JPH0330771Y2 - - Google Patents

Info

Publication number
JPH0330771Y2
JPH0330771Y2 JP1924784U JP1924784U JPH0330771Y2 JP H0330771 Y2 JPH0330771 Y2 JP H0330771Y2 JP 1924784 U JP1924784 U JP 1924784U JP 1924784 U JP1924784 U JP 1924784U JP H0330771 Y2 JPH0330771 Y2 JP H0330771Y2
Authority
JP
Japan
Prior art keywords
gas
solution
absorber
dilute solution
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1924784U
Other languages
Japanese (ja)
Other versions
JPS60130371U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1924784U priority Critical patent/JPS60130371U/en
Publication of JPS60130371U publication Critical patent/JPS60130371U/en
Application granted granted Critical
Publication of JPH0330771Y2 publication Critical patent/JPH0330771Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、吸収式冷凍機や濃度差エンジン等の
吸収溶液サイクル系において作動流体の稀溶液へ
の管内吸収を行う吸収器の上流側に配設され、吸
収器に至る作動流体と稀溶液とを混合させる気液
混合器の改良に関するものである。
[Detailed description of the invention] (Field of industrial application) This invention is applied to the upstream side of an absorber that absorbs working fluid into a dilute solution in a pipe in an absorption solution cycle system such as an absorption refrigerator or a concentration difference engine. The present invention relates to an improvement in a gas-liquid mixer arranged to mix a working fluid and a dilute solution leading to an absorber.

(従来技術) 一般に、この種の吸収溶液サイクル系は、第1
2図に示すように、濃溶液を加熱して高圧ガス状
の作動流体を発生させる発生器1と、稀溶液を冷
却して該稀溶液内にガス状の作動流体を吸収させ
る吸収器2と、上記作動流体を発生した後の高温
の稀溶液と作動流体を吸収した後の低温の濃溶液
との間で熱交換させる溶液熱交換器11と、溶液
を上記発生器1と吸収器2との間で循環させる溶
液ポンプ7とを備えている。そして、吸収式冷凍
機になつては、同図aに示す如く、上記発生器1
からの高圧ガス状の作動流体を凝縮器8で凝縮さ
せ、膨張弁9(減圧機構)で減圧した後に蒸発器
10で蒸発させることにより冷凍能力を得るよう
にし、また、濃度差エンジンにあつては、図bに
示すように、上記高圧の作動流体の圧力によりタ
ービン30を駆動して出力を得るようにしてい
る。
(Prior Art) Generally, this type of absorption solution cycle system
As shown in Figure 2, there are a generator 1 that heats a concentrated solution to generate a high-pressure gaseous working fluid, and an absorber 2 that cools a dilute solution and absorbs the gaseous working fluid into the dilute solution. , a solution heat exchanger 11 for exchanging heat between a high-temperature dilute solution after generating the working fluid and a low-temperature concentrated solution after absorbing the working fluid; and a solution pump 7 for circulating the solution between the two. In the case of an absorption refrigerating machine, as shown in Figure a, the generator 1
The high-pressure gas working fluid is condensed in a condenser 8, reduced in pressure by an expansion valve 9 (pressure reduction mechanism), and then evaporated in an evaporator 10 to obtain refrigerating capacity. As shown in FIG. b, the turbine 30 is driven by the pressure of the high-pressure working fluid to obtain output.

ところで、このような吸収溶液サイクル系にお
ける吸収器2として、作動流体の稀溶液への吸収
を管の内部で行わせる管内吸収式のものを用いた
ときには、該吸収器2上流側の稀溶液管路に気液
混合器を配設し、該気液混合器により吸収器2に
至るまでに作動流体と稀溶液とを十分に混合させ
て吸収器2での管内吸収を促進させる必要があ
る。
By the way, when the absorber 2 in such an absorption solution cycle system is an in-tube absorption type in which the working fluid is absorbed into the dilute solution inside the tube, the dilute solution tube on the upstream side of the absorber 2 is used. It is necessary to dispose a gas-liquid mixer in the pipe, and use the gas-liquid mixer to sufficiently mix the working fluid and the dilute solution before reaching the absorber 2 to promote absorption within the pipe in the absorber 2.

そして、上記気液混合器としては、例えば特開
昭56−108070号公報等に開示されているようにイ
ジエクタの原理を利用したものがよく知られてい
る。すなわち、このイジエクタ方式のものは、例
えば第11図に示すように、稀溶液入口管aに設
けられた小孔a1,a2から出口管bの開口部に向け
て稀溶液を噴出させ、この稀溶液のジエツトによ
つて作動流体入口管cからの作動流体を吸引して
出口管b内に送り込むことにより、作動流体と稀
溶液とを混合させるようにしたものである。
As the above-mentioned gas-liquid mixer, one that utilizes the ejector principle is well known, for example, as disclosed in Japanese Patent Laid-Open No. 56-108070. That is, in this ejector type, as shown in FIG. 11, for example, the dilute solution is ejected from small holes a 1 and a 2 provided in the dilute solution inlet pipe a toward the opening of the outlet pipe b. The working fluid from the working fluid inlet pipe c is sucked by the jet of the dilute solution and sent into the outlet pipe b, thereby mixing the working fluid and the dilute solution.

しかるに、この従来のものでは、作動流体を稀
溶液のジエツトによつて効果的に吸引するために
は小孔a1,a1から稀溶液を大きな速度で噴射させ
なければならず、小孔a1,a1の開口面積を小さく
することを要し、その分稀溶液入口管aでの通路
抵抗つまり気液混合器全体の流通抵抗が増大して
吸収器へ十分な量の気液混合流が流れ難くなり、
吸収器で吸収される作動流体量が低く抑制される
という欠点があつた。
However, in this conventional method, in order to effectively suck the working fluid with a jet of dilute solution, the dilute solution must be jetted at a large speed from the small holes a 1 and a 1 , and the small holes a It is necessary to reduce the opening area of 1 and a 1 , which increases the passage resistance at the dilute solution inlet pipe a, that is, the flow resistance of the entire gas-liquid mixer, and prevents a sufficient amount of gas-liquid mixed flow to the absorber. becomes difficult to flow,
A drawback was that the amount of working fluid absorbed by the absorber was suppressed to a low level.

(考案の目的) 本考案はかかる点に鑑みてなされたもので、そ
の目的は、上記の作動流体と稀溶液とを予め混合
の程度の粗い状態で粗混合しておき、その粗気液
混合流を流れの衝突を利用した攬拌作用によつて
混合程度の密な密気液混合流とするようにするこ
とにより、作動流体と稀溶液との混合を十分に行
いつつ、稀溶液側の通路抵抗を小さく保つて吸収
器への気液混合流量を増大させ得るようにするこ
とにある。
(Purpose of the invention) The present invention was made in view of the above points, and its purpose is to roughly mix the working fluid and the dilute solution in advance to a rough mixing state, and to mix the rough gas-liquid mixture. By creating a dense gas-liquid mixed flow through the stirring action using flow collisions, the working fluid and dilute solution can be sufficiently mixed, while the dilute solution side The purpose is to keep the passage resistance low and increase the gas-liquid mixing flow rate to the absorber.

(考案の構成) 上記目的を達成するために、本考案の構成は、
吸収溶液サイクル系において、作動流体の稀溶液
への管内吸収を行う吸収器と、吸収器から発生器
に流れる濃溶液により作動流体及び稀溶液を冷却
して粗混合させる吸収器熱交換器との間の稀溶液
管路に配設される気液混合器として、直立密閉円
筒状の胴と、該胴の側面に接続され、上記吸収器
熱交換器から送り出された作動流体と稀溶液との
粗気液混合流を胴内に導入する入口管と、上記胴
内に直立状にかつ上端開口部を胴内の上部空間に
臨ましめて立設されているとともに、側面に多数
の小孔が形成され、胴内の気液混合流を外部に排
出する複数の出口管とを備えてなるものである。
(Structure of the invention) In order to achieve the above object, the structure of the invention is as follows:
In an absorption solution cycle system, an absorber absorbs working fluid into a dilute solution in a pipe, and an absorber heat exchanger cools and roughly mixes the working fluid and dilute solution by a concentrated solution flowing from the absorber to a generator. The gas-liquid mixer is installed in the dilute solution pipe between the cylinders and is connected to the side of the vertical closed cylindrical cylinder, which mixes the working fluid and dilute solution sent out from the absorber heat exchanger. An inlet pipe that introduces a crude gas-liquid mixed flow into the shell, and an inlet pipe that stands upright in the shell with the upper end opening facing the upper space inside the shell, and a number of small holes are formed on the side. It is equipped with a plurality of outlet pipes for discharging the gas-liquid mixed flow inside the shell to the outside.

このことにより、入口管から胴内に導入された
粗気液混合流のうちの一部に含まれる作動流体を
一旦胴内の上部空間に貯留させたのち上端開口部
から各出口管内に流入させて下降させる一方、残
りの粗気液混合流を多数の小孔から細分化して各
出口管内に流入させ、上記出口管内を下降する作
動流体と小孔から出口管内に流入した粗気液混合
流との直角方向の衝突により攬拌作用を生ぜしめ
て作動流体と稀溶液とを密に混合し、しかる後、
その密な気液混合流を管内吸収方式の吸収器に送
り出すようにしたものである。
As a result, the working fluid contained in a part of the crude gas-liquid mixed flow introduced into the shell from the inlet pipe is temporarily stored in the upper space of the shell, and then flows into each outlet pipe from the upper end opening. At the same time, the remaining crude gas-liquid mixed flow is divided into small pieces through a large number of small holes and flows into each outlet pipe, so that the working fluid descending in the outlet pipe and the crude gas-liquid mixed flow flowing into the outlet pipe from the small holes are combined. The working fluid and the dilute solution are mixed intimately by creating an agitating action by perpendicular collision with the dilute solution, and then
This dense gas-liquid mixed flow is sent to an in-tube absorption type absorber.

(考案の効果) したがつて、本考案の吸収溶液サイクル系の気
液混合器によれば、入口管から胴内に流入した粗
気液混合流の一部の作動流体を各出口管内を流下
させ、残りの粗気液混合流を各小孔から細分化し
て各出口管内に流入させ、上記流下する作動流体
に側方から衝突させて作動流体と稀溶液との混合
を行わせるようにしたものであるので、上記作動
流体と稀溶液との衝突に伴う攬拌作用によつて両
者の混合を十分に行いつつ、稀溶液側の通路抵抗
を小さくして吸収器への気液混合流量を増大させ
ることができ、よつて吸収溶液サイクル系の吸収
器における作動流体の吸収を促進させることがで
きるものである。
(Effect of the invention) Therefore, according to the gas-liquid mixer of the absorption solution cycle system of the invention, part of the working fluid of the crude gas-liquid mixed flow that has flowed into the body from the inlet pipe is allowed to flow down inside each outlet pipe. The remaining crude gas-liquid mixed flow was divided into small pieces from each small hole and flowed into each outlet pipe, and the working fluid collided with the flowing working fluid from the side to mix the working fluid and the dilute solution. Therefore, the working fluid and the dilute solution are sufficiently mixed by the stirring action that occurs when they collide, while reducing the passage resistance on the dilute solution side to reduce the gas-liquid mixed flow rate to the absorber. It is possible to increase the absorption of the working fluid in the absorber of the absorption solution cycle system.

(実施例) 以下、本考案の実施例を図面に基づいて詳細に
説明する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本考案の実施例に係る吸収式冷凍機の
全体構成を示し、1は内蔵する熱源1aにより濃
溶液を加熱して高圧の冷媒ガス(作動流体)を発
生させる発生器、2は稀溶液を冷却して該稀溶液
内に冷媒ガスを吸収させる吸収器であつて、該吸
収器2は、並列に配置された複数本(図では3
本)の配管3,3,…と、該配管3,3,…を送
風により冷却するフアン4とを備え、各配管3内
を流れる冷媒ガスと稀溶液との気液混合流をフア
ン4の送風により冷却して稀溶液内に冷媒ガスを
吸収させるものである。
FIG. 1 shows the overall configuration of an absorption refrigerator according to an embodiment of the present invention, in which 1 is a generator that heats a concentrated solution using a built-in heat source 1a to generate high-pressure refrigerant gas (working fluid); The absorber 2 is an absorber that cools a dilute solution and absorbs refrigerant gas into the dilute solution.
pipes 3, 3, ... and a fan 4 that cools the pipes 3, 3, ... by blowing air. It cools by blowing air and absorbs refrigerant gas into the dilute solution.

上記発生器1と吸収器2とは稀溶液管路5によ
つて接続されている。該稀溶液管路5は、発生器
1側から吸収器2側に向かつて順に、稀溶液流部
5a、粗気液混合流部5b、密気液混合流部5
c,5c,…の3つの部分に分けられており、上
記稀溶液流部5a内には上記冷媒ガスを発生した
後の発生器1内の高温高圧の稀溶液が、粗気液混
合流部5b内には上記稀溶液中に後述する蒸発器
10からの冷媒ガスが粗な程度に、つまり大きい
気泡状態となつて混合されている粗気液混合流
が、さらに各密気液混合流部5c内には同じく稀
溶液中に冷媒ガスが密な程度につまり細かい多数
の気泡状態となつて混合されている密気液混合流
がそれぞれ流れるように構成されている。
The generator 1 and absorber 2 are connected by a dilute solution pipe 5. The dilute solution pipe line 5 includes, in order from the generator 1 side to the absorber 2 side, a dilute solution flow section 5a, a coarse gas-liquid mixed flow section 5b, and a tight gas-liquid mixed flow section 5.
The dilute solution is divided into three parts c, 5c, . In 5b, there is a coarse gas-liquid mixed flow in which refrigerant gas from the evaporator 10 (described later) is mixed in the dilute solution to a coarse degree, that is, in the form of large bubbles. Inside 5c, a gas-liquid mixed flow in which refrigerant gas is mixed in a dilute solution so as to be densely packed into a large number of fine bubbles flows respectively.

また、上記発生器1と吸収器2とは、上記冷媒
ガスを吸収した後の吸収器2内の低温低圧の濃溶
液を発生器1に送給する濃溶液管管路6によつて
も接続され、該濃溶液管路6の途中には溶液ポン
プ7が配設されており、溶液ポンプ7の作動によ
り溶液を発生器1と吸収器2との間で循環させる
ようにしている。
The generator 1 and absorber 2 are also connected by a concentrated solution pipe line 6 that supplies the low temperature, low pressure concentrated solution in the absorber 2 after absorbing the refrigerant gas to the generator 1. A solution pump 7 is disposed in the middle of the concentrated solution pipe 6, and the operation of the solution pump 7 circulates the solution between the generator 1 and the absorber 2.

一方、8は上記発生器1で発生した高温高圧の
冷媒ガスを冷却水伝熱管8a内の冷却水で冷却し
て凝縮させる凝縮器、9は該凝縮器8からの高圧
の冷媒液を所定圧に減圧する膨張弁、10は該膨
張弁9で減圧された冷媒液を蒸発させる蒸発器で
あつて、該蒸発器10は水が流れる冷水伝熱管1
0aを内蔵しており、蒸発器10内で蒸発する冷
媒液の気化熱によつて冷水伝熱管10a内の水を
冷却することにより冷凍効果を得るように構成さ
れている。
On the other hand, 8 is a condenser that cools and condenses the high-temperature, high-pressure refrigerant gas generated in the generator 1 with cooling water in the cooling water heat transfer tube 8a, and 9 is a condenser that cools and condenses the high-temperature and high-pressure refrigerant gas generated in the generator 1. 10 is an evaporator that evaporates the refrigerant liquid whose pressure has been reduced by the expansion valve 9, and the evaporator 10 is connected to a cold water heat transfer tube 1 through which water flows.
0a, and is configured to obtain a refrigeration effect by cooling the water in the cold water heat transfer tube 10a with the heat of vaporization of the refrigerant liquid evaporated in the evaporator 10.

そして、上記稀溶液管路5の稀溶液流部5aお
よび濃溶液管路6の各一部は互いに重合されてそ
れぞれの内部を流れる稀・濃溶液間で熱交換させ
る溶液熱交換器11が構成されている。
Parts of the dilute solution flow section 5a of the dilute solution pipe line 5 and the concentrated solution pipe line 6 are polymerized with each other and constitute a solution heat exchanger 11 for exchanging heat between the dilute solution and the concentrated solution flowing inside each. has been done.

また、上記稀溶液管路5の稀溶液流部5aと粗
気液混合流部5bとの接続部分には密閉状の吸収
器熱交換器12が配設され、該吸収器熱交換器1
2の内部は上記蒸発器10に連通され、かつ該内
部には上記溶液熱交換器11よりも吸収器2側
(溶液ポンプ7側)の濃溶液管路6の一部が嵌挿
されており、吸収器熱交換器12において発生器
1からの稀溶液と蒸発器10からの冷媒ガスとを
濃溶液管路6内の濃溶液により冷却して粗混合さ
せるようにしている。
Further, a hermetically sealed absorber heat exchanger 12 is disposed at a connecting portion between the dilute solution flow section 5a and the crude gas-liquid mixed flow section 5b of the dilute solution pipe line 5.
The inside of 2 is communicated with the evaporator 10, and a part of the concentrated solution pipe 6 on the absorber 2 side (solution pump 7 side) than the solution heat exchanger 11 is inserted into the inside. In the absorber heat exchanger 12, the dilute solution from the generator 1 and the refrigerant gas from the evaporator 10 are cooled and roughly mixed by the concentrated solution in the concentrated solution pipe 6.

さらに、上記稀溶液管路5の粗気液混合流部5
bと密気液混合流部5cとの接続部分、換言すれ
ば上記吸収器熱交換器12と上記冷媒ガスの管内
吸収を行う吸収器2との間の稀溶液管路5には本
考案の実施例としての気液混合器13が配設され
ている。該気液混合器13は、第2図に拡大詳示
するように、直立密閉円筒状の胴14と、1本の
入口管15と、複数本の出口管16,16,…と
を備えてなり、上記入口管15の一端は上記胴1
4の下方側面に、他端は上記稀溶液管路5の粗気
液混合流部5b下流端にそれぞれ接続されてお
り、吸収器熱交換器12から送り出された冷媒ガ
スと稀溶液との粗気液混合流を入口管15によつ
て胴14内に導入する。
Further, the crude gas-liquid mixed flow section 5 of the dilute solution pipe line 5
b and the air-liquid mixed flow section 5c, in other words, the dilute solution pipe line 5 between the absorber heat exchanger 12 and the absorber 2 that absorbs the refrigerant gas in the pipe is equipped with the dilute solution pipe line 5 of the present invention. A gas-liquid mixer 13 as an example is provided. As shown in enlarged detail in FIG. 2, the gas-liquid mixer 13 includes an upright closed cylindrical body 14, one inlet pipe 15, and a plurality of outlet pipes 16, 16, . One end of the inlet pipe 15 is connected to the body 1.
4, and the other end is connected to the downstream end of the crude gas-liquid mixed flow section 5b of the dilute solution pipe line 5, and the crude mixture of the refrigerant gas sent from the absorber heat exchanger 12 and the dilute solution is A gas-liquid mixture stream is introduced into the shell 14 by an inlet tube 15.

一方、上記複数本の出口管16,16,…は、
第4図に示すように胴14内に環状に一列に配置
されて直立状に、かつ各上端開口部16aを胴1
4内の上部空間14aに臨ましめて立設され、各
出口管16の下端部は胴14の底面を貫通して胴
14外部に導出されてそれぞれ上記吸収器2の各
配管3に接続されている。また、上記各出口管1
6の胴14内に位置する部分の側面には出口管1
6内外を連通する多数の小孔17,17,…が開
口され、該多数の小孔17,17,…は第5図に
示すように出口管16側面に管軸方向螺旋状に配
設されており、出口管16,16,…によつて胴
14内の気液混合流を外部に排出するようにして
いる。
On the other hand, the plurality of outlet pipes 16, 16,...
As shown in FIG.
The lower end of each outlet pipe 16 penetrates the bottom surface of the shell 14, is led out to the outside of the shell 14, and is connected to each pipe 3 of the absorber 2. . In addition, each of the above outlet pipes 1
There is an outlet pipe 1 on the side of the part located inside the body 14 of 6.
A large number of small holes 17, 17, . The gas-liquid mixed flow inside the shell 14 is discharged to the outside through outlet pipes 16, 16, . . . .

次に、上記実施例の作動について説明するに、
発生器1の熱源1aを作動させ、かつ吸収器2の
フアン4を作動させた状態で溶液ポンプ7を作動
させると、吸収器2内の低圧濃溶液が濃溶液管路
6を通つて発生器1に圧送されて該発生器1で熱
源1aにより加熱され、この加熱によつて該濃溶
液から高温高圧の冷媒ガスが発生する。そして、
この冷媒ガスが凝縮器8で凝縮されて冷媒液とな
り、次いで該冷媒液が蒸発器10で蒸発して低圧
の冷媒ガスに戻ることにより冷媒効果が得られ
る。
Next, to explain the operation of the above embodiment,
When the solution pump 7 is operated while the heat source 1a of the generator 1 is operated and the fan 4 of the absorber 2 is operated, the low-pressure concentrated solution in the absorber 2 passes through the concentrated solution pipe 6 to the generator. 1 and heated by the heat source 1a in the generator 1, and as a result of this heating, high temperature and high pressure refrigerant gas is generated from the concentrated solution. and,
This refrigerant gas is condensed into a refrigerant liquid in the condenser 8, and then the refrigerant liquid is evaporated in the evaporator 10 and returned to low-pressure refrigerant gas, thereby providing a refrigerant effect.

一方、上記高圧の冷媒ガスを発生した後の発生
器1内の高温高圧の稀溶液はその圧力により稀溶
液管路5を通つて吸収器2内に還流され、その途
中の溶液熱交換器11および吸収器熱交換器12
にて上記濃溶液管路6内の低温の濃溶液と熱交換
されて低温になる。また、上記吸収器熱交換器1
2を稀溶液が通過する間に該稀溶液は上記蒸発器
10からの低圧冷媒ガスを粗混合されて粗気液混
合流となり、この粗気液混合流は下流側の気液混
合器13を通過する間に冷媒ガスが細かい多数の
気泡となつて稀溶液中に混合した密気液混合流に
変化し、この密気液混合流は吸収器2に流れて該
吸収器2でフアン4の送風により冷却され、この
冷却により稀溶液中に混合されていた冷媒ガスが
該稀溶液中に吸収されて稀溶液が濃溶液となる。
以上で溶液循環の1サイクルが終了し、以後、上
記と同様のサイクルが繰り返される。
On the other hand, the high-temperature, high-pressure dilute solution in the generator 1 after generating the high-pressure refrigerant gas is refluxed into the absorber 2 through the dilute solution pipe line 5 due to the pressure, and the solution heat exchanger 11 and absorber heat exchanger 12
At this point, heat is exchanged with the low-temperature concentrated solution in the concentrated solution pipe 6, and the temperature becomes low. In addition, the absorber heat exchanger 1
While the dilute solution passes through the gas-liquid mixer 13 on the downstream side, the dilute solution is roughly mixed with the low-pressure refrigerant gas from the evaporator 10 to become a crude gas-liquid mixed flow. During the passage, the refrigerant gas becomes a large number of fine bubbles and changes into a gas-liquid mixed flow mixed in a dilute solution. The solution is cooled by blowing air, and as a result of this cooling, the refrigerant gas mixed in the dilute solution is absorbed into the dilute solution, and the dilute solution becomes a concentrated solution.
This completes one cycle of solution circulation, and the same cycle as above is repeated thereafter.

この場合、第1図で示す溶液循環サイクルにお
ける各位置A〜Fでの溶液濃度とエンタルピとの
関係は第6図に示すようになる。すなわち、F位
置(稀溶液管路5の粗気液混合流部5b上流端位
置)からA位置(濃溶液管路6の上流端位置)ま
での間はほぼ等圧過程であり、気液混合器13に
おける通路抵抗が小さい程吸収器2へ溶液が流れ
易くなる傾向がある。
In this case, the relationship between the solution concentration and enthalpy at each position A to F in the solution circulation cycle shown in FIG. 1 is as shown in FIG. 6. That is, from position F (the upstream end position of the crude gas-liquid mixed flow section 5b of the dilute solution pipe line 5) to position A (the upstream end position of the concentrated solution pipe line 6), there is a substantially equal pressure process, and the gas-liquid mixing The smaller the passage resistance in the vessel 13, the easier the solution tends to flow into the absorber 2.

そこで、この点を考慮しながら、上記気液混合
器13における作用を詳述すれば、吸収器熱交換
器12からの粗気液混合流が入口管15から胴1
4内に導入されると、そのうちの一部の粗気液混
合流中の冷媒ガスが稀溶液から抜け出て胴14内
の上部空間14aに溜り、その後、各出口管16
の上端開口部16aから該各出口管16内に流入
してその内部を下降する。一方、残りの粗気液混
合流は各出口管16内にその多数の小孔17,1
7,…から細分化されながら上記下降する冷媒ガ
ス流と直交する方向に流入する。この小孔17,
17,…から流入する粗気液混合流と下降する冷
媒ガスとが第3図に示すように衝突することによ
り、各出口管16内では粗気液混合流の攬拌が行
われ、その際、上記多数の小孔17,17,…が
出口管16側面に管軸方向螺旋状に開口され、該
小孔17,17,…からは粗気液混合流が螺旋状
に流入するために、上記各出口管16内での攬拌
作用はさらに助長される。この攬拌作用により粗
気液混合流内の冷媒ガスの気泡は微粒化されてそ
の稀溶液への混合の程度が密となり、この密な気
液混合流は各出口管16を流出したのち吸収器2
に流入するようになる。
Therefore, taking this point into consideration, the operation of the gas-liquid mixer 13 will be described in detail.
4, some of the refrigerant gas in the crude gas-liquid mixed flow escapes from the dilute solution and accumulates in the upper space 14a in the shell 14, and then passes through each outlet pipe 16.
It flows into each outlet pipe 16 from the upper end opening 16a and descends therein. On the other hand, the remaining crude gas-liquid mixed flow flows through the large number of small holes 17, 1 in each outlet pipe 16.
The refrigerant gas flows into the refrigerant gas from 7, . . . in a direction perpendicular to the descending refrigerant gas flow. This small hole 17,
As shown in FIG. 3, the coarse gas-liquid mixed flow flowing in from 17, ... collides with the descending refrigerant gas, so that the coarse gas-liquid mixed flow is agitated in each outlet pipe 16, and at that time, , the large number of small holes 17, 17, . . . are opened in the side surface of the outlet pipe 16 in a spiral shape in the tube axis direction, and the coarse gas-liquid mixed flow flows in a spiral shape from the small holes 17, 17, . The stirring action within each of the outlet pipes 16 is further promoted. Due to this stirring action, the bubbles of the refrigerant gas in the coarse gas-liquid mixed flow are atomized and the degree of mixing into the dilute solution becomes dense, and this dense gas-liquid mixed flow is absorbed after flowing out of each outlet pipe 16. Vessel 2
will begin to flow into the country.

したがつて、このように粗気液混合流を衝突さ
せて冷媒ガスと稀溶液とを混合させるために、該
冷媒ガスと稀溶液との混合を十分に行うことがで
きるとともに、気液混合器13全体の流通抵抗を
も低く抑えて、上記説明の如く吸収器2へ十分な
量の溶液を流すことができ、よつて吸収器2での
冷媒ガスの吸収を有効に促進することができる。
Therefore, in order to mix the refrigerant gas and the dilute solution by colliding the crude gas-liquid mixed flow in this way, the refrigerant gas and the dilute solution can be sufficiently mixed, and the gas-liquid mixer The flow resistance of the whole 13 can be kept low, and a sufficient amount of the solution can flow into the absorber 2 as described above, so that the absorption of refrigerant gas in the absorber 2 can be effectively promoted.

また、気液混合器13の胴14内の液面が各出
口管16の上端開口部16aよりも高い位置に異
常上昇すると、該上端開口部16aからも稀溶液
が出口管16内に流入して、気液混合器13から
流出する液量の増加により液面が低下し、一方、
逆に液面が胴14内の底部付近まで異常低下する
と、溶液の排出面積が減少して、気液混合器13
からの流出液量の減少により液面が上昇するた
め、液面は上記2つの抑制がバランスされた高さ
位置に落ち着くことになり、よつて胴14内液面
高さの自己安定を図ることができる。
Further, when the liquid level in the body 14 of the gas-liquid mixer 13 abnormally rises to a position higher than the upper end opening 16a of each outlet pipe 16, the dilute solution also flows into the outlet pipe 16 from the upper end opening 16a. As a result, the liquid level decreases due to an increase in the amount of liquid flowing out from the gas-liquid mixer 13, and on the other hand,
Conversely, when the liquid level abnormally drops to near the bottom of the shell 14, the solution discharge area decreases and the gas-liquid mixer 13
Since the liquid level rises due to the decrease in the amount of liquid flowing out from the tank, the liquid level settles at a height position where the above two suppressions are balanced, and thus the liquid level in the barrel 14 is self-stabilized. I can do it.

尚、本考案は上記実施例に限定されるものでは
なく、種々の変形例をも包含するものであり、例
えば上記実施例では、胴14内における出口管1
6,16,…の配置を第4図に示すように環状に
1列に配置したが、第7図に示すように同心状に
複数列に配置してもよく、また第8図に示すよう
に1列に配置した上で胴14内の中心部にさらに
1本の出口管16を配置してもよく、吸収式冷凍
機の冷凍能力等に応じて適宜変更することができ
る。
It should be noted that the present invention is not limited to the above-mentioned embodiment, but also includes various modifications. For example, in the above-mentioned embodiment, the outlet pipe 1 in the body 14 is
6, 16, ... are arranged in a ring shape in one row as shown in FIG. 4, but they may be arranged concentrically in multiple rows as shown in FIG. 7, or as shown in FIG. They may be arranged in one row, and then one outlet pipe 16 may be further arranged in the center of the shell 14, and this can be changed as appropriate depending on the refrigerating capacity of the absorption refrigerator.

また、各出口管16の側面に形成する小孔1
7,17,…は、第9図に示すようにその2つを
1組として各組の小孔17,17が出口管16の
直径方向に水平面内で対向するように、かつ上下
に隣接する各組の対向方向が互いに出口管16の
円周方向に90゜の角度だけずれるように配置して
もよい。また、各出口管16は、第10図に示す
ように上端開口部16aが斜めに開口しているも
のを用いてもよく、上記実施例と同様の作用を奏
することができる。
In addition, a small hole 1 formed on the side surface of each outlet pipe 16
7, 17, . . . are arranged so that the small holes 17, 17 of each set face each other in the horizontal plane in the diametrical direction of the outlet pipe 16, and are vertically adjacent to each other, as shown in FIG. The opposing directions of each set may be offset from each other by an angle of 90° in the circumferential direction of the outlet pipe 16. Further, each outlet pipe 16 may have an upper end opening 16a that opens obliquely as shown in FIG. 10, and the same effect as in the above embodiment can be achieved.

さらに、上記実施例では、本考案を吸収式冷凍
機の気液混合器13に適用した場合を説明した
が、本考案は、管内吸収を行う吸収器を備えた濃
度差エンジン(第12図b参照)の気液混合器に
も適用することができるのは勿論のことである。
Further, in the above embodiment, the present invention was applied to the gas-liquid mixer 13 of an absorption refrigerating machine. It goes without saying that the present invention can also be applied to the gas-liquid mixer (see ).

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第10図は本考案の実施例を示
し、第1図は吸収式冷凍機の全体構成図、第2図
は気液混合器の拡大縦断面図、第3図は第2図の
一点鎖線円で囲んだ部分の拡大図、第4図は第2
図の−線断面図、第5図は出口管の正面図、
第6図は溶液循環サイクルの溶液濃度とエンタル
ピとの関係を示す説明図、第7図および第8図は
それぞれ気液混合器の胴内での出口管配置の変形
例を示す第4図相当図、第9図および第10図は
それぞれ出口管の変形例を示す第5図相当図、第
11図は気液混合器の従来例を示す断面図、第1
2図は吸収式冷凍機及び濃度差エンジンの概略構
成図である。 1……発生器、2……吸収器、5……稀溶液管
路、6……濃溶液管路、7……溶液ポンプ、8…
…凝縮器、9……膨張弁、10……蒸発器、11
……溶液熱交換器、12……吸収器熱交換器、1
3,13′,13″……気液混合器、14……胴、
14a……上部空間、15……入口管、16,1
6′,16″……出口管、16a,16′a,1
6″a……上端開口部、17……小孔。
1 to 10 show an embodiment of the present invention, in which FIG. 1 is an overall configuration diagram of an absorption refrigerator, FIG. 2 is an enlarged vertical cross-sectional view of a gas-liquid mixer, and FIG. Figure 4 is an enlarged view of the area surrounded by the dashed-dotted circle.
5 is a front view of the outlet pipe,
Fig. 6 is an explanatory diagram showing the relationship between solution concentration and enthalpy in the solution circulation cycle, and Figs. 7 and 8 are equivalent to Fig. 4, respectively, showing modified examples of the outlet pipe arrangement in the body of the gas-liquid mixer. 9 and 10 are views corresponding to FIG. 5 showing a modified example of the outlet pipe, respectively. FIG. 11 is a sectional view showing a conventional example of a gas-liquid mixer, and FIG.
FIG. 2 is a schematic diagram of an absorption refrigerator and a concentration difference engine. DESCRIPTION OF SYMBOLS 1... Generator, 2... Absorber, 5... Dilute solution pipe line, 6... Concentrated solution pipe line, 7... Solution pump, 8...
...Condenser, 9...Expansion valve, 10...Evaporator, 11
...Solution heat exchanger, 12 ...Absorber heat exchanger, 1
3, 13', 13''... Gas-liquid mixer, 14... Shell,
14a...Upper space, 15...Inlet pipe, 16,1
6', 16''...Outlet pipe, 16a, 16'a, 1
6″a...Top opening, 17...Small hole.

Claims (1)

【実用新案登録請求の範囲】 (1) 濃溶液を加熱してガス状の作動流体を発生さ
せる発生器1と、作動流体の稀溶液への管内吸
収を行う吸収器2と、該吸収器2から発生器1
に流れる濃溶液により作動流体及び稀溶液を冷
却して粗混合させる吸収器熱交換器12と、溶
液ポンプ7とを備えた吸収溶液サイクル系にお
いて上記吸収器2と吸収器熱交換器12との間
の稀溶液管路5に配設される気液混合器13で
あつて、 直立密閉円筒状の胴14と、 該胴14の側面に接続され、上記吸収器熱交
換器12から送り出された作動流体と稀溶液と
の粗気液混合流を胴14に導入する入口管15
と、 上記胴14内に直立状にかつ上端開口部16
aを胴14内の上部空間14aに臨ましめて立
設されているとともに、側面に多数の小孔1
7,17,…が形成され、胴14内の気液混合
流を外部に排出する複数の出口管16,16,
…とを備えてなることを特徴とする吸収溶液サ
イクル系の気液混合器。 (2) 多数の小孔17,17,…は出口管16側面
に管軸方向螺旋状に配設されている実用新案登
録請求の範囲第(1)項記載の吸収溶液サイクル系
の気液混合器。 (3) 多数の小孔17,17,…は、その2つを1
組として各組の小孔17,17が、出口管16
の直径方向に水平面内で対向するように、かつ
上下に隣接する各組の対向方向が互いに出口管
16円周方向に90゜だけずれるように配設され
ている実用新案登録請求の範囲第(1)項記載の吸
収溶液サイクル系の気液混合器。
[Claims for Utility Model Registration] (1) A generator 1 that heats a concentrated solution to generate a gaseous working fluid, an absorber 2 that absorbs the working fluid into a dilute solution in a pipe, and the absorber 2 From generator 1
In the absorption solution cycle system, the absorber 2 and the absorber heat exchanger 12 are equipped with an absorber heat exchanger 12 that cools and roughly mixes the working fluid and the dilute solution with a concentrated solution flowing through the absorber 2 and a solution pump 7. A gas-liquid mixer 13 disposed in the dilute solution pipe 5 between the cylinders 14 and 14, which is connected to the side surface of the cylinder 14 and which is fed from the absorber heat exchanger 12. An inlet pipe 15 that introduces a crude gas-liquid mixed flow of working fluid and dilute solution into the shell 14
and an upright opening 16 within the body 14.
A is erected facing the upper space 14a in the body 14, and has a number of small holes 1 on the side.
7, 17, ... are formed, and a plurality of outlet pipes 16, 16, which discharge the gas-liquid mixed flow inside the shell 14 to the outside.
A gas-liquid mixer of an absorption solution cycle system, characterized by comprising the following. (2) A large number of small holes 17, 17, ... are arranged spirally in the axial direction of the outlet pipe 16 in the gas-liquid mixing system of the absorption solution cycle system according to claim (1) of the utility model registration claim. vessel. (3) Many small holes 17, 17,...
Each set of small holes 17, 17 is connected to the outlet pipe 16.
Utility model registration claim No. Gas-liquid mixer of absorption solution cycle system as described in 1).
JP1924784U 1984-02-13 1984-02-13 Absorption solution cycle system gas-liquid mixer Granted JPS60130371U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1924784U JPS60130371U (en) 1984-02-13 1984-02-13 Absorption solution cycle system gas-liquid mixer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1924784U JPS60130371U (en) 1984-02-13 1984-02-13 Absorption solution cycle system gas-liquid mixer

Publications (2)

Publication Number Publication Date
JPS60130371U JPS60130371U (en) 1985-08-31
JPH0330771Y2 true JPH0330771Y2 (en) 1991-06-28

Family

ID=30508645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1924784U Granted JPS60130371U (en) 1984-02-13 1984-02-13 Absorption solution cycle system gas-liquid mixer

Country Status (1)

Country Link
JP (1) JPS60130371U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520089A (en) * 2008-04-30 2011-07-14 ハネウェル・インターナショナル・インコーポレーテッド Absorption cooling cycle using refrigerant with low global warming potential (LGWP)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520089A (en) * 2008-04-30 2011-07-14 ハネウェル・インターナショナル・インコーポレーテッド Absorption cooling cycle using refrigerant with low global warming potential (LGWP)
JP2014178108A (en) * 2008-04-30 2014-09-25 Honeywell Internatl Inc Absorption refrigeration cycles using low global warming potential (lgwp) refrigerant
JP2014194337A (en) * 2008-04-30 2014-10-09 Honeywell Internatl Inc Absorption refrigeration cycles using low global warming potential (lgwp) refrigerant
JP2016105038A (en) * 2008-04-30 2016-06-09 ハネウェル・インターナショナル・インコーポレーテッド Absorption refrigeration cycles using low global-warming potential (lgwp) refrigerant

Also Published As

Publication number Publication date
JPS60130371U (en) 1985-08-31

Similar Documents

Publication Publication Date Title
CN101608642A (en) Sparger
CN106196727A (en) A kind of heat pump and operation method thereof
JP4669964B2 (en) Steam power cycle system
JPH0330771Y2 (en)
US2724246A (en) Method and means for improving the utilization of volatile refrigerants in heat exchangers
JP2003222445A (en) Gas liquid separator for ejector cycle and oil separator
US3898867A (en) Condenser for condensing a refrigerant
US3742726A (en) Absorption refrigeration system
CN106969558A (en) The heat-exchange method of refrigeration system and refrigeration system
KR890004393B1 (en) Air cooling type absorption cooler
US4655053A (en) Air-cooled absorption refrigeration system
JPH0330772Y2 (en)
RU2460020C2 (en) Absorption cooling machine with multi-stage ejector
US4622820A (en) Absorption power generator
JP4222063B2 (en) Absorption refrigerator
US3608331A (en) Absorption refrigeration system
JPH0320575A (en) Absorption refrigeration machine
JP3731099B2 (en) Gas-liquid separator for absorption refrigeration equipment
CN114152105B (en) Condensing device
JP2007085619A (en) High-temperature regenerator and absorption refrigerating machine
JP2001165528A (en) Absorbing type freezer
CN107923634A (en) The heat source unit of refrigerating plant
JPH0320667B2 (en)
JP5037987B2 (en) High temperature regenerator and absorption refrigerator
CN114909828A (en) Absorption refrigeration system and generator