JPS6124882Y2 - - Google Patents

Info

Publication number
JPS6124882Y2
JPS6124882Y2 JP2520680U JP2520680U JPS6124882Y2 JP S6124882 Y2 JPS6124882 Y2 JP S6124882Y2 JP 2520680 U JP2520680 U JP 2520680U JP 2520680 U JP2520680 U JP 2520680U JP S6124882 Y2 JPS6124882 Y2 JP S6124882Y2
Authority
JP
Japan
Prior art keywords
lattice
grating
heat
threads
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2520680U
Other languages
Japanese (ja)
Other versions
JPS56126509U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2520680U priority Critical patent/JPS6124882Y2/ja
Publication of JPS56126509U publication Critical patent/JPS56126509U/ja
Application granted granted Critical
Publication of JPS6124882Y2 publication Critical patent/JPS6124882Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【考案の詳細な説明】 本考案は、耐熱格子を用いた熱間モアレ形状測
定に関する。
[Detailed Description of the Invention] The present invention relates to hot moiré shape measurement using a heat-resistant grid.

いわゆる等高モアレとは、周知のとおり、一方
向に周期的な透過特性を有する格子を測定対象物
の手前に置き、点(線)光源より格子を通して測
定対象物表面に光をあて、測定対象物表面に格子
の影(変形格子像)を作り、その変形格子像をさ
らに格子を通して、光源と同じ高さの所から撮像
する時、変形格子像と格子の空間周波数変調の結
果生成する干渉縞であり、この干渉縞が地図の等
高線のごとく測定対象の等高パターンを表わすこ
とにより立体形状測定に利用されている。また、
等高モアレを生成する方法は、大別して二法あ
り、一つは第1図に示すように、測定対象物1の
直前に格子2を置き、変形格子像3を、同一の格
子1を通して撮像することによりモアレを生成す
る方法で、一般に照射法と呼ばれる。もう一つ
は、第2図に示すように、測定対象物1の直前に
は格子を置かず、格子4をプロジエクター等を通
して遠くから測定対象物表面に投影し、測定対象
物表面に結像した変形格子像を光学的に格子4と
等価な位置に置かれた別の格子5を通して撮像す
ることによりモアレを生成させる方法であり、格
子4と格子5は、あたかも測定対象物の手前に格
子6が存在するのと等価な位置に配置される。こ
の方法は照射法に対して、投影法と呼ばれる。
As is well-known, the so-called contour moiré is a process in which a grating with periodic transmission characteristics in one direction is placed in front of the object to be measured, and light is directed from a point (line) light source through the grating onto the surface of the object to be measured. When a shadow of a grating (deformed grating image) is created on the surface of an object, and the deformed grating image is further passed through the grating and imaged from the same height as the light source, interference fringes are generated as a result of spatial frequency modulation of the deformed grating image and the grating. These interference fringes represent the contour pattern of the object to be measured, like contour lines on a map, and are used for three-dimensional shape measurement. Also,
There are two methods for generating contour moiré. One is, as shown in FIG. This is a method of creating moiré by doing this, and is generally called the irradiation method. The other method, as shown in Fig. 2, is to not place the grating directly in front of the object to be measured 1, but instead to project the grating 4 onto the surface of the object from a distance through a projector, etc., to form an image on the surface of the object to be measured. This is a method of generating moiré by imaging the deformed grating image through another grating 5 placed at an optically equivalent position to the grating 4. 6 is placed in the equivalent position. This method is called a projection method as opposed to an irradiation method.

ところで、測定対象物が冷間の場合は、上述二
方法による等高モアレ生成は、いずれも有効なの
であるが、測定対象物が熱間の場合は、以下の問
題が生じるため、熱間におけるモアレ形状測定は
困難とされてきた。
By the way, when the object to be measured is cold, both of the above two methods of generating contour moiré are effective, but when the object to be measured is hot, the following problems occur, so moiré generation in hot conditions is Shape measurement has been considered difficult.

(イ) 照射法においては、格子を測定対象物の直前
に置くため、熱間においての格子の耐熱性が問
題となる。モアレ形状測定では、格子面が形状
測定の基準面となるので、熱による格子系の伸
び、破損、格子枠の変形および格子系ピツチの
ズレ等は致命的なノズルとなる。また、一般
に、格子の透過特性向上のために、格子系に放
射率が高くなるような塗装をほどこすのである
が、熱によりこの塗装が剥離してしまう。
(b) In the irradiation method, the grid is placed directly in front of the object to be measured, so the heat resistance of the grid in hot conditions becomes an issue. In moiré shape measurement, the lattice plane serves as the reference surface for shape measurement, so elongation or damage of the lattice system due to heat, deformation of the lattice frame, deviation of the lattice system pitch, etc. are fatal to the nozzle. Furthermore, in order to improve the transmission characteristics of the grating, the grating system is generally coated with a coating that increases the emissivity, but this coating peels off due to heat.

(ロ) 投影法においては、測定対象物の直前に格子
をおかないので、格子の耐熱性の問題はないも
のの、熱間測定対象物自身が放射する放射エネ
ルギーのため、変形格子像のコントラストが低
下し、その結果、生成するモアレもコントラス
トが低く解像度が悪くなる。加えて、投影法
は、照射法に比べて測定対象物と格子の距離が
大きいために、回析の影響を受け易く、この影
響は、格子の糸のピツチが小さくなるほど顕著
であり、回析によつて変形格子像のコントラス
トは低下する。一方、等高モアレパターンによ
り得られる立体情報の分解能は、格子の糸のピ
ツチによつて決定され、ピツチが小さいほど高
分解能となる。よつて、熱間において、投影法
で、高分解の等高モアレをコントラスト良く生
成するのは困難である。また、コントラストを
向上するために、熱間測定対象物の放射スペク
トルと重複しないスペクトルを有する光源を用
いること、及び放射スペクトル成分をフイルタ
ーでカツトすること等も考えられるが、実際に
は、放射スペクトルが広く分布することから、
あまり効果がない。
(b) In the projection method, since the grating is not placed directly in front of the object to be measured, there is no problem with the heat resistance of the grating, but due to the radiant energy emitted by the hot object to be measured, the contrast of the deformed grating image is As a result, the generated moiré also has low contrast and poor resolution. In addition, the distance between the measurement object and the grating is longer in the projection method than in the irradiation method, so it is more susceptible to diffraction. The contrast of the deformed lattice image decreases as a result. On the other hand, the resolution of three-dimensional information obtained by a contour moiré pattern is determined by the pitch of the threads of the grid, and the smaller the pitch, the higher the resolution. Therefore, it is difficult to generate high-resolution, contour moiré with good contrast using the projection method in hot conditions. In addition, in order to improve the contrast, it is possible to use a light source with a spectrum that does not overlap with the radiation spectrum of the hot measurement object, or to cut out the radiation spectrum components with a filter, but in reality, the radiation spectrum Since it is widely distributed,
Not very effective.

本考案の目的は、照射法によつて、コントラス
トが良く、時間的、空間的安定性をもつたモアレ
縞を生成させることにあり、本考案は、この目的
を達成するために、熱間測定対象物の直前におい
ても、熱による格子糸の伸び、破損、格子枠の変
形、格子糸ピツチのズレ等格子面の変化が生じな
い耐熱格子を採用した点、ならびに耐熱格子の採
用により、照射法において、普通の波長分布を持
つた強力光源を用いることにより、コントラスト
が良く高分解能な等高モアレを、熱間で、安定か
つ簡易に生成出来る点に特徴がある。
The purpose of the present invention is to generate moiré fringes with good contrast and temporal and spatial stability using an irradiation method. The irradiation method is improved by using a heat-resistant grid that does not cause any changes in the grid plane, such as elongation or damage of the grid threads due to heat, deformation of the grid frame, or displacement of the grid thread pitch, even in front of the object, and by using a heat-resistant grid. The method is characterized in that a high-contrast, high-resolution, constant-height moiré can be generated stably and easily under heat by using a powerful light source with a normal wavelength distribution.

本考案における耐熱格子とは、格子糸として、
熱に酸化等の劣化及び破損を生じにくいSUS等の
金属線を用いること、格子糸のピツチを一定に保
つべく、ネジ等の一定凸凹周期を持つみぞに格子
糸を一本ずつ掛けてから格子糸を引張り、固定す
ること、格子糸が熱により膨脹し、たるんで格子
面がフラツトでなくなつたり、ねじの凹部から格
子糸が外れて格子糸のピツチがくるつたりするの
を防ぐべく、ばね、形状記憶合金等を用して格子
糸に張力を付与した状態で耐熱格子を形成し、格
子糸に膨脹を吸収する機能を有せしめること、格
子糸の塗装を保護すべく格子面を空冷すること、
格子枠が熱により変形をしないように、格子前面
に防熱板を設け、防熱板内側を空冷するか、ある
いは、枠自身をパイプ構造にして、パイプ中に
水、空気等を通して冷却することを特徴とする。
The heat-resistant lattice in this invention is a lattice thread,
Metal wires such as SUS, which are resistant to deterioration and breakage due to oxidation due to heat, should be used.In order to keep the pitch of the lattice threads constant, the lattice threads should be hung one by one in the grooves of screws etc. that have a constant periodicity of the lattice. In order to pull and fix the threads, to prevent the lattice threads from expanding and sagging due to heat, making the lattice surface no longer flat, or from coming off from the recesses of the screws and causing the pitches of the lattice threads to twist. A heat-resistant lattice is formed by applying tension to the lattice threads using springs, shape memory alloys, etc., the lattice threads have the function of absorbing expansion, and the lattice surface is air-cooled to protect the coating of the lattice threads. to do,
In order to prevent the lattice frame from deforming due to heat, a heat shield is provided in front of the lattice and the inside of the heat shield is air-cooled, or the frame itself is made into a pipe structure and water, air, etc. are passed through the pipe for cooling. shall be.

以下、図面を参照しながら本発明を詳細に説明
する。第3図および第4図は、耐熱格子の正面図
ならびに側面図である。両図において、7はSUS
等の合属線を利用した格子糸であり、ネジ8に掛
けられてからバネ9で引張られる。10a〜10
cは格子糸及びバネを保護するための空冷用パイ
プであり、パイプにあけられた孔より冷却エアー
が出る。11は全体を支える格子枠であり、この
格子枠はパイプ構造とし、パイプ中に冷却水及び
冷却エアーを循環させる。
Hereinafter, the present invention will be explained in detail with reference to the drawings. 3 and 4 are a front view and a side view of the heat-resistant grid. In both figures, 7 is SUS
It is a lattice thread that utilizes interlocking wires such as, etc., and is hung on a screw 8 and then pulled by a spring 9. 10a-10
C is an air cooling pipe for protecting the lattice threads and springs, and cooling air comes out from holes drilled in the pipe. Reference numeral 11 denotes a lattice frame that supports the whole, and this lattice frame has a pipe structure, and circulates cooling water and cooling air through the pipe.

次に、本考案の構成要件を説明する。格子糸
は、SUS等の金属線であり、その表面には、放射
率が高くなるように黒色の塗装をほどこす。格子
糸は両端で、ネジ等、一定周期の凸凹を有するも
のに掛けられ、この凸凹の周期により格子糸のピ
ツチは決定される。格子糸は、その両端又は一端
をバネ等の弾力性のあるもので引張られ、常に張
力を受けるようにする。格子糸は必ずしも一本ず
つ引張る必要は無く、格子糸を両端で何回かター
ンさせ、その両端及び一端を引張つてもよい。格
子糸及びバネ等の引つ張り機構及びネジは、冷却
エアーにより冷却される。格子枠は、全体をパイ
プ構造にして、パイプ中に冷却水及びエアーを循
環させる。あるいは、第5図に示すように、格子
面と測定対象物の間に防熱板を取り付けてもよ
い。
Next, the constituent elements of the present invention will be explained. The lattice threads are metal wires such as SUS, and their surfaces are painted black to increase the emissivity. Both ends of the lattice threads are hung on something having irregularities of a constant period, such as screws, and the pitch of the lattice threads is determined by the period of the irregularities. Both ends or one end of the lattice threads are pulled by an elastic material such as a spring so that they are constantly under tension. It is not necessarily necessary to pull the lattice threads one by one; the lattice threads may be turned several times at both ends and then both ends and one end may be pulled. Tensioning mechanisms such as lattice threads and springs and screws are cooled by cooling air. The lattice frame has a pipe structure as a whole and circulates cooling water and air through the pipes. Alternatively, as shown in FIG. 5, a heat shield plate may be attached between the grating surface and the object to be measured.

本考案において、格子糸をバネ等弾力性のある
もので引張つているのは、熱間においては格子糸
が膨張し、たるんで格子面がフラツトでなくなつ
たり、ネジの凹部から外れてピツチがくるつたり
するのを防ぐためである。格子面を空冷するの
は、金属線の塗装剥離を防ぐためであり、塗装が
剥離すると、格子糸の放射率が低下し、光を反射
したりして透過特性が劣化し、コントラストの良
いモアレが得られない。格子枠を冷却するか、あ
るいは防熱板を用いて格子枠を保護するのは、熱
による格子枠の歪に起因する格子面の歪を防ぐ為
であり、モアレ形状測定では、格子面が立体情報
の基準面となつているため、格子面の歪は防がな
くてはならない。
In the present invention, the lattice threads are pulled with an elastic material such as a spring because the lattice threads expand and sag when hot, causing the lattice surface to no longer be flat, or coming off the recesses of the screws and causing pitch. This is to prevent it from rolling. The purpose of air-cooling the grid surface is to prevent the paint from peeling off on the metal wires. When the paint peels off, the emissivity of the grid threads decreases, reflecting light and deteriorating the transmission characteristics, resulting in a moiré pattern with good contrast. is not obtained. The purpose of cooling the lattice frame or protecting the lattice frame with a heat shield is to prevent distortion of the lattice plane due to distortion of the lattice frame due to heat.In moiré shape measurement, the lattice plane is used to obtain 3D information. Since the lattice plane serves as a reference plane, distortion of the lattice plane must be prevented.

以上のような耐熱格子を用いると、熱間測定対
象物に対しても、格子糸の破損は生ぜず、格子糸
の伸びはバネ等が吸収するので、格子糸のたるみ
は生じない。また、格子糸に張力は、大体一定に
保たれるので、格子糸は、ネジ等の凹みに安定し
て固定され、その結果ピツチが一定に保たれる。
また、冷却、防熱のため熱による格子枠の歪みが
生じないので、形状測定の基準面たる格子面は、
安定かつフラツトに保たれる。
When such a heat-resistant grating as described above is used, the grid threads will not be damaged even with respect to a hot measurement object, and the elongation of the grid threads will be absorbed by the springs, so the grid threads will not sag. Further, since the tension in the grid threads is kept approximately constant, the grid threads are stably fixed in the recesses of screws, etc., and as a result, the pitch is kept constant.
In addition, since the lattice frame is not distorted due to heat due to cooling and heat insulation, the lattice plane that is the reference plane for shape measurement is
remains stable and flat.

本考案は、以上のような構成を有する耐熱格子
を用いて、モアレを生成させるので、 (1) 格子を熱間測定対象物の直前に、長時間安定
して置くことが出来る、 (2) 格子と測定対象との距離が小さくできるの
で、回析の影響を受けにくく、その結果、通常
のスペクトル分布を有する強力光源を用いるだ
けで簡単に、高分解能でコントラストのよい等
高モアレの生成が可能になる、 (3) 投影法のように、複数の格子を用いないの
で、光軸ずれ等のノズルが混入しない、 等の利点がある。
The present invention uses a heat-resistant grating having the above-described configuration to generate moiré, so (1) the grating can be stably placed for a long time directly in front of the object to be measured during hot measurement; (2) Since the distance between the grating and the measurement target can be made small, it is less susceptible to diffraction effects, and as a result, it is possible to easily generate high-resolution, high-contrast contour moire just by using a strong light source with a normal spectral distribution. (3) Unlike the projection method, multiple gratings are not used, so nozzles such as optical axis misalignment are avoided.

次に、本考案の測定装置を用いて、CC(連鋳
機)バルジングを測定する例を示す。CCバルジ
ングとは、第5図に示すように、鋳片未凝固部1
2に働く静圧13により、ロール14間で、鋳片
凝固部15が膨らむ現象を言う。これに、第6図
に示すように、耐熱格子16、ハロゲンランプ1
7、TVカメラ18を用いて、モアレを生成し撮
像すると、第7図の19に示すような、バルジン
グ部の等高パターンが得られ、このパターン形状
から、どこがどのように膨らんでいるかという定
性情報、及び、縞の数を数えることにより膨らみ
量(定量情報)を同時に計測出来る。等高モアレ
の分解能は、0.5mmピツチの格子を用い、耐熱格
子16とハロゲンランプ17間距離を1m、ハロ
ゲンランプ17とTVカメラ18間距離を2mと
する時、約0.25mmになり、一般に最大バルジング
量が数mmであることから、高精度の形状測定が可
能である。
Next, an example of measuring CC (continuous caster) bulging using the measuring device of the present invention will be shown. CC bulging refers to the unsolidified part 1 of the slab as shown in Figure 5.
This refers to the phenomenon in which the solidified slab 15 swells between the rolls 14 due to the static pressure 13 acting on the solidified slab 15. In addition, as shown in FIG. 6, a heat-resistant grid 16, a halogen lamp 1
7. When moiré is generated and imaged using the TV camera 18, a contour pattern of the bulging part as shown in 19 in FIG. By counting the information and the number of stripes, the amount of swelling (quantitative information) can be measured simultaneously. The resolution of contour moiré is approximately 0.25 mm when using a grid with a pitch of 0.5 mm and the distance between the heat-resistant grid 16 and the halogen lamp 17 is 1 m, and the distance between the halogen lamp 17 and the TV camera 18 is 2 m, and is generally the maximum. Since the amount of bulging is several mm, highly accurate shape measurement is possible.

かように、本考案による測定装置を用いれば、
熱間測定対象物に対して、冷間の場合と同様に、
照射法によつて、高分解能でコントラストのよい
等高モアレを安定に生成することが容易に実現出
来ることになる。
In this way, if the measuring device according to the present invention is used,
For the hot measurement target, as in the cold case,
By using the irradiation method, it is possible to stably generate high-resolution, high-contrast, contour moiré.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は照射法による等高モアレ生成を示す斜
視図、第2図は投影法による等高モアレ生成を示
す側断面図である。第3図および第4図は本考案
で用いる耐熱格子の正面図及び側面図、第5図は
バルジング発生状況を示す縦断面図、第6図は本
考案の一実施例を示す斜視図、第7図はそれによ
つて得られるCCバルジングの等高モアレの略図
である。 1……測定対象物、2……格子、3……変形格
子像、4……格子、5……格子、6……格子、7
……格子糸、8……ネジ、9……バネ、10a〜
10c……空冷用パイプ、11……格子枠、12
……鋳片未凝固部、13……静圧、14……ロー
ル、15……鋳片凝固部、16……耐熱格子、1
7……ハロゲンランプ、18……テレビカメラ、
19……等高パターン。
FIG. 1 is a perspective view showing the generation of a contour moiré by the irradiation method, and FIG. 2 is a side sectional view showing the generation of a contour moire by the projection method. 3 and 4 are a front view and a side view of the heat-resistant grid used in the present invention, FIG. 5 is a vertical cross-sectional view showing how bulging occurs, and FIG. 6 is a perspective view showing an embodiment of the present invention. Figure 7 is a schematic diagram of the CC bulging contour moiré obtained thereby. 1... object to be measured, 2... grating, 3... deformed grating image, 4... grating, 5... grating, 6... grating, 7
... Lattice thread, 8 ... Screw, 9 ... Spring, 10a ~
10c... Air cooling pipe, 11... Lattice frame, 12
...Unsolidified part of the slab, 13... Static pressure, 14... Roll, 15... Solidified part of the slab, 16... Heat-resistant grid, 1
7...Halogen lamp, 18...TV camera,
19... Contour pattern.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高温の測定対象物に所定の間隔を置いて格子糸
に張力を付与した耐熱格子を配設するとともに、
該格子の背後に前記高温の測定対象物を指向する
光源を設け、光源から測定対象物を照射し測定対
象物を前記格子を介して撮象することにより高温
の測定対象物の立体形状を二次元的な等高パター
ン情報として高分解能で計測する構成とした、モ
アレによる高温対象物の形状測定装置。
In addition to placing heat-resistant grids with grid threads under tension at predetermined intervals on the high-temperature measurement target,
A light source directed toward the high-temperature measurement target is provided behind the grating, and the three-dimensional shape of the high-temperature measurement target is visualized by illuminating the measurement target from the light source and imaging the measurement target through the grating. A device for measuring the shape of high-temperature objects using moire, configured to measure with high resolution as dimensional contour pattern information.
JP2520680U 1980-02-28 1980-02-28 Expired JPS6124882Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2520680U JPS6124882Y2 (en) 1980-02-28 1980-02-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2520680U JPS6124882Y2 (en) 1980-02-28 1980-02-28

Publications (2)

Publication Number Publication Date
JPS56126509U JPS56126509U (en) 1981-09-26
JPS6124882Y2 true JPS6124882Y2 (en) 1986-07-26

Family

ID=29621261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2520680U Expired JPS6124882Y2 (en) 1980-02-28 1980-02-28

Country Status (1)

Country Link
JP (1) JPS6124882Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61134608A (en) * 1984-12-06 1986-06-21 Chino Works Ltd Optical measuring device
JPH0330812Y2 (en) * 1985-07-23 1991-06-28

Also Published As

Publication number Publication date
JPS56126509U (en) 1981-09-26

Similar Documents

Publication Publication Date Title
DE19709992C1 (en) Method for measuring the surface geometry of hot strip
KR20130009837A (en) Method for measuring flatness of sheet material and steel sheet production method utilizing said method
JP4202452B2 (en) Illumination system and scanning photolithography apparatus for use in a scanning photolithography apparatus
Cherkassky et al. Imaging techniques for a high-power THz free electron laser
US4167337A (en) Interferometric apparatus and process
JPS6124882Y2 (en)
US5620814A (en) Process and arrangement for producing dose profiles for the fabrication of structured surfaces
KR20110099279A (en) A 3d scanner
CN105892257A (en) Sine structured light record hologram method and device
US4072423A (en) Light interference device with low degree of spacial coherence
US4125025A (en) Instrument for measuring the amplitude of vibration of a vibrating object
Von der Luehe Speckle imaging of solar small scale structure. 2: Study of small scale structure in active regions
JPS5822903A (en) Rolling monitoring device of plate material
JP3051609B2 (en) Appearance inspection system for fuel assemblies
GB2042711A (en) Solar energy absorber for use with a linear optical concentrating system
Gershberg et al. An Interferometric Study of Diffuse Nebulae-Radial Velocities and Internal Motions
DE10351142B4 (en) Apparatus and methods for measuring thermally induced surface deformations
JPS5533679A (en) Measuring method of distance
JPH0325125Y2 (en)
GB2183364A (en) Alignment using gratings having varying stripe pitch
KR100328025B1 (en) Device and method for measuring shape of cold rolled steel by using sine wave stripe phase movement
KR100286685B1 (en) Device for continuously measuring inflection and shape of cold rolled steel plate
JPS60177207A (en) Strain measuring device
SU438411A1 (en) INSTALLATION FOR QUANTITATIVE DETERMINATION OF PARAMETERS OF THE FORM OF A HUMAN BODY
JPH07332956A (en) Apparatus for measuring surface shape