連
結され、該線5の他端はグリツプ6bを介して、
支持部13aに連結されている。14はグリツプ
6a,6b間に配置されたターンバツクルで、形
状記憶合金線5の伸線加工および過負荷防止用で
ある。このような張力発生機構は、鋼線1本に1
個設けても良いが、鋼線数本をまとめて1個設け
ることも可能である。
That is, the steel wire 1 is supported by the screw 12a, one end is connected to the shape memory alloy wire 5 via the grip 6a, and the other end of the wire 5 is connected to the shape memory alloy wire 5 via the grip 6b.
It is connected to the support part 13a. A turnbuckle 14 is arranged between the grips 6a and 6b, and is used for drawing the shape memory alloy wire 5 and for preventing overload. This kind of tension generation mechanism is applied to one steel wire.
However, it is also possible to provide several steel wires together.

しかして形状記憶合金としては、例えばNi‐
Ti合金の引張強さ60Kg/mm2以上のもの、線径
2.0φ程度のものが好適である。張力発生は、形状
記憶合金の復帰力によつて得られ、Ni‐Ti合金
の場合加熱することにより、約60Kg/mm2程度が得
られる。また熱間でスクリーンを使用する場合に
は、あらかじめ熱間での鋼線の線膨張分を伸線加
工しておくことにより、熱間で自動的に縮み、張
力を一定に保つことも可能である。特に高温雰囲
気となる場合には、張力発生部の温度制御を行う
と、形状記憶合金の保護のために好都合である。
However, as a shape memory alloy, for example, Ni-
Ti alloy tensile strength 60Kg/ mm2 or more, wire diameter
A diameter of about 2.0φ is suitable. Tension is generated by the restoring force of the shape memory alloy, and in the case of Ni-Ti alloy, approximately 60 kg/mm 2 can be obtained by heating. In addition, when using a screen in hot conditions, by drawing the linear expansion of the steel wire in advance, it is possible to automatically shrink in hot conditions and maintain a constant tension. be. Particularly in the case of a high-temperature atmosphere, it is advantageous to control the temperature of the tension-generating part in order to protect the shape memory alloy.

(考案の効果) このように本考案によれば、使用による鋼線の
伸びまたは熱による鋼線の線膨張など、鋼線のた
るみをバネに比して安定して吸収することができ
る。そして張力発生物が線材であるため、バネに
比して占有空間を狭くなしうるので、モアレ格子
や振動篩のスクリーンを、高精度にかつ稠密に形
成することができる。
(Effects of the invention) As described above, according to the invention, slack in the steel wire, such as elongation of the steel wire due to use or linear expansion of the steel wire due to heat, can be absorbed more stably than with a spring. Since the tension generator is a wire rod, it can occupy a narrower space than a spring, so it is possible to form moiré gratings and vibrating sieve screens with high precision and density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本考案実施例を示し、第1図
は張力発生機構を枠体内に配置した例を示す平面
図、第2図は鋼板形状測定用モアレ格子に、本考
案の張力発生機構を組込んだ側面説明図、第3図
は第2図の張力発生機構の詳細拡大図、第4図は
従来のスクリーンの構成を示す平面図、第5図は
従来スクリーンの鋼線のたるみを示す説明図であ
る。 1……鋼線、2……枠体、5……形状記憶合
金、6……グリツプ。
Figures 1 to 3 show examples of the present invention. Figure 1 is a plan view showing an example in which the tension generation mechanism is arranged inside the frame, and Figure 2 shows the tension generation mechanism of the present invention applied to a moiré grid for measuring the shape of a steel plate. Fig. 3 is a detailed enlarged view of the tension generation mechanism in Fig. 2, Fig. 4 is a plan view showing the structure of a conventional screen, and Fig. 5 is a diagram of the steel wire of the conventional screen. It is an explanatory view showing sagging. 1... Steel wire, 2... Frame, 5... Shape memory alloy, 6... Grip.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 枠体と該枠体に張設された複数本の鋼線から構
成される鋼線スクリーンにおいて、前記枠体に張
設する鋼線の他端に、予め直線形状記憶処理し伸
線加工した形状記憶合金の一端を連結し、該形状
記憶合金の他端側を、枠体に固定してなる鋼線ス
クリーンの張力発生構造。
In a steel wire screen composed of a frame and a plurality of steel wires stretched on the frame, the other end of the steel wire stretched on the frame has a shape that has been subjected to linear shape memory treatment and wire drawing in advance. A steel wire screen tension generating structure in which one end of a memory alloy is connected and the other end of the shape memory alloy is fixed to a frame.
JP1985111976U 1985-07-23 1985-07-23 Expired JPH0330812Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985111976U JPH0330812Y2 (en) 1985-07-23 1985-07-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985111976U JPH0330812Y2 (en) 1985-07-23 1985-07-23

Publications (2)

Publication Number Publication Date
JPS6220309U JPS6220309U (en) 1987-02-06
JPH0330812Y2 true JPH0330812Y2 (en) 1991-06-28

Family

ID=30992409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985111976U Expired JPH0330812Y2 (en) 1985-07-23 1985-07-23

Country Status (1)

Country Link
JP (1) JPH0330812Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124882Y2 (en) * 1980-02-28 1986-07-26
JPH0752547B2 (en) * 1987-06-26 1995-06-05 松下電器産業株式会社 Floppy disk device

Also Published As

Publication number Publication date
JPS6220309U (en) 1987-02-06

Similar Documents

Publication Publication Date Title
CN104185706B (en) A kind of method being used for protecting the cable of tension to avoid vibration
EP0870094A1 (en) Hysteretic damping apparati and methods
JPH0330812Y2 (en)
JPS5814968B2 (en) A device that converts mechanical quantities into electrical quantities
JPS6354452B2 (en)
Lauzier et al. Lubrication agents of dislocation motion at very low temperature in cold-worked aluminium
JPH0213951Y2 (en)
JPS63309829A (en) Load sensor
JP2701686B2 (en) Manufacturing method of grid device for color picture tube
JPS6216834A (en) Production of coil spring of shape memory alloy
JPS61242823A (en) Molding method for polyethylene pipe
JP2004117025A (en) Method and apparatus for measuring tension in wire, and glass wall surface construction method using the apparatus
JPS58793A (en) Supporting device for nuclear fuel assembly
JPH0492337A (en) Method of attaching grid to frame to color cathode ray tube
JPH06267759A (en) Method and structure for fastening gap core
Takao et al. Study on fluctuations in supporting force of conductors caused by fluctuations in conductor dimensions
RU1786306C (en) Tension spring and method of its production
JPH02273908A (en) Transformer
JPH0617631B2 (en) Equipment for forming through holes in concrete structures
SU650129A1 (en) Colour-separating filter manufacturing method
JP2000353425A (en) Sagging suppressed electric cable and its manufacture
JP2672540B2 (en) Fuel assembly
ATE122792T1 (en) ACCELERATOR.
Wang et al. Dynamic performance of the beam position monitor support at the SSRF
JP3259236B2 (en) Non-thrust large span frame construction method