JPH0330679A - Dna for coding ban i restriction endonuclease, ban i methylase and dna for coding ban i methylase - Google Patents

Dna for coding ban i restriction endonuclease, ban i methylase and dna for coding ban i methylase

Info

Publication number
JPH0330679A
JPH0330679A JP1163662A JP16366289A JPH0330679A JP H0330679 A JPH0330679 A JP H0330679A JP 1163662 A JP1163662 A JP 1163662A JP 16366289 A JP16366289 A JP 16366289A JP H0330679 A JPH0330679 A JP H0330679A
Authority
JP
Japan
Prior art keywords
leu
lys
gly
glu
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1163662A
Other languages
Japanese (ja)
Other versions
JPH084510B2 (en
Inventor
Yoshihiko Maekawa
前川 宜彦
Fumikiyo Kawakami
文清 川上
Hiroo Yasukawa
安川 洋生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP1163662A priority Critical patent/JPH084510B2/en
Publication of JPH0330679A publication Critical patent/JPH0330679A/en
Publication of JPH084510B2 publication Critical patent/JPH084510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

NEW MATERIAL:A DNA fragment coding Ban I restriction endonuclease derived from Bacillus aneurinolytieus. EXAMPLE:DNA having a basic sequence coding an amino acid sequence expressed by the formula. USE:Collection of Ban I restriction endonuclease. PREPARATION:A chromosomal DNA collected from Ban I restriction endonuclease producing bacterium is digested with a proper restriction enzyme and integrated into a plasmid of BR 322, etc., and transformed to Escherichia coli and the transformed bacterium is proliferated to isolate Ban I restriction endonuclease producing bacterium. The Ban I restriction endonuclease is collected from culture of the producing bacterium and DNA coding the enzyme is isolated and identified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はBan I制限エンドヌクレアーゼをコードす
るDNA、並びにBan lメチラーゼ及び、Ban 
lメチラーゼをコードするDNAに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention provides DNA encoding Ban I restriction endonuclease, Ban I methylase, and Ban I restriction endonuclease.
Concerning DNA encoding l methylase.

〔従来の技術〕[Conventional technology]

■型制限酵素はいままでのところ細菌等から約120種
類の■型制限酵素が発見され商品化されている。■型制
限酵素はデオキシリボ核酸(D N A)鎖中のある特
定の塩基配列を認識し、これを切断する極めて特異性の
高い酵素であり、遺伝子工学の分野で幅広く利用されて
いる。また遺伝子診断による臨床検査にもその利用が期
待されている。
So far, about 120 types of type 2 restriction enzymes have been discovered and commercialized from bacteria and other sources. Type 2 restriction enzymes are highly specific enzymes that recognize and cleave specific base sequences in deoxyribonucleic acid (DNA) chains, and are widely used in the field of genetic engineering. It is also expected to be used in clinical tests based on genetic diagnosis.

Ban I制限エンドヌクレアーゼは■型制限酵素のひ
とつである。本酵素はDNAの塩基配列中のGGPyP
uCCを認識しこれを切断する酵素であり、バチルス 
アノイリノリティカス(Bacillus aneur
inolyticus) IAM1077において生産
される酵素であるが、このバチルス アノイリノリティ
カス(Bacillus  aneurinolyti
cus)  IAM1077は、  Ban  1以外
に他の制限酵素Ban U 、  Ban IIIを菌
体内に同時に生産するためこれらを除くことが非常に困
難であり製造上の問題を抱えていた。
Ban I restriction endonuclease is one of the ■ type restriction enzymes. This enzyme is GGPyP in the DNA base sequence.
It is an enzyme that recognizes and cleaves uCC, and Bacillus
Bacillus aneur
This enzyme is produced in Bacillus aneurinolyticus IAM1077.
In addition to Ban 1, IAM1077 simultaneously produces other restriction enzymes Ban U and Ban III within its bacterial cells, making it extremely difficult to remove these enzymes, posing a manufacturing problem.

一方、制限サイトメチラーゼは制限酵素の認識塩基配列
をメチル化するものであって、遺伝子操作では制限酵素
の認識配列をメチル化することによりそれに対応する制
限酵素による切断を防ぐことに使われているものである
が、Ban I制限エンドヌクレアーゼの認識塩基配列
をメチル化するBan lメチラーゼ、及びそのDNA
を取得した例は現在まで見当らない。
On the other hand, restriction site methylases methylate the nucleotide sequences recognized by restriction enzymes, and are used in genetic engineering to prevent cleavage by the corresponding restriction enzymes by methylating the recognition sequences of restriction enzymes. However, Ban I methylase, which methylates the base sequence recognized by Ban I restriction endonuclease, and its DNA
To date, no examples have been found where this has been obtained.

〔発明が解決しようとする課題] 遺伝子操作技術を使用してバチルス アノイリノリティ
カス(Bacillus aneurinolytic
us)以外の宿主にBan I制限エンドヌクレアーゼ
を生産させることができれば、該バチルス アノイリノ
リティカス(Bacillus aneurinoly
ticus)に由来する夾雑酵素の問題は解決し、純粋
なりan I制限エンドヌクレアーゼを得ることが可能
となる。本発明の課題は、この遺伝子操作技術によりB
an I制限エンドヌクレアーゼを生産する際に、まず
必要となる該酵素をコードするDNAを提供することに
あり、また、このBan I制限エンドヌクレアーゼを
コードするDNAを宿主に保持させる場合、宿主本来の
DNAが産生ずるBan I制限エンドヌクレアーゼに
より切断され宿主増殖が阻害されるのを防止するために
は、Ban lメチラーゼの産生能を宿主に付与せしめ
る必要があり、このために必須となるBan Iメチラ
ーゼをコードするDNAを提供することにある。
[Problems to be Solved by the Invention] Using genetic engineering technology, Bacillus aneurinolyticus
If it is possible to produce Ban I restriction endonuclease in a host other than the Bacillus aneurinolyticus
This solves the problem of contaminant enzymes derived from A. ticus and makes it possible to obtain pure an I restriction endonuclease. The problem of the present invention is to use this genetic engineering technology to
When producing Ban I restriction endonuclease, the first step is to provide the necessary DNA encoding the enzyme, and when the host retains the DNA encoding Ban I restriction endonuclease, the host's original In order to prevent DNA from being cleaved by Ban I restriction endonuclease, which inhibits host growth, it is necessary to provide the host with the ability to produce Ban I methylase, and Ban I methylase is essential for this purpose. The objective is to provide DNA encoding the

また、本発明の課題には、この他、種々の遺伝子操作技
術において有用なりan Iメチラーゼ自体を提供する
ことも含む。
In addition, the object of the present invention also includes providing an I methylase itself, which is useful in various genetic engineering techniques.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らはBan I制限エンドヌクレアーゼ生産菌
から染色体DNAを採取し得られた染色体DNAを適当
な制限酵素で消化してpBR322などのプラスミドに
組み込み、このプラスミドにより大腸菌等に形質転換し
、形質転換菌を増殖させてBan■制限エンドヌクレア
ーゼ、またはBan !メチラーゼ生産菌をそれぞれ単
離し、これら生産菌を培養することにより、Ban I
制限エンドヌクレアーゼ及びBan Iメチラーゼを採
取するとともに、これら酵素をコードするDNAを単離
、同定することにも成功し、本発明を完成するに至った
ものである。
The present inventors collected chromosomal DNA from Ban I restriction endonuclease producing bacteria, digested the obtained chromosomal DNA with an appropriate restriction enzyme, integrated it into a plasmid such as pBR322, transformed Escherichia coli etc. with this plasmid, and transformed it. Grow the converted bacteria and use Ban ■ restriction endonuclease, or Ban! By isolating methylase producing bacteria and culturing these producing bacteria, Ban I
In addition to collecting restriction endonuclease and Ban I methylase, they also succeeded in isolating and identifying the DNA encoding these enzymes, leading to the completion of the present invention.

すなわち本発明は、 (1)バチルス アノイリノリティカス(Baci f
lusaneurinolyticus)由来のBan
 I制限エンドヌクレアーゼをコードするDNA断片。
That is, the present invention provides: (1) Bacillus anoirinolyticus (Bacillus
Ban derived from lusaneurinolyticus)
DNA fragment encoding I restriction endonuclease.

(2)次の式Iで表わされるアミノ酸配列をコードする
塩基配列を有する(1)記載のDNA断片。
(2) The DNA fragment according to (1), which has a base sequence encoding the amino acid sequence represented by the following formula I.

式1 %式% (3)次の式■で表わされる塩基配列を有する(2)記
載のDNA断片。
Formula 1 % Formula % (3) The DNA fragment according to (2), which has a base sequence represented by the following formula (■).

式■ GTTCCCACCC AATCTGTTTC TAAAGCATCT TGTTGTATTA TTACATAACA AAAGTGTTAG GGAAATTTGA ATTTTTTTGG Glu  Leu  Asn Val  Leu Le
u Lys Phe  lie LeuAAGGAGC
GTT  ATATTTTTGT  ΔへGCAGAA
TA  ACAGGAGGGGCTGAAGCAAA 
 TACGTTAGGT  CへへGTCGCTCAA
ACCCATGTGATATAA八^A GTAATGGAC八 CATへGAAGGT GTGACCCATA へへAAGGCAGC GTAACTACAA ^へへAGCGTTG  CGATTGAGAT  T
AGCTTCCAGATAGTACCAT  CGAG
CGT八八八 GCへへへACAAGTATAGCTT
AT へAAAATGCAへ ^TTATCGATG TCACAACCAT GAGCGGGGAA  CTTCCAACGTTTG
TAATAAT  AGCCATTGC八ty 八rg Gへu Lys Lys 1e Leu Tyr Arg 11e Gly Ala  Ala Cys  Val Ala  Cys Glu  Glu Thr  Ser 八la  Gly Ala Gly Val Leu Gly  Ile Arg Lys  Arg Phe Leu  Ser  5er Glu Thr Tyr Pro Gln Gly Phe  Pro  Glu Phe Pro Cys Lys Gln Gln 八rg  Asp  Asn 11e Gly  Phe  Glu Glu  Leu  Glu  ThrGlu  li
e Asp Lys Ala  Leu  Asn  PheAsp Ile
 H4s Glu Phe Asp  Phe Leu Gln  Pro  Phe  5erGly Phe
 Gly Asp Arg Pro  Lys  Ala (4)バチルス アノイリノリティカス(Bacill
usane’urinolyticus)由来のBan
 lメチラーゼをコードするDNA断片。
Formula■ GTTCCCACCC AATCTGTTTC TAAAGCATCT TGTTGTATTA TTACATAACA AAAGTGTTAG GGAAAATTTGA ATTTTTTGG Glu Leu Asn Val Leu Le
u Lys Phe lie LeuAAGGAGC
GTT ATATTTTTTGT ΔGCAGAA
TA ACAGGAGGGGGCTGAAGCAAA
TACGTTAGGT C to GTCGCTCAA
ACCCATGTGATATAAA 8^A GTAATGGAC8CAT GAAGGT GTGACCCATA AAGGCAGC GTAACTACA ^he AGCGTTG CGATTGAGAT T
AGCTTCCAGATAGTACCAT CGAG
CGT 888 GC hehe ACAAG TATAGCTT
AT to AAAATGCA^TTATCGATG TCACAACCAT GAGCGGGGAA CTTCCAACGTTTG
TAATAAT AGCCATTGC8ty 8rg G to u Lys Lys 1e Leu Tyr Arg 11e Gly Ala Ala Cys Val Ala Cys Glu Glu Thr Ser 8la Gly Ala Gly Val L eu Gly Ile Arg Lys Arg Phe Leu Ser 5er Glu Thr Tyr Pro Gln Gly Phe Pro Glu Phe Pro Cys Lys Gln Gln 8rg Asp Asn 11e Gly Phe Glu Glu Leu Glu ThrGlu li
e Asp Lys Ala Leu Asn PheAsp Ile
H4s Glu Phe Asp Phe Leu Gln Pro Phe 5erGly Phe
Gly Asp Arg Pro Lys Ala (4) Bacillus anoirinolyticus (Bacillus
Ban derived from usane'urinolyticus)
DNA fragment encoding l-methylase.

(5)次の式IIIで表わされるアミノ酸配列をコード
する塩基配列を有する(4)記載のDNA断片。
(5) The DNA fragment according to (4), which has a base sequence encoding an amino acid sequence represented by the following formula III.

弐■ Met  Lys  Ile Lys  Phe  V
al  Asp Leu  Phe Ala1e Tyr 1e Leu Gly  lie Leu Gly  Ser  Lys Ser Glu Lys Tyr Arg Cys S
er Asp Glu PhePhe Gin Asn
 Asn Val Asn Glu Leu Phe 
GlyAsn Phe Glu Leu Leu H4
s Gly Tyr Arg Leulle  Asp
  Tyr  Arg  Gly  Gly  Asn
  Ser  Ile  旧5Ser Trp Glu
 Leu Gly rle Lys Gly Asp 
Cys(6)次の弐■で表わされる塩基配列ををする(
5)記載のDNA断片。
2■ Met Lys Ile Lys Phe V
al Asp Leu Phe Ala1e Tyr 1e Leu Gly lie Leu Gly Ser Lys Ser Glu Lys Tyr Arg Cys S
er Asp Glu PhePhe Gin Asn
Asn Val Asn Glu Leu Phe
GlyAsn Phe Glu Leu Leu H4
s Gly Tyr Arg Leulle Asp
Tyr Arg Gly Gly Asn
Ser Ile Old 5Ser Trp Glu
Leu Gly rle Lys Gly Asp
Cys (6) Make the base sequence represented by the next 2■ (
5) The described DNA fragment.

弐■ ATGAAGATTA  AATTTGTTGA  C
TTGTTTGCT  GGAATTGGAGGAAT
TCGAAT  AGGATTTGAA  AGAGC
GGCCA  AACGGTTTGA八AGGCTTG
Cへ  ^へACATATGCCCTTAATTTT 
 AへへGAGGAACしys Val Val ilu Lys Val lie  Glu Asp Leu 1;’IしTAAI;に’l’に  ’rAAi’GT
TGGAGCAGCCGATT CTCACAAGTA TAAGAATGAA TGTATGA CAAATATCTT TATTTGATGA AAGCTATGCT (力 (4)〜(6)いずれか記載のDNA断片を含む
発現ベクター (8)  (7)記載の発現ベクターにより形質転換さ
れた形質転換体。
2■ ATGAAGATTA AATTTGTTGA C
TTGTTTGCT GGAATTGGAGGAAT
TCGAAT AGGATTTGAA AGAGC
GGCCA AACGGTTTGA8AGGCTTG
To C ^ to ACATATGCCCTTAATTTT
GAGGAAC to A ys Val Val ilu Lys Val lie Glu Asp Leu 1;
TGGAGCAGCCGATT CTCACAAGTA TAAGAATGAA TGTATGA CAAATATCTT TATTTGATGA AAGCTATGCT (force (4) to (6) Expression vector containing the DNA fragment described in any one of (8) (7) A transformant transformed with the expression vector described in (7).

(9)エシャリヒア(esherichia)属に属す
る微生物を形質転換したものである(8)記載の形質転
換体。
(9) The transformant according to (8), which is obtained by transforming a microorganism belonging to the genus Esherichia.

GO)  (4)〜(6)いずれか記載のDNA断片を
組み込んだ発現ベクターにより、生物細胞あるいは微生
物を形質転換し、得られた形質転換体を培養して培養物
からBan Iメチラーゼを採取することを特徴とする
Ban Iメチラーゼの製造方法。
GO) Transform biological cells or microorganisms with the expression vector incorporating the DNA fragment described in any of (4) to (6), culture the obtained transformant, and collect Ban I methylase from the culture. A method for producing Ban I methylase, characterized in that:

(11)バチルス アノイリノリティカス(Bacil
lusaneurinolyticus)由来の約4.
4000の分子量(S[lS−PAGE法による)を有
するBan Iメチラーゼ。
(11) Bacillus anoirinolyticus
lusaneurinolyticus).
Ban I methylase with a molecular weight of 4000 (S[by S-PAGE method).

面 次の式IIIで表わされるアミノ酸配列を有するポ
リペプチドである(11)記載のBan Iメチラーゼ
A Ban I methylase according to (11), which is a polypeptide having an amino acid sequence represented by the following formula III.

式■ Met  Lys  lie  Lys  Phe  
Val  Asp  Leu  Phe  AlaGl
y  Ile Gly Gly  Ile Arg  
Ile Gly  Phe GluArg Ala  
Ala Glu Cys  Val Lys  Ala Cys Lys Glu Glu 11e  Thr  5er Leu Ala Gly Tyr Ala Gly Lys Leu 1u Pr。
Formula■ Met Lys lie Lys Phe
Val Asp Leu Phe AlaGl
y Ile Gly Gly Ile Arg
Ile Gly Phe GluArg Ala
Ala Glu Cys Val Lys Ala Cys Lys Glu Glu 11e Thr 5er Leu Ala Gly Tyr Ala Gly Lys Leu 1u Pr.

Phe Phe Lys Arg  Phe Ser  5er Thr Tyr Gin Gly Pro  Glu Pro Cys Gin  Gln Glu  Leu  Glu Glu  Ile  Asp Ala  Leu  Asn Asp Ile His Phe Asp Phe Gln  Pro  Phe Gly Phe Gly Thr Lys Phe Glu 0 Leu Ser ^5p 11e Gly Gln Leu Ser Lys V
al  Vat  Gly Asnrne  Llin
  Asn  Asn  Vat  Asn  Glu
  Leu  Phe GlyGin  Met  L
ys  Leu  Ala  Asn  Vat  V
alに関する。
Phe Phe Lys Arg Phe Ser 5er Thr Tyr Gin Gly Pro Glu Pro Cys Gin Gln Glu Leu Glu Glu Ile Asp Ala Leu Asn Asp Ile His Phe A sp Phe Gln Pro Phe Gly Phe Gly Thr Lys Phe Glu 0 Leu Ser ^5p 11e Gly Gln Leu Ser Lys V
al Vat Gly Asnrne Llin
Asn Asn Vat Asn Glu
Leu Phe GlyGin Met L
ys Leu Ala Asn Vat V
Regarding al.

以下に本発明を詳述する。The present invention will be explained in detail below.

本発明のBan l制限エンドヌクレアーゼ遺伝子を含
むプラスミドは例えばエシャリヒア(esherich
ia)属に属する微生物の染色体外遺伝子(プラスミド
)として知られるコリシンEl因子等の培養された細胞
内で増殖しうる形式をとるプラスミドにバチルス アノ
イリノリティカス(Bacillusaneurino
lyticus) IAM1077由来のBan l制
限エンドヌクレアーゼ遺伝子、Ban Iメチラーゼ遺
伝子を含むDNA断片、およびBan Iメチラーゼの
みを含むDNA断片を組み込んでなるプラスミドであり
、前記ベクターDNAとしては天然に存在するものを抽
出したものの他、増殖に必須な部分以外のDNAの部分
が一部欠失しているものでもよ(Co1E 1の系統、
pBR322の系統、psclolの系統、9M89の
系統、ラムダファージの系統が挙げられる。
Plasmids containing the Ban I restriction endonuclease gene of the invention are, for example, Escherichia
ia) Plasmids that take a form that can proliferate in cultured cells, such as the colicin El factor, which is known as an extrachromosomal gene (plasmid) of microorganisms belonging to the genus Bacillus aneurinolyticus.
lyticus) IAM1077-derived Ban I restriction endonuclease gene, a DNA fragment containing the Ban I methylase gene, and a DNA fragment containing only Ban I methylase, and the vector DNA is extracted from naturally occurring vector DNA. In addition to those that have been deleted, some DNA parts other than those essential for proliferation may be deleted (Co1E 1 strain,
Examples include pBR322 strain, psclo strain, 9M89 strain, and lambda phage strain.

また前記ベクターDNAに前記染色体DNA断片を組み
込む方法は既知のいずれの方法も適用しうる。例えば適
当な制限酵素で処理して染色体DNAを特定部位で切断
し、ついで同様に処理したベクターDNAと混合しりガ
ーゼによって再結合する方法が用いられる。
Furthermore, any known method can be applied to incorporate the chromosomal DNA fragment into the vector DNA. For example, a method is used in which chromosomal DNA is cut at a specific site by treatment with an appropriate restriction enzyme, and then religated with similarly treated vector DNA using mixed gauze.

ベクターDNAとしてpBR322プラスミドを用いこ
れにバチルスアノイリノリティカス(Bacillus
aneurinolyticus) IAM1077か
ら調製された染色体DNA断片を組み込むことにより、
新規プラスミドpBANIRM 8が得られる。pBA
NIRM 8プラスミドの制限酵素地図を第1図に示す
。第1図に示す様にこのプラスミドはpBR322プラ
スミドの制限サイトにバチルス アノイリノリティカス
(Bacillusaneurinolyticus)
 IAM1077のBan l制限エンドヌクレアーゼ
遺伝子、およびBan Iメチラーゼ遺伝子を含むDN
A断片が組み込まれた8kbの塩基対を有するプラスミ
ドである。
The pBR322 plasmid was used as the vector DNA, and Bacillus aneurynolyticus was injected into it.
aneurinolyticus) by incorporating the chromosomal DNA fragment prepared from IAM1077.
A new plasmid pBANIRM8 is obtained. pBA
The restriction enzyme map of the NIRM 8 plasmid is shown in FIG. As shown in Figure 1, this plasmid contains Bacillus neurinolyticus at the restriction site of the pBR322 plasmid.
DN containing the Ban I restriction endonuclease gene and Ban I methylase gene of IAM1077
This is a plasmid with an 8 kb base pair into which the A fragment has been integrated.

本発明のBan l制限エンドヌクレアーゼをコード遺
伝子、およびBan Iメチラーゼ遺伝子は次の様にし
て同定できる。
The gene encoding the Ban I restriction endonuclease and the Ban I methylase gene of the present invention can be identified as follows.

まず本発明者らは、Ban l制限エンドヌクレアーゼ
遺伝子を同定するため本プラスミド菌株エッジエリヒア
 コリ (Escherichia colt) HB
IOI(pBanlRM8) (FERM P−942
4) (エシェリヒア コリ (Escherihia
 colt)蚤IBIOI (pBANll) と同じ
である。〕を培養し、菌体を取得した。
First, we used this plasmid strain Escherichia coli HB to identify the Ban I restriction endonuclease gene.
IOI (pBanlRM8) (FERM P-942
4) (Escherichia coli
colt) flea IBIOI (pBANll). ] was cultured to obtain bacterial cells.

本菌体より Ban l制限エンドヌクレアーゼ、Ba
n Iメチラーゼをそれぞれ電気泳動(SO5PAGE
)でシングルバンドになるまで精製純化し本標品にてア
ミノ酸シーケンサ−によりN末端アミノ酸配列を決定し
た。
Ban l restriction endonuclease, Ba
Electrophoresis (SO5PAGE) of each n I methylase
) to obtain a single band, and the N-terminal amino acid sequence of this sample was determined using an amino acid sequencer.

更にBan [制限エンドヌクレアーゼを生産する上記
菌株を培養しその培養菌体よりプラスミドを調製した。
Furthermore, the above-mentioned strain producing Ban[restriction endonuclease was cultured, and a plasmid was prepared from the cultured cells.

本プラスミドは当然ながらBan l制限エンドヌクレ
アーゼを暗号化しているDNAとBanIメチ・ラーゼ
を暗号化しているDNAを保有しており、これを用いて
塩基配列を決定できる。DNA塩基配列を決めるため本
プラスミドより上記2つの酵素を暗号化していると思わ
れる領域のDNA断片を塩基配列決定に適したベクター
、例えばpUc18. M13mplBに移し、M13
−ジオキシ法(Sanger、 Pro、Na tl 
、 Acad、 Sc i 、 74.5463−54
67 (1977)より決定した。即ちpUc18. 
M13mplBに組み換えプラスミドに変えた後、種々
制限酵素による制限酵素サイトの決定、及びサブクロー
ニング、マングビーンヌクレアーゼ、エキソヌクレアー
ゼ■を用いるデレージョン法により、種々デレーション
ミュータントを作成しBan r制限エンドヌクレアー
ゼ遺伝子、Ban Iメチラーゼ遺伝子の領域を決定し
た。さらに、デレージョン ミュータントの挿入DNA
断片の塩基配列を決定した。また、制限酵素活性、メチ
ラーゼ活性のうち前者の活性のみが発現するデレージョ
ン ミュータントでは菌が死滅するため、塩基配列を決
めるべき領域のDNAが取れないため塩基配列が決めら
れないことがある。そのような場合、カスタムプライマ
ー法等を活用して決定した。その結果、前記式■で表わ
されるBan l制限エンドヌクレアーゼをコードする
DNA配列及び弐■で表わされるBan Iメチラーゼ
をコードするDNA配列を決定した。
This plasmid naturally contains DNA encoding Ban I restriction endonuclease and DNA encoding Ban I methylase, and can be used to determine the base sequence. To determine the DNA base sequence, a DNA fragment of the region thought to encode the above two enzymes from this plasmid was inserted into a vector suitable for base sequence determination, such as pUc18. Transfer to M13mplB, M13
-Dioxy method (Sanger, Pro, Natl
, Acad, Sci, 74.5463-54
67 (1977). That is, pUc18.
After changing the recombinant plasmid into M13mplB, various deletion mutants were created by determining the restriction enzyme site with various restriction enzymes, subcloning, deletion method using mung bean nuclease, and exonuclease. The region of the I methylase gene was determined. In addition, the inserted DNA of deletion mutants
The base sequence of the fragment was determined. Furthermore, in deletion mutants that express only the former of restriction enzyme activity and methylase activity, the bacteria die, and the DNA in the region where the base sequence should be determined cannot be obtained, so the base sequence may not be determined. In such cases, determination was made using a custom primer method or the like. As a result, the DNA sequence encoding the Ban I restriction endonuclease represented by the formula (1) and the DNA sequence encoding the Ban I methylase represented by the formula (2) were determined.

塩基配列から決定したN末端のアミノ酸配列は精製Ba
n I制限エンドヌクレアーゼ、Ban [メチラーゼ
標品から得たN末端のアミノ酸配列と一致した。ここで
塩基配列を決定したDNA配列を利用して各々の遺伝子
を採取することが可能となると同時に遺伝子操作の手法
を利用してBan 1制限エンドヌクレアーゼ、Ban
 Iメチラーゼの生産系を構築することができる。遺伝
子操作の手法を用いて物質生産を行うには大腸菌、酵母
または動物細胞を用いた系のいずれを使用してもよい。
The N-terminal amino acid sequence determined from the base sequence is purified Ba
n I restriction endonuclease, Ban [matched the N-terminal amino acid sequence obtained from the methylase preparation. Using the DNA sequence determined here, each gene can be collected, and at the same time, using genetic manipulation techniques, Ban 1 restriction endonuclease, Ban
A production system for I methylase can be constructed. To produce substances using genetic engineering techniques, any system using Escherichia coli, yeast, or animal cells may be used.

(日本生化学会場“遺伝子研究法If ”pp126−
150.ap170−204(1986)) 、例えば
大腸菌を宿主としてBan 1制限エンドヌクレアーゼ
を生産するには前記のDNA配列に発現のため制御部位
、例えばトリプトファンオペロンのプロモーターとSD
配列を付加したDNA配列をBan Iメチラーゼ遺伝
子を付加したpBR322などのベクターDNAに連結
し、大腸菌に導入すればよい。
(Japan Biochemistry Conference “Gene Research Methods If” pp126-
150. ap170-204 (1986)), for example, to produce Ban 1 restriction endonuclease using E. coli as a host, control sites for expression, such as the promoter of the tryptophan operon and the SD
The DNA sequence to which the sequence has been added may be ligated to a vector DNA such as pBR322 to which the Ban I methylase gene has been added, and then introduced into E. coli.

酵母を宿主とする場合、発現の制御部位としては、抑制
性酸性フォスファターゼ遺伝子やグリセロアルデヒド3
−リン酸デヒドロゲナーゼ遺伝子のプロモーターなどが
知られており、酵母内での複製オリジンとしては2μm
プラスミド由来、酵母染色体由来のものを用いるとよい
。動物細胞を宿主とする場合、発現制御部位としたSV
40プロモーターやIIBウィルス遺伝子のプロモータ
ーなどがしられており、複製開始としてはSV40やポ
リオーマウィルスのものを用いるとよい。また、Ran
 1制限エンドヌクレアーゼをコードするDNAのみを
使用する場合には宿主が増殖できない場合があるから本
発明のRan I制限エンドヌクレアーゼをコードする
DNAと、Ban IメチラーゼをコードするDNAと
併用して上記のような発現系を構築すれば、Ban I
制限エンドヌクレアーゼを大量に生産することができる
。Ban Iメチラーゼのみを生産したい時は上記発現
系にBan ■メチラーゼ遺伝子のみ利用すれば本酵素
のみを大量に生産できる。
When yeast is used as a host, expression control sites include the inhibitory acid phosphatase gene and glyceraldehyde 3.
-The promoter of the phosphate dehydrogenase gene is known, and the origin of replication in yeast is 2 μm.
It is preferable to use those derived from plasmids or yeast chromosomes. When using animal cells as hosts, SV as the expression control site
40 promoter and IIB virus gene promoter are known, and it is preferable to use SV40 or polyoma virus promoters as replication starters. Also, Ran
If only the DNA encoding the Ran I restriction endonuclease of the present invention is used, the host may not be able to proliferate. If such an expression system is constructed, Ban I
Restriction endonucleases can be produced in large quantities. When it is desired to produce only Ban I methylase, only this enzyme can be produced in large quantities by using only the Ban I methylase gene in the above expression system.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

実施例1 (1)  BanI制限エンドヌクレアーゼの遺伝子を
もつ染色体DNAの調製 バチルス アノイリノリティカス(Bacillusa
neurinolyticus) IAM1077をL
−broth培地(純水12当りトリプトン(Dirc
o)10g、酵母エキス5g、 NaCl Logをp
H7,0に調製したもの) 50m1に接種し、30°
Cで振とう培養をおこない、14時間後菌体を集めた。
Example 1 (1) Preparation of chromosomal DNA carrying the BanI restriction endonuclease gene
neurinolyticus) IAM1077 L
-broth medium (tryptone (Dirc) per 12 parts of pure water
o) 10g, yeast extract 5g, p NaCl Log
(Prepared to H7.0) Inoculated into 50ml and heated at 30°
A shaking culture was performed at C, and the bacterial cells were collected after 14 hours.

次に集めた菌体をlO■/−のリゾチーム(太陽化学■
製)、20%ショ糖、l mM EDT^を含む50m
M )リス塩酸緩衝液(p)(7,6)20mQに懸濁
し、37°Cで10分間静置した。次に1%ラウロイル
サルコシン酸を含む0.1 M EDTA溶液(pH9
,6)44d及び5.44■/dのプロナーゼ溶液2.
 Odを加え、500°Cで30分間静置した。次に塩
化セシウム66g。
Next, the collected bacterial cells were mixed with lO■/- lysozyme (Taiyo Kagaku■
), 50m containing 20% sucrose, lmM EDT^
M) Suspended in 20 mQ of Lis-HCl buffer (p) (7,6) and allowed to stand at 37°C for 10 minutes. Next, a 0.1 M EDTA solution containing 1% lauroyl sarcosinate (pH 9) was added.
, 6) Pronase solution of 44 d and 5.44 d/d 2.
Od was added and left at 500°C for 30 minutes. Next, 66g of cesium chloride.

lO■/成のエチジウムブロマイド溶液3.3 dを加
え、混合した後に38.OOOrpm 、40時間の遠
心分離をおこなった。DNAを注射器で抜取り、n−ブ
タノール抽出によってエチジウムブロマイドを除去し、
1 mM EDTAを含むIOIIM トリス塩酸緩衝
液(pH8,O)に透析することにより約500μgの
染色体DNAを取得した。
After adding 3.3 d of ethidium bromide solution of 10. Centrifugation was performed at OOOrpm for 40 hours. DNA was extracted with a syringe, ethidium bromide was removed by n-butanol extraction, and
Approximately 500 μg of chromosomal DNA was obtained by dialysis against IOIIM Tris-HCl buffer (pH 8, O) containing 1 mM EDTA.

(2)染色体DNA断片のベクターへの挿入(1)で得
られた染色体DNA3μgについて0.02ユニツトの
5Au3AI制限エンドヌクレアーゼを加え、37°C
11時間の反応を行うことにより、これを部分分解した
。次にベクタープラスミドpBR322(東洋紡績型)
1μgについて4ユニツトのBamHI 制限酵素を加
え、37°C11時間の反応を行うことによりこれを完
全分解し、更にlユニットのアルカリフォスファターゼ
を加え、37°C11時間の反応を行うことにより、5
′末端のリン酸を除去した。
(2) Insertion of chromosomal DNA fragment into vector Add 0.02 units of 5Au3AI restriction endonuclease to 3 μg of chromosomal DNA obtained in (1), and incubate at 37°C.
This was partially decomposed by carrying out a reaction for 11 hours. Next, vector plasmid pBR322 (Toyobo type)
By adding 4 units of BamHI restriction enzyme per 1 μg and carrying out the reaction at 37°C for 11 hours, it was completely degraded. Furthermore, by adding 1 unit of alkaline phosphatase and carrying out the reaction at 37°C for 11 hours,
The phosphoric acid at the end was removed.

以上の方法により得られた3μgの染色体DNA断片と
1μgのpBR322のDNA断片を混合し、更に1m
MATP及び5IIIMジチオスライトールの存在下に
5ユニツトのT4ファージ由来のDNAリガーゼを用い
て15°C116時間の連結反応を行うことにより染色
体DNAを組込んだプラスミドDNAを取得した。
Mix 3 μg of chromosomal DNA fragment obtained by the above method and 1 μg of pBR322 DNA fragment, and add 1 m
Plasmid DNA incorporating chromosomal DNA was obtained by performing a ligation reaction at 15°C for 116 hours using 5 units of T4 phage-derived DNA ligase in the presence of MATP and 5IIIM dithiothreitol.

(3)  BanI制限エンドヌクレアーゼ遺伝子を含
む組換えプラスミドによる形質転換 エシェリヒア・コリに一12株とエシリヒア・398株
のハイブリッド株であるエシェリヒア・3988101
株をLB培地(純水11当りトリプトン(Dirco)
 10g、酵母エキス5g、 NaC110g@pH7
,0に調製したもの)lOIdに接種し、37°Cで振
とう培養を行い、対数増殖期まで生育させた後に集菌し
た。これを水冷下、最終濃度で0.03M CaC1z
の溶液に懸濁させてコンピテントな細胞とした。この細
胞懸濁液に(2)で得たプラスミドDNAの溶解液を加
えて、水冷下で60分反応させ、42°C,1−2分間
ヒートショックをあたえて、前記プラスミドDNAを細
胞内にとり込ませた0次いでこの細胞懸濁液を別途前記
LB培地に接種し、37’C,35時間振とう培養して
且つBan [制限エンドヌクレアーゼを生産する株を
分離し、ニジエリチア・コリ)IBIOI (pBan
lRM8) (FERM P−9424)を得た。この
形質転換微生物に含まれるプラスミドpBanlRM8
の制限酵素地図を第1図に示す。またpBanIRM8
をサブクローニングしてBan Iメチラーゼを生産す
る株を分離しエシェリヒア・コリ (pBanIM 4
 )(FERM P−10741)を得た。
(3) Transformation with a recombinant plasmid containing the BanI restriction endonuclease gene Escherichia 3988101, which is a hybrid strain of Escherichia coli 112 and Escherichia 398.
The strain was grown in LB medium (11 parts tryptone (Dirco) in pure water).
10g, yeast extract 5g, NaC 110g @ pH 7
, 0) was inoculated into lOId, cultured with shaking at 37°C, grown to logarithmic growth phase, and then harvested. This was cooled with water to a final concentration of 0.03M CaC1z.
The cells were suspended in a solution of The plasmid DNA solution obtained in (2) was added to this cell suspension, reacted for 60 minutes under water cooling, and heat shocked at 42°C for 1-2 minutes to incorporate the plasmid DNA into the cells. Next, this cell suspension was separately inoculated into the above LB medium, cultured with shaking at 37'C for 35 hours, and isolated from Ban [A strain producing restriction endonuclease, N. coli)IBIOI ( pBan
lRM8) (FERM P-9424) was obtained. Plasmid pBanlRM8 contained in this transformed microorganism
The restriction enzyme map of is shown in Figure 1. Also pBanIRM8
Escherichia coli (pBanIM 4) was subcloned to isolate a strain that produces Ban I methylase.
) (FERM P-10741) was obtained.

(4)  :L’yエリヒア・コリHBIOI (pB
anlllM 8 )によるBan l制限エンドヌク
レアーゼの生産(3)で得られた形質転換株エシェリヒ
ア・11月lB101 (pBanlRM8) (FE
RM P−9424)を前記LB培地200L発酵タン
クで37°C,16時間通気攪拌培養を行った。これを
遠心分離して集菌、培養菌体385gをえた。得られた
菌体100gよりBan l制限エンドヌクレアーゼを
精製した。菌体100gをBufferA(10mM 
Mgch、 7mM 2−メルカプトエタノールを含ん
だ20mM トリス塩酸緩衝液pH7,5)500成に
懸濁した。この懸濁液を超音波破砕器ソニファイアにて
10分間破砕後、上澄液を調製した。上澄液を0゜2M
NaC1存在下でポリエチレンイミンを0.2%になる
ように添加し、8000rpm 、20分間遠心分離を
行い上澄液を得た。この上澄液に硫安を70%飽和加え
、硫安沈澱後洗澱物を集め、10mM MgC1z、7
mM2−メルカプトエタノールを含む20mMのトリス
塩酸緩衝液(pH7,5)に懸濁し透析を行った。透析
後、フォスフォセルロース力ラム(体積200d)クロ
マトグラフィを行った。Ran l制限エンドヌクレア
ーゼはKCI濃度0.5M付近で溶出された。溶出され
た酵素液を透析チューブに入れ透析した。透析液を更に
ヒドロキシアパタイトカラム(80In1)クロマトグ
ラフィを行った。リン酸濃度0.3MにてBan I画
分が溶出された。更にこの画分を透析後DEAE−セフ
ァロース(40d)クロマトグラフィを行うとRan 
Iは洗浄画分に溶出することが認められた。この両分を
濃縮後セファクリルS−200ゲル濾過を実施した。ゲ
ル濾過Ban I画分を透析チューブに入れ、2a+M
  メルカプトエタノール、50%グリセロールを含ん
だリン酸緩衝液に透析することにより2.8 In1の
酵素液が得られた。
(4): L'y Erichia coli HBOI (pB
Production of Banl restriction endonuclease by anlllM8) (3)
RM P-9424) was cultured with aeration and stirring at 37°C for 16 hours in a 200 L fermentation tank using the LB medium. This was centrifuged to collect bacteria, yielding 385 g of cultured bacteria. Ban I restriction endonuclease was purified from 100 g of the obtained bacterial cells. 100g of bacterial cells was added to BufferA (10mM
Mgch was suspended in 20mM Tris-HCl buffer pH 7.5) containing 7mM 2-mercaptoethanol. This suspension was crushed for 10 minutes using an ultrasonic crusher, a sonicator, to prepare a supernatant. Supernatant liquid to 0゜2M
Polyethyleneimine was added at a concentration of 0.2% in the presence of NaCl, and centrifugation was performed at 8000 rpm for 20 minutes to obtain a supernatant. To this supernatant, ammonium sulfate was added to saturation of 70%, and after ammonium sulfate precipitation, the washed product was collected, and 10 mM MgC1z, 7
The suspension was suspended in 20 mM Tris-HCl buffer (pH 7.5) containing mM 2-mercaptoethanol and dialyzed. After dialysis, phosphocellulose force ram (volume 200 d) chromatography was performed. Ran 1 restriction endonuclease was eluted at a KCI concentration of around 0.5M. The eluted enzyme solution was placed in a dialysis tube and dialyzed. The dialysate was further subjected to hydroxyapatite column (80In1) chromatography. The Ban I fraction was eluted at a phosphoric acid concentration of 0.3M. Furthermore, when this fraction was dialyzed and subjected to DEAE-Sepharose (40d) chromatography, Ran
It was observed that I was eluted in the wash fraction. Both fractions were concentrated and then subjected to Sephacryl S-200 gel filtration. Put the gel filtration Ban I fraction into a dialysis tube and add 2a+M
An enzyme solution of 2.8 In1 was obtained by dialysis against a phosphate buffer containing mercaptoethanol and 50% glycerol.

この精製Ban I酵素を5DS−PAGE法にて蛋白
純度を調べると単一の13an I蛋白であることがわ
かった。またセファクリル5−200の溶出位置により
Ban Iの分子量は約72.000(SO5−PAG
Eよりサブユニット分子136,000のダイマー)と
推定された(第2図)。本酵素標品についてアミノ酸シ
ーケンサ−にてN末端アミノ酸配列を決めるとAlaG
 ln−Leu−Lys−Tyr−Asn−Lys−A
sp−I 1e−Asp−G lu−LeuGluであ
ることが判明した。
When this purified Ban I enzyme was examined for protein purity using the 5DS-PAGE method, it was found to be a single 13an I protein. Furthermore, the molecular weight of Ban I was approximately 72.000 (SO5-PAG) due to the elution position of Sephacryl 5-200.
It was estimated to be a dimer of 136,000 subunit molecules (Fig. 2). When the N-terminal amino acid sequence of this enzyme preparation was determined using an amino acid sequencer, AlaG
ln-Leu-Lys-Tyr-Asn-Lys-A
It turned out to be sp-I 1e-Asp-G lu-LeuGlu.

(5)  BanIメチラーゼ遺伝子を含む組換えプラ
スミドによる形質転換 Ban l制限エンドヌクレアーゼのDNAを含む組換
えプラスミドpBanlRM 8よりメチラーゼ遺伝子
のみを含むBan III −5ph I断片をpUc
18のAccf−sph Iサイトに挿入しpBanl
M 4を調製した(第3図)。次いでpBanlM 4
を用いて常法によりE、coliHBIOIを形質転換
した。
(5) Transformation with a recombinant plasmid containing the BanI methylase gene From the recombinant plasmid pBanlRM8 containing Banl restriction endonuclease DNA, the BanIII-5ph I fragment containing only the methylase gene was transformed into pUc.
Insert into the Accf-sph I site of 18 pBanl
M4 was prepared (Figure 3). Then pBanlM4
E. coli HBOI was transformed using the conventional method.

(6)エシェリヒア・コリHBIOI (pBan I
M 4 )によるRan Iメチラーゼの生産 Ban IメチラーゼをコードするDNAをもつpBa
nlM4を保有するE、coli HBIOI (pB
anlM4)(FIERM P−10741)をL−b
roth培地で0.52フラスコを用いて培養し、菌体
を集めた。菌体をBufferA 50m1に懸濁後超
音波破砕(3A、10分)した。35,000rpm 
、30分遠心して上澄液を得た。この上澄液をフォスフ
ォセルロース力ラム(40d) クロマトグラフィを実
施した。Ban Iメチラーゼはカラムを通過するので
これを集め、DEAEカラムクロマトグラフィを行った
。Ban IメチラーゼはKCI 0.3Mで溶°出さ
れる。この両分を再びフォスフォセルロース力ラム(2
0d)クロマトを実施した。Ban 1メチラーゼは0
.45M KCIで溶出された。この両分を濃縮し、セ
ファクリルS−200ゲル濾過(2cmx37cm)を
おこなった。Ban Iメチラーゼ画分を透析し更にヘ
パリン(10d)カラムクロマトグラフィを行った。溶
出画分をポリエチレングリコール濃縮後、50%グリセ
ロール溶液で透析した。全活性4キロユニツトのBan
 Iメチラーゼを得た。
(6) Escherichia coli HBOI (pBan I
Production of Ran I methylase by pBa containing DNA encoding Ban I methylase
E. coli HBOI carrying nlM4 (pB
anlM4) (FIERM P-10741) to L-b
The cells were cultured in Roth medium using a 0.52 flask and the cells were collected. The bacterial cells were suspended in 50 ml of Buffer A and then disrupted by ultrasonication (3A, 10 minutes). 35,000rpm
, and centrifuged for 30 minutes to obtain a supernatant. This supernatant was subjected to phosphocellulose column (40d) chromatography. Since Ban I methylase passed through the column, it was collected and subjected to DEAE column chromatography. Ban I methylase is eluted with KCI 0.3M. Both parts are combined again with a phosphocellulose ram (2
0d) Chromatography was performed. Ban 1 methylase is 0
.. Eluted with 45M KCI. Both fractions were concentrated and subjected to Sephacryl S-200 gel filtration (2 cm x 37 cm). The Ban I methylase fraction was dialyzed and further subjected to heparin (10d) column chromatography. The eluted fraction was concentrated with polyethylene glycol and then dialyzed against a 50% glycerol solution. Total active 4 kilounits Ban
I methylase was obtained.

本標品を5O3−PAGE後銀染後注染色法白純度を調
べると単一のバンド(第8図)を示した。またこの場合
、分子量は約44,000であった。ゲル濾過法では約
45,000であった(第4図)。本酵素はモノマー酵
素であると推定された。
When the white purity of this specimen was examined by 5O3-PAGE and silver staining followed by injection staining, it showed a single band (Fig. 8). Also in this case, the molecular weight was about 44,000. In the gel filtration method, it was about 45,000 (Figure 4). This enzyme was estimated to be a monomer enzyme.

(7)  Ban I制限エンドヌクレアーゼ、Ban
 IメチラーゼをコードするDNAの単離及び塩基配列
の決定 (3)で得られたBan I制限エンドヌクレアーゼを
生産する株エシェリヒア・コリHBIOI (pBan
lRM 8 )(FERM P−9424)を培養し常
法により組み換えプラスミド(pBanlRM 8 )
を調製した。調製したpBanlllMBを制限酵素旧
ndlI[、5phIで切断し、Ban 1制限エンド
ヌクレアーゼ、Ban IメチラーゼをコートするDN
A断片(6,2kb)を切り出しクレノーフラグメン[
・に平滑末端化した後、これをpUclBの旧nclI
サイトに挿入しρBanlRM6.2を作成した(第5
図)。このptlc 18に挿入されたpBanlRM
 8由来のDNA断片の制限酵素地図を示す(第6図)
(7) Ban I restriction endonuclease, Ban
The strain Escherichia coli HBIOI (pBan
lRM 8 ) (FERM P-9424) was cultured and a recombinant plasmid (pBanlRM 8 ) was obtained by a conventional method.
was prepared. The prepared pBanllllMB was cut with restriction enzymes old ndlI[, 5phI, and DNA coated with Ban 1 restriction endonuclease and Ban I methylase was extracted.
Cut out the A fragment (6.2 kb) and convert it to Klenow fragment [
・After blunt-ending, this was converted into the old nclI of pUclB.
I inserted it into the site and created ρBanlRM6.2 (5th
figure). pBanlRM inserted into this ptlc18
A restriction enzyme map of the DNA fragment derived from No. 8 is shown (Fig. 6).
.

また、この挿入断片におけるBan I制限エンドヌク
レアーゼ及びBan Iメチラーゼのコーディング領域
を第7図に示す。図中、BanIRはBan I制限エ
ンドヌクレアーゼのコーディング領域を表わし、Ban
IMはBan Iメチラーゼのコーディング領域を表わ
す。なお、Cmp 1〜4は塩基配列を決定するのに使
用したカスタムメイトプライマーを示す。
Furthermore, the coding regions of Ban I restriction endonuclease and Ban I methylase in this insert fragment are shown in FIG. In the figure, BanIR represents the coding region of Ban I restriction endonuclease;
IM represents the coding region of Ban I methylase. Note that Cmp 1 to 4 indicate custom mate primers used to determine the base sequence.

次にpBanlRM6.2を制限酵素; BamHI、
 Kpnlで切断しBamHI−にpnl D N A
断片を調製した。このDNA断片をエキソヌクレアーゼ
■、マングビーンヌクレアーゼでBan I制限エンド
ヌクレアーゼ遺伝子側より漸次的欠失(Deletio
n)を行い、得られた漸次的デレーシコン ミュタント
を作成し、ジオキシ法にてシーケンス決定を行った。こ
れによりDNAの1.方の鎖の塩基配列が決定された。
Next, pBanlRM6.2 was digested with restriction enzymes; BamHI,
Cut with Kpnl and convert pnl DNA into BamHI-
Fragments were prepared. This DNA fragment was subjected to gradual deletion from the Ban I restriction endonuclease gene side using exonuclease ■ and mung bean nuclease.
n), the resulting gradual deresicon mutants were created, and their sequences were determined using the dioxy method. This allows 1. The base sequence of the other strand was determined.

他方の鎖については、上述のとおり決定した塩基配列に
相補的なヌクレオチド(17mar)を合成しこれらを
プライマーとしジオキシ方にて塩基配列の決定を行った
。その結果、前記式■及び■に示されるBan I制限
エンドヌクレアーゼをコードするDNA及びBan I
メチラーゼをコードするDNAの塩基配列を決定した。
Regarding the other strand, nucleotides (17 mar) complementary to the base sequence determined as described above were synthesized, and the base sequence was determined using the dioxy method using these as primers. As a result, DNA encoding Ban I restriction endonuclease shown in the formulas ① and ① and Ban I
The base sequence of the DNA encoding methylase was determined.

また、この■及び■の塩基配列に対応する式I及び式■
のアミノ酸配列は、N末端において前記(4)及び(6
)の項に示したBan 1制限エンドヌクレアーゼ及び
Ban IメチラーゼのN末端のアミノ酸配列とそれぞ
れ一致した。
In addition, Formula I and Formula ■ corresponding to the base sequences of ■ and ■
The amino acid sequence of (4) and (6) at the N-terminus is
), the N-terminal amino acid sequences of Ban I restriction endonuclease and Ban I methylase were respectively identical.

〔発明の効果) 本発明により、Ran 1制限エンドヌクレアーゼをコ
ードするDNA及びBan Iメチラーゼをコードする
DNAを提供することができた。これにより夾雑酵素を
含有しない純粋なりan I制限エンドヌクレアーゼ標
品を遺伝子操作技術を用いることにより効率的かつ大量
に生産することが可能となる。また、本発明により提供
されるBan [メチラーゼ自体も遺伝子操作技術にお
いて試薬等として極めて重要なものであり、遺伝子操作
技術の発展に大いに寄与するものである。
[Effects of the Invention] According to the present invention, it was possible to provide DNA encoding Ran 1 restriction endonuclease and DNA encoding Ban I methylase. This makes it possible to efficiently produce a pure an I restriction endonuclease preparation containing no contaminant enzymes in large quantities by using genetic engineering technology. Furthermore, the Ban[methylase provided by the present invention itself is extremely important as a reagent, etc. in genetic engineering technology, and will greatly contribute to the development of genetic engineering technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はpBanlRM 8のプラスミドの制限酵素地
図、第2図はpBan I制限エンドヌクレアーゼの分
子量の測定結果を示す図、第3図はplan IRM 
8よりpBanlM 4への構築図、第4図はRan 
Iノチラーゼ分子量、の測定結果を示す図、第5図はp
BanlRM6.2の構築図、第6図はpBanlRM
6.2の作成に際し、pUclBに挿入されたpBan
lRM 8由来のDNA断片の制限酵素地図を、第7図
はpUclBに挿入されたpBanlRM 8由来のD
NA断片におけるBan 1制限エンドヌクレアーゼ及
びBan Iメチラーゼのコーディング領域、並びにこ
れら酵素のDNA塩基配列決定のストラキジーを示す図
である。 第8図は本発明により得られたBan Iメチラーゼの
電気泳動パターンを表わす写真である。
Figure 1 is a restriction enzyme map of the pBanlRM 8 plasmid, Figure 2 is a diagram showing the measurement results of the molecular weight of pBan I restriction endonuclease, and Figure 3 is a diagram showing the results of measuring the molecular weight of pBan I restriction endonuclease.
8 to pBanlM 4, Figure 4 shows Ran
Figure 5 shows the measurement results of I-notylase molecular weight.
Construction diagram of BanlRM6.2, Figure 6 is pBanlRM
pBan inserted into pUclB when creating 6.2
Figure 7 shows the restriction enzyme map of the DNA fragment derived from pUclB.
FIG. 2 shows the coding regions of Ban 1 restriction endonuclease and Ban I methylase in the NA fragment and the strakigy of DNA sequencing of these enzymes. FIG. 8 is a photograph showing the electrophoretic pattern of Ban I methylase obtained according to the present invention.

Claims (1)

【特許請求の範囲】 1、バチルスアノイリノリティカス(Bacillus
aneurinolyticus)由来のBanI制限
エンドヌクレアーゼをコードするDNA断片。 2、次の式 I で表わされるアミノ酸配列をコードする
塩基配列を有する請求項1記載のDNA断片。 式 I                          
            10 Met Ala Gln Leu Lys Tyr A
sn Lys Asp Ile           
                         
  20 Asp Glu Leu Glu Arg Asn A
la Ala Lys Trp           
                         
  30 Trp Pro Asp Phe Leu Ala L
ys Lys Glu Ser           
                         
  40 Ser Thr Ser Ile Ile Pro L
ys Leu Val Glu           
                         
  50 Ser Gln Asp Ala Phe Ile S
er Leu Leu Asn           
                         
  60 Leu Ser Lys Asn Asn Pro P
he Asp Ile Phe           
                         
  70 Gln Leu Ile Asp Ala Ser L
ys Phe Pro Pro           
                         
  80 Asn Leu Phe Leu Lys His L
eu Val Val Leu           
                         
  90 Thr Asp Phe Gly Gly Glu P
ro Leu Asn Arg           
                         
 100 Leu Asn Gln Asn Phe Asp S
er Leu Phe Pro           
                         
 110 Met Ile Pro Tyr Gly Ile H
is Tyr Ile Thr           
                         
 120 Lys Val Leu Gly Lys Phe G
lu Phe Phe Trp           
                         
 130 Asn Glu Lys Lys Tyr Glu T
yr Val Phe Gln           
                         
 140 Glu Leu Pro Val Thr Ser L
eu Thr Asn Ser           
                         
 150 Lys Leu Lys Ile Asp Gly A
la Ser Ile Ser           
                         
 160 Lys Thr Val Pro Leu Ser A
sp Leu Tyr Lys           
                         
 170 Asp Val Ile Val Leu Leu M
et Phe Gly Ala           
                         
 180 Asn Ala Val Asn Ser Glu V
al Ser Glu Val           
                         
 190 Leu Met Lys Cys Glu Val G
ly Asn Leu Ile           
                         
 200 Gly Lys Thr Asp Glu Leu L
ys Lys Phe lle           
                         
 210 Lys Glu Arg Tyr lle Phe V
al Ser Arg Ile           
                         
 220 Thr Gly Gly Ala Glu Ala A
sn Thr Leu Gly           
                         
 230 Gln Val Ala Gln Thr His V
al Ile Asp Phe           
                         
 240 Leu Arg Thr Arg Phe Gly S
er Lys Gly His           
                         
 250 Asp Ile Lys Ser Asn Gly H
is Ile Glu Gly           
                         
 260 Val Thr His Asn Asp Gly G
ln Thr Leu Thr           
                         
 270 Thr Phe Asp Val Val Ile L
ys Lys Gly Ser           
                         
 280 Lys Ser Val Ala Ile Glu I
le Ser Phe Gln           
                         
 290 Val Thr Thr Asn Ser Thr I
le Glu Arg Lys           
                         
 300 Ala Gly Gln Ala Lys Ala A
rg Tyr Asp Met           
                         
 310 Val Ser Asp Thr Gly Asn T
yr Ile Ala Tyr           
                         
 320 Ile Ile Asp Gly Ala Gly A
sn Phe Gln Arg           
                         
 330 Lys Asn Ala Ile Thr Thr I
le Cys Asn Asn           
                         
 340 Ser His Cys Thr Val Ala T
yr Tyr Glu Glu           
                         
 350 Glu Leu Asn Val Leu Leu L
ys Phe Ile Leu Glu Lys Le
u Glu 3、次の式IIで表わされる塩基配列を有する請求項2記
載のDNA断片。 式II         10         20    
     30        ATGGCACAGC
 TTAAATACAA TAAAGATATT GA
TGAAT 40 TGG         50         60    
     70        AAAGAAACGC
 TGCAAAGTGG TGGCCGGATT TT
CTAGC 80 TAA         90        100    
    110        AAAGGAGTCG
 TCAACGAGCA TTATTCCTAA AC
TGGTC120 GAA        130        140    
    150        TCGCAAGATG
 CTTTTATATC TTTATTAAAT CT
CACTA160 AGA        170        180    
    190        ACAACCCTTT
 CGACATTTTC CAACTAATAG AC
GCATC200 TAA        210        220    
    230        GTTCCCACCC
 AATCTGTTTC TAAAGCATCT TG
TTGTA240 TTA        250        260    
    270        ACCGACTTTG
 GTGGAGAGCC ACTAAATCGC TT
GAATC280 AAA        290        300    
    310        ACTTTGATTC
 GCTTTTTCCC ATGATTCCCT AT
GGAAT320 CCA        330        340    
    350        TTACATAACA
 AAAGTGTTAG GGAAATTTGA AT
TTTTT360 TGG        370        380    
    390        AATGAGAAAA
 AATATGAATA TGTTTTTCAA GA
ACTTC400 CGG        410        420    
    430        TTACATCATT
 AACTAATTCA AAACTCAAGA TT
GACGG440 ACC        450        460    
    470        AAGTATTTCT
 AAGACAGTCC CACTTTCTGA TT
TATAT480 AAA        490        500    
    510        GATGTAATTG
 TATTACTCAT GTTCGGTGCT AA
TGCTG520 TTA        530        540    
    550        ATTCGGAAGT
 ATCCGAAGTT TTGATGAAAT GT
GAAGT560 TGG        570        580    
    590        AAATCTCATT
 GGTAAGACTG ACGAGTTGAA GA
AGTTT600 ATT        610        620    
    630        AAGGAGCGTT
 ATATTTTTGT AAGCAGAATA AC
AGGAG640 GGG        650        660    
    670        CTGAAGCAAA
 TACGTTAGGT CAAGTCGCTC AA
ACCCA680 TGT        690        700    
    710        AATAGATTTT
 CTAAGAACTC GATTCGGGTC TA
AGGGT720 CAC        730        740    
    750        GATATAAAAA
 GTAATGGACA CATTGAAGGT GT
GACCC760 ATA        770        780    
    790        ACGATGGACA
 AACACTAACC ACTTTTGATG TA
GTCAT800 AAA        810        820    
    830        AAAAGGCAGC
 AAAAGCGTTG CGATTGAGAT TA
GCTTC840 CAG        850        860    
    870        GTAACTACAA
 ATAGTACCAT CGAGCGTAAA GC
TGGAC880 AAG        890        900    
    910        CTAAAGCACG
 ATACGATATG GTTAGTGATA CT
GGCAA920 TTA        930        940    
    950        TATAGCTTAT
 ATTATCGATG GAGCGGGGAA CT
TCCAA960 CGT        970        980    
    990       1AAAAATGCAA
 TCACAACCAT TTGTAATAAT AG
CCATT000 GCA       1010       1020    
   1030       1CAGTAGCTTA
 TACCGAAGAA GAACTAAATG TC
TTGCT040 AAA       1050       1060 ATTCATCTTA GAAAAACTTG AA 4、バチルスアノイリノリティカス(Bacillus
aneurinolyticus)由来のBanIメチ
ラーゼをコードするDNA断片。 5、次の式IIIで表わされるアミノ酸配列をコードする
塩基配列を有する請求項4記載のDNA断片。 式III                          
            10 Met Lys Ile Lys Phe Val A
sp Leu Phe Ala           
                         
  20 Gly Ile Gly Gly Ile Arg I
le Gly Phe Glu           
                         
  30 Arg Ala Ala Lys Arg Phe G
lu Leu Glu Thr           
                         
  40 Glu Cys Val Leu Ser Ser G
lu Ile Asp Lys           
                         
  50 Lys Ala Cys Glu Thr Tyr A
la Leu Asn Phe           
                         
  60 Lys Glu Glu Pro Gln Gly A
sp Ile His Glu           
                         
  70 Ile Thr Ser Phe Pro Glu P
he Asp Phe Leu           
                         
  80 Leu Ala Gly Phe Pro Cys G
ln Pro Phe Ser           
                         
  90 Tyr Ala Gly Lys Gln Gln G
ly Phe Gly Asp           
                         
 100 Thr Arg Gly Thr Leu Phe P
he Glu Val Glu           
                         
 110 Arg Val Leu Arg Asp Asn A
rg Pro Lys Ala           
                         
 120 Phe Leu Leu Glu Asn Val A
rg Gly Leu Val           
                         
 130 Thr His Asp Lys Gly Arg T
hr Leu Lys Thr           
                         
 140 Ile Ile Ser Lys Leu Glu G
lu Leu Gly Tyr           
                         
 150 Gly Val Ser Tyr Leu Leu L
eu Asn Ser Ser           
                         
 160 Thr Phe Gly Val Pro Gln A
sn Arg Val Arg           
                         
 170 Ile Tyr Ile Leu Gly Ile L
eu Gly Ser Lys           
                         
 180 Pro Lys Leu Thr Leu Thr S
er Asn Val Gly           
                         
 190 Ala Ala Asp Ser His Lys T
yr Lys Asn Glu           
                         
 200 Gln Ile Ser Leu Phe Asp G
lu Ser Tyr Ala           
                         
 210 Thr Val Lys Asp Ile Leu G
lu Asp Ser Pro           
                         
 220 Ser Glu Lys Tyr Arg Cys S
er Asp Glu Phe           
                         
 230 Ile Gly Gln Leu Ser Lys V
al Val Gly Asn           
                         
 240 Asn Phe Glu Leu Leu His G
ly Tyr Arg Leu           
                         
 250 Ile Asp Tyr Arg Gly Gly A
sn Ser Ile His           
                         
 260 Ser Trp Glu Leu Gly Ile L
ys Gly Asp Cys           
                         
 270 Thr Lys Glu Glu Ile Glu P
he Leu Asn Gln           
                         
 280 Leu Ile Ala Asn Arg Arg L
ys Lys Ile Tyr           
                         
 290 Gly Thr His Gln Asp Gly L
ys Ala Leu Thr           
                         
 300 Leu Glu Gln Ile Arg Thr P
he Tyr Asn His           
                         
 310 Asp Gln Leu Glu Val Ile I
le Lys Ser Leu           
                         
 320 Leu Gln Lys Gly Tyr Leu A
rg Glu Glu Glu           
                         
 330 Asn Lys Phe Asn Pro Vat C
ys Gly Asn Met           
                         
 340 Ser Phe Glu Val Phe Lys P
he Leu Asp Pro           
                         
 350 Asp Ser Ile Ser Ile His L
eu Thr Ser Ser           
                         
 360 Asp Ala His Lys Leu Gly V
al Val Gln Asn           
                         
 370 Asn Val Pro Arg Arg Ile T
hr Pro Arg Glu           
                         
 380 Cys Ala Arg Leu Gln Gly P
he Pro Asp Asp           
                         
 390 Phe Ile Leu His Ser Asn A
sp Asn Phe Ala           
                         
 400 Tyr Lys Gln Leu Gly Asn S
er Val Thr Val           
                         
 410 Lys Val Val Glu Lys Val I
le Glu Asp Leu           
                         
 420 Phe Gln Asn Asn Val Asn G
lu Leu Phe Gly Gln Met Ly
s Leu Ala Asn Val Va l6、次の式IVで表わされる塩基配列を有する請求項5
記載のDNA断片。 式IV                          
           ATGAAGATTA
 AATTTGTTGA CTTGTTTGCT GG
AATTG 40 GAG GAATTCGAAT AGGATTTGAA AGA
GCGGCCA AACGGTT 80 TGA ATTGGAGACT GAGTGTGTAC TTT
CTAGTGA GATCGAC120 AAA                      
               AAGGCTTGCG
 AAACATATGC CCTTAATTTT AA
AGAGG160 AAC CTCAAGGTGA TATACACGAA ATT
ACCAGCT TTCCAGA200 ATT CGATTTTCTT CTTGCTGGAT TTC
CTTGTCA ACCCTTT240 TCA TATGCAGGTA AACAACAAGG ATT
TGGGGAT ACAAGAG280 GAA CATTATTTTT TGAGGTGGAG AGG
GTTCTTA GGGATAA320 CCG CCCAAAGGCT TTCTTATTAG AAA
ATGTTCG GGGACTG360 GTA ACACACGACA AAGGAAGAAC TTT
AAAGACG ATCATTT400 CAA AATTAGAGGA ATTGGGTTAC GGG
GTTAGCT ACCTATT440 ACT TAACAGTAGT ACGTTTGGTG TCC
CCCAAAA CCGAGTA480 AGG ATTTATATTT TAGGCATACT CGG
AAGTAAA CCAAAGT520 TAA CTCTAACCTC TAATGTTGGA GCA
GCCGATT CTCACAA560 GTA TAAGAATGAA CAAATATCTT TAT
TTGATGA AAGCTAT600 GCT ACTGTTAAAG ACATTTTAGA AGA
TTCTCCA AGTGAAA640 AAT ATCGCTGTTC TGACGAATTT ATC
GGTCAAC TTTCAAA680 GGT                      
               TGTTGGTAAT
 AACTTTGAAT TGCTACATGG CT
ATCGC720 TTA ATTGATTATC GTGGCGGTAA TTC
GATTCAT TCTTGGG760 AAC TTGGCATCAA GGGTGATTGT ACA
AAAGAGG AAATTGA800 ATT TCTAAATCAG TTGATTGCAA ATA
GAAGAAA GAAAATT840 TAT GGTACGCACC AAGACGGAAA AGC
CTTAACT TTAGAGC880 AAA TTCGGACGTT TTATAACCAC GAT
CAGCTTG AGGTAAT920 AAT AAAATCCCTA CTCCAAAAAG GAT
ATTTAAG AGAAGAA960 GAA
1AATAAATTT
A ATCCCGTTTG TGGGAATATG T
CTTTTG000 AGG                          
              1TCTTTAAGTT
 CCTTGACCCA GACAGTATTT CA
ATCCA040 CCT                      
                         
                         
    1CACATCTAGC GATGCTCAT
A AGTTGGGAGT AGTTCAG080 AAT                          
              1AATGTTCCTA
 GAAGGATAAC ACCTCGGGAA TG
TGCTA120 GAC                          
              1TGCAAGGTTT
 CCCAGATGAT TTCATACTAC AT
TCCAA160 TGA                          
              1CAATTTTGCA
 TACAAGCAGT TGGGGAATTC AG
TCACT200 GTC                          
              1AAAGTAGTGG
 AAAAAGTGAT CGACGATTTA TT
TCAAA240 ACA                          
              1ATGTAAATGA
 ATTGTTTGGA CAGATGAAAC TT
GCAAA280 TGT TGTATGA 7、請求項4〜6のいずれか記載のDNA断片を含む発
現ベクター。 8、請求項7記載の発現ベクターにより形質転換された
形質転換体。 9、エシャリヒア(esherichia)属に属する
微生物を形質転換したものである請求項8記載の形質転
換体。 10、請求項4〜6いずれか記載のDNA断片を組み込
んだ発現ベクターにより、生物細胞あるいは微生物を形
質転換し、得られた形質転換体を培養して培養物からB
an I メチラーゼを採取することを特徴とするBan
I メチラーゼの製造方法。 11、バチルスアノイリノリティカス(Bacillu
saneurinolyticus)由来の約4,40
00の分子量(SDS−PAGE法による)を有するB
an I メチラーゼ。 12、次の式IIIで表わされるアミノ酸配列を有するポ
リペプチドである請求項11記載のBan I メチラー
ゼ。 式III                          
            10 Met Lys Ile Lys Phe Val A
sp Leu Phe Ala           
                         
  20 Gly Ile Gly Gly Ile Arg I
le Gly Phe Glu           
                         
  30 Arg Ala Ala Lys Arg Phe G
lu Leu Glu Thr           
                         
  40 Glu Cys Val Leu Ser Ser G
lu Ile Asp Lys           
                         
  50 Lys Ala Cys Glu Thr Tyr A
la Leu Asn Phe           
                         
  60 Lys Glu Glu Pro Gln Gly A
sp Ile His Glu           
                         
  70 Ile Thr Ser Phe Pro Glu P
he Asp Phe Leu           
                         
  80 Leu Ala Gly Phe Pro Cys G
ln Pro Phe Ser           
                         
  90 Tyr Ala Gly Lys Gln Gln G
ly Phe Gly Asp           
                         
 100 Thr Arg Gly Thr Leu Phe P
he Glu Val Glu           
                         
 110Arg Val Leu Arg Asp A
sn Arg Pro Lys Ala       
                         
     120 Phe Leu Leu Glu Asn Val A
rg Gly Leu Val           
                         
 130 Thr His Asp Lys Gly Arg T
hr Leu Lys Thr           
                         
 140 Ile Ile Ser Lys Leu Glu G
lu Leu Gly Tyr           
                         
 150 Gly Val Ser Tyr Leu Leu L
eu Asn Ser Ser           
                         
 160 Thr Phe Gly Val Pro Gln A
sn Arg Val Arg           
                         
 170 Ile Tyr Ile Leu Gly Ile L
eu Gly Ser Lys           
                         
 180 Pro Lys Leu Thr Leu Thr S
er Asn Val Gly           
                         
 190 Ala Ala Asp Ser His Lys T
yr Lys Asn Glu           
                         
 200 Gln Ile Ser Leu Phe Asp G
lu Ser Tyr Ala           
                         
210 Thr Val Lys Asp Ile Leu G
lu Asp Ser Pro           
                         
 220 Ser Glu Lys Tyr Arg Cys S
er Asp Glu Phe           
                         
 230 Ile Gly Gln Leu Ser Lys V
al Val Gly Asn           
                         
 240 Asn Phe Glu Leu Leu His G
ly Tyr Arg Leu           
                         
 250 Ile Asp Tyr Arg Gly Gly A
sn Ser Ile His           
                         
 260 Ser Trp Glu Leu Gly lle L
ys Gly Asp Cys           
                         
 270 Thr Lys Glu Glu Ile Glu P
he Leu Asn Gln           
                         
 280 Leu Ile Ala Asn Arg Arg L
ys Lys Ile Tyr           
                         
 290 Gly Thr His Gln Asp Gly L
ys Ala Leu Thr           
                         
 300 Leu Glu Gln Ile Arg Thr P
he Tyr Asn His           
                         
310 Asp Gln Leu Glu Val Ile I
le Lys Ser Leu           
                         
 320 Leu Gln Lys Gly Tyr Leu A
rg Glu Glu Glu           
                         
 330 Asn Lys Phe Asn Pro Val C
ys Gly Asn Met           
                         
 340 Ser Phe Glu Val Phe Lys P
he Leu Asp Pro           
                         
 350 Asp Ser Ile Ser Ile His L
eu Thr Ser Ser           
                         
 360 Asp Ala His Lys Leu Gly V
al Val Gln Asn           
                         
 370 Asn Val Pro Arg Arg Ile T
hr Pro Arg Glu           
                         
 380 Cys Ala Arg Leu Gln Gly P
he Pro Asp Asp           
                         
 390 Phe Ile Leu His Ser Asn A
sp Asn Phe Ala           
                         
 400Tyr Lys Gln Leu Gly A
sn Ser Val Thr Val       
                         
     410 Lys Val Val Glu Lys Val I
le Glu Asp Leu           
                         
 420 Phe Gln Asn Asn Val Asn G
lu Leu Phe Gly Gln Met Ly
s Leu Ala Asn Val Val
[Claims] 1. Bacillus aneurinolyticus
A DNA fragment encoding the BanI restriction endonuclease derived from A. neurinolyticus. 2. The DNA fragment according to claim 1, which has a base sequence encoding an amino acid sequence represented by the following formula I. Formula I
10 Met Ala Gln Leu Lys Tyr A
sn Lys Asp Ile

20 Asp Glu Leu Glu Arg Asn A
la Ala Lys Trp

30 Trp Pro Asp Phe Leu Ala L
ys Lys Glu Ser

40 Ser Thr Ser Ile Ile Pro L
ys Leu Val Glu

50 Ser Gln Asp Ala Phe Ile S
Er Leu Leu Asn

60 Leu Ser Lys Asn Asn Pro P
he Asp Ile Phe

70 Gln Leu Ile Asp Ala Ser L
ys Phe Pro Pro

80 Asn Leu Phe Leu Lys His L
eu Val Val Leu

90 Thr Asp Phe Gly Gly Glu P
ro Leu Asn Arg

100 Leu Asn Gln Asn Phe Asp S
Er Leu Phe Pro

110 Met Ile Pro Tyr Gly Ile H
is Tyr Ile Thr

120 Lys Val Leu Gly Lys Phe G
lu Phe Phe Trp

130 Asn Glu Lys Lys Tyr Glu T
yr Val Phe Gln

140 Glu Leu Pro Val Thr Ser L
eu Thr Asn Ser

150 Lys Leu Lys Ile Asp Gly A
la Ser Ile Ser

160 Lys Thr Val Pro Leu Ser A
sp Leu Tyr Lys

170 Asp Val Ile Val Leu Leu M
et Phe Gly Ala

180 Asn Ala Val Asn Ser Glu V
al Ser Glu Val

190 Leu Met Lys Cys Glu Val G
ly Asn Leu Ile

200 Gly Lys Thr Asp Glu Leu L
ys Lys Phe lle

210 Lys Glu Arg Tyr lle Phe V
al Ser Arg Ile

220 Thr Gly Gly Ala Glu Ala A
sn Thr Leu Gly

230 Gln Val Ala Gln Thr His V
al Ile Asp Phe

240 Leu Arg Thr Arg Phe Gly S
er Lys Gly His

250 Asp Ile Lys Ser Asn Gly H
is Ile Glu Gly

260 Val Thr His Asn Asp Gly G
ln Thr Leu Thr

270 Thr Phe Asp Val Val Ile L
ys Lys Gly Ser

280 Lys Ser Val Ala Ile Glu I
Ser Phe Gln

290 Val Thr Thr Asn Ser Thr I
le Glu Arg Lys

300 Ala Gly Gln Ala Lys Ala A
rg Tyr Asp Met

310 Val Ser Asp Thr Gly Asn T
yr Ile Ala Tyr

320 Ile Ile Asp Gly Ala Gly A
sn Phe Gln Arg

330 Lys Asn Ala Ile Thr Thr I
le Cys Asn Asn

340 Ser His Cys Thr Val Ala T
yr Tyr Glu Glu

350 Glu Leu Asn Val Leu Leu L
ys Phe Ile Leu Glu Lys Le
u Glu 3, the DNA fragment according to claim 2, having a base sequence represented by the following formula II. Formula II 10 20
30 ATGGCACAGC
TAAAATACAA TAAAGATATT GA
TGAAT 40 TGG 50 60
70 AAAGAAACGC
TGCAAGTGG TGGCCGGATT TT
CTAGC 80 TAA 90 100
110 AAAGGAGTCG
TCAACGAGCA TTATTCCTAA AC
TGGTC120 GAA 130 140
150 TCGCAAGATG
CTTTATTATATC
CACTA160 AGA 170 180
190 ACAACCCTTT
CGACATTTTC CAACTAATAG AC
GCATC200 TAA 210 220
230 GTTCCCACCC
AATCTGTTTC TAAAGCATCT TG
TTGTA240 TTA 250 260
270 ACCGACTTTG
GTGGAGAGCC ACTAAATCGC TT
GAATC280 AAA 290 300
310 ACTTTGATTC
GCTTTTTTCCC ATGATTCCCT AT
GGAAT320 CCA 330 340
350 TTACATAACA
AAAGTGTTAG GGAAATTGA AT
TTTTT360 TGG 370 380
390 AATGAGAAAA
AATATGAATA TGTTTTTTCAA GA
ACTTC400 CGG 410 420
430 TTACATCATT
AACTAATTCA AAACTCAAGA TT
GACGG440 ACC 450 460
470 AAGTATTTCT
AAGACAGTCC CACTTTCTGA TT
TATAT480 AAA 490 500
510 GATGTAATTG
TATTACTCAT GTTCGGTGCT AA
TGCTG520 TTA 530 540
550 ATTCGGAAGT
ATCCGAAGTT TTGATGAAAT GT
GAAGT560 TGG 570 580
590 AAATCTCATT
GGTAAGACTG ACGAGTTGAA GA
AGTTT600 ATT 610 620
630 AAGGAGCGTT
ATATTTTTTGT AAGCAGATA AC
AGGAG640 GGG 650 660
670 CTGAAGCAAA
TACGTTAGGT CAAGTCGCTC AA
ACCCA680 TGT 690 700
710 AATAGATTTT
CTAAGAACTC GATTCGGGTC TA
AGGGT720 CAC 730 740
750 GATATAAAAAA
GTAATGGACA CATTGAAGGT GT
GACCC760 ATA 770 780
790 ACGATGGACA
AACACTAACC ACTTTTGATG TA
GTCAT800 AAA 810 820
830 AAAAGGCAGC
AAAAGCGTTG CGATTGAGAT TA
GCTTC840 CAG 850 860
870 GTAACTACAA
ATAGTACCAT CGAGCGTAAA GC
TGGAC880 AAG 890 900
910 CTAAAGCACCG
ATACGATATGGTTAGTGATACT
GGCAA920 TTA 930 940
950 TATAGCTTAT
ATTATCGATGGAGCGGGGAACT
TCCAA960 CGT 970 980
990 1AAAAAATGCAA
TCACAACCAT TTGTAATAAT AG
CCATT000 GCA 1010 1020
1030 1CAGTAGCTTA
TACCGAAGAA GAACTAAATG TC
TTGCT040 AAA 1050 1060 ATTCATCTTA GAAAAAAACTTG AA 4, Bacillus aneurinolyticus
A DNA fragment encoding BanI methylase derived from A. neurinolyticus. 5. The DNA fragment according to claim 4, which has a base sequence encoding an amino acid sequence represented by the following formula III. Formula III
10 Met Lys Ile Lys Phe Val A
sp Leu Phe Ala

20 Gly Ile Gly Gly Ile Arg I
le Gly Phe Glu

30 Arg Ala Ala Lys Arg Phe G
lu Leu Glu Thr

40 Glu Cys Val Leu Ser Ser G
lu Ile Asp Lys

50 Lys Ala Cys Glu Thr Tyr A
la Leu Asn Phe

60 Lys Glu Glu Pro Gln Gly A
sp Ile His Glu

70 Ile Thr Ser Phe Pro Glu P
he Asp Phe Leu

80 Leu Ala Gly Phe Pro Cys G
ln Pro Phe Ser

90 Tyr Ala Gly Lys Gln Gln G
ly Phe Gly Asp

100 Thr Arg Gly Thr Leu Phe P
he Glu Val Glu

110 Arg Val Leu Arg Asp Asn A
rg Pro Lys Ala

120 Phe Leu Leu Glu Asn Val A
rg Gly Leu Val

130 Thr His Asp Lys Gly Arg T
hr Leu Lys Thr

140 Ile Ile Ser Lys Leu Glu G
lu Leu Gly Tyr

150 Gly Val Ser Tyr Leu Leu L
eu Asn Ser Ser

160 Thr Phe Gly Val Pro Gln A
sn Arg Val Arg

170 Ile Tyr Ile Leu Gly Ile L
eu Gly Ser Lys

180 Pro Lys Leu Thr Leu Thr S
er Asn Val Gly

190 Ala Ala Asp Ser His Lys T
yr Lys Asn Glu

200 Gln Ile Ser Leu Phe Asp G
lu Ser Tyr Ala

210 Thr Val Lys Asp Ile Leu G
lu Asp Ser Pro

220 Ser Glu Lys Tyr Arg Cys S
er Asp Glu Phe

230 Ile Gly Gln Leu Ser Lys V
al Val Gly Asn

240 Asn Phe Glu Leu His G
ly Tyr Arg Leu

250 Ile Asp Tyr Arg Gly Gly A
sn Ser Ile His

260 Ser Trp Glu Leu Gly Ile L
ys Gly Asp Cys

270 Thr Lys Glu Glu Ile Glu P
he Leu Asn Gln

280 Leu Ile Ala Asn Arg Arg L
ys Lys Ile Tyr

290 Gly Thr His Gln Asp Gly L
ys Ala Leu Thr

300 Leu Glu Gln Ile Arg Thr P
he Tyr Asn His

310 Asp Gln Leu Glu Val Ile I
Le Lys Ser Leu

320 Leu Gln Lys Gly Tyr Leu A
rg Glu Glu Glu

330 Asn Lys Phe Asn Pro Vat C
ys Gly Asn Met

340 Ser Phe Glu Val Phe Lys P
he Leu Asp Pro

350 Asp Ser Ile Ser Ile His L
eu Thr Ser Ser

360 Asp Ala His Lys Leu Gly V
al Val Gln Asn

370 Asn Val Pro Arg Arg Ile T
hr Pro Arg Glu

380 Cys Ala Arg Leu Gln Gly P
he Pro Asp Asp

390 Phe Ile Leu His Ser Asn A
sp Asn Phe Ala

400 Tyr Lys Gln Leu Gly Asn S
er Val Thr Val

410 Lys Val Val Glu Lys Val I
Le Glu Asp Leu

420 Phe Gln Asn Asn Val Asn G
lu Leu Phe Gly Gln Met Ly
s Leu Ala Asn Val Val 16, having a base sequence represented by the following formula IV.
The described DNA fragment. Formula IV
ATGAAGATTA
AATTTGTTGA CTTGTTTGCT GG
AATTG 40 GAG GAATTCGAAT AGGATTTGAA AGA
GCGGCCA AACGGTT 80 TGA ATTGGAGACT GAGTGTGTAC TTT
CTAGTGA GATCGAC120 AAA
AAGGCTTGCG
AAACATATGC CCTTAATTTT AA
AGAGG160 AAC CTCAAGGTGA TATACACGAA ATT
ACCAGCT TTCC AGA200 ATT CGATTTTCTT CTTGCTGGAT TTC
CTTGTCA ACCCTTT240 TCA TATGCAGGTA AACAACAAGG ATT
TGGGGAT ACAAGAG280 GAA CATTATTTTTT TGAGGTGGAG AGG
GTTCTTA GGGATAA320 CCG CCCAAAGGCT TTCTTATTAG AAA
ATGTTCG GGGACTG360 GTA ACACACGACA AAGGAAGAAC TTT
AAAGACG ATCATTT400 CAA AATTAGAGGA ATTGGGTTAC GGG
GTTAGCT ACCTATT440 ACT TAACAGTAGT ACGTTTGGTG TCC
CCCAAA CCGAGTA480 AGG ATTTATATT TAGGCATACT CGG
AAGTAAA CCAAAGT520 TAA CTCTAACCTC TAATGTTGGA GCA
GCCGATT CTCACAA560 GTA TAAGAATGAA CAAATATCTT TAT
TTGATGA AAGCTAT600 GCT ACTGTTAAAG ACATTTTAGA AGA
TTCTCCA AGTGAAA640 AAT ATCGCTGTTC TGACGAATTT ATC
GGTCAACTTTCAAA680 GGT
TGTTGGTAAT
AACTTTGAAT TGCTACATG CT
ATCGC720 TTA ATTGATTATC GTGGCGGTAA TTC
GATTCAT TCTTGGG760 AAC TTGGCATCAA GGGTGATTGT ACA
AAAGAGG AAATTGA800 ATT TCTAAATCAG TTGATTGCAA ATA
GAAGAAA GAAAAATT840 TAT GGTACGCACC AAGACGGAAA AGC
CTTAACT TTAGAGC880 AAA TTCGGACGTT TTATAACCAC GAT
CAGCTTG AGGTAAT920 AAT AAAATCCCCTA CTCCAAAAAG GAT
ATTTAAG AGAAGAA960 GAA
1AATAAAATTT
A ATCCCGTTTG TGGGAATATG T
CTTTTG000 AGG
1TCTTTAAGTT
CCTTGACCCA GACAGTATTT CA
ATCCA040 CCT


1CACATCTAGCGATGCTCAT
A AGTTGGGAGT AGTTCAG080 AAT
1AATGTTCCTA
GAAGGATAAC ACCTCGGGAA TG
TGCTA120 GAC
1TGCAAGGTT
CCCAGATGAT TTCATACTAC AT
TCCAA160 TGA
1CAATTTTTGCA
TACAAGCAGT TGGGGAATTC AG
TCACT200 GTC
1AAAGTAGTG
AAAAAAGTGAT CGACGATTTA TT
TCAAA240 ACA
1ATGTAAATGA
ATTGTTTGGA CAGATGAAAC TT
GCAAA280 TGT TGTATGA 7, an expression vector comprising the DNA fragment according to any one of claims 4 to 6. 8. A transformant transformed with the expression vector according to claim 7. 9. The transformant according to claim 8, which is obtained by transforming a microorganism belonging to the genus Esherichia. 10. Transform biological cells or microorganisms with the expression vector incorporating the DNA fragment according to any one of claims 4 to 6, culture the obtained transformant, and extract B from the culture.
Ban characterized by collecting an I methylase
I Method for producing methylase. 11. Bacillus aneurynolyticus (Bacillus
saneurinolyticus), approximately 4,40
B with a molecular weight of 00 (by SDS-PAGE method)
an I methylase. 12. The Ban I methylase according to claim 11, which is a polypeptide having an amino acid sequence represented by the following formula III. Formula III
10 Met Lys Ile Lys Phe Val A
sp Leu Phe Ala

20 Gly Ile Gly Gly Ile Arg I
le Gly Phe Glu

30 Arg Ala Ala Lys Arg Phe G
lu Leu Glu Thr

40 Glu Cys Val Leu Ser Ser G
lu Ile Asp Lys

50 Lys Ala Cys Glu Thr Tyr A
la Leu Asn Phe

60 Lys Glu Glu Pro Gln Gly A
sp Ile His Glu

70 Ile Thr Ser Phe Pro Glu P
he Asp Phe Leu

80 Leu Ala Gly Phe Pro Cys G
ln Pro Phe Ser

90 Tyr Ala Gly Lys Gln Gln G
ly Phe Gly Asp

100 Thr Arg Gly Thr Leu Phe P
he Glu Val Glu

110Arg Val Leu Arg Asp A
sn Arg Pro Lys Ala

120 Phe Leu Leu Glu Asn Val A
rg Gly Leu Val

130 Thr His Asp Lys Gly Arg T
hr Leu Lys Thr

140 Ile Ile Ser Lys Leu Glu G
lu Leu Gly Tyr

150 Gly Val Ser Tyr Leu Leu L
eu Asn Ser Ser

160 Thr Phe Gly Val Pro Gln A
sn Arg Val Arg

170 Ile Tyr Ile Leu Gly Ile L
eu Gly Ser Lys

180 Pro Lys Leu Thr Leu Thr S
er Asn Val Gly

190 Ala Ala Asp Ser His Lys T
yr Lys Asn Glu

200 Gln Ile Ser Leu Phe Asp G
lu Ser Tyr Ala

210 Thr Val Lys Asp Ile Leu G
lu Asp Ser Pro

220 Ser Glu Lys Tyr Arg Cys S
er Asp Glu Phe

230 Ile Gly Gln Leu Ser Lys V
al Val Gly Asn

240 Asn Phe Glu Leu His G
ly Tyr Arg Leu

250 Ile Asp Tyr Arg Gly Gly A
sn Ser Ile His

260 Ser Trp Glu Leu Gly lle L
ys Gly Asp Cys

270 Thr Lys Glu Glu Ile Glu P
he Leu Asn Gln

280 Leu Ile Ala Asn Arg Arg L
ys Lys Ile Tyr

290 Gly Thr His Gln Asp Gly L
ys Ala Leu Thr

300 Leu Glu Gln Ile Arg Thr P
he Tyr Asn His

310 Asp Gln Leu Glu Val Ile I
Le Lys Ser Leu

320 Leu Gln Lys Gly Tyr Leu A
rg Glu Glu Glu

330 Asn Lys Phe Asn Pro Val C
ys Gly Asn Met

340 Ser Phe Glu Val Phe Lys P
he Leu Asp Pro

350 Asp Ser Ile Ser Ile His L
eu Thr Ser Ser

360 Asp Ala His Lys Leu Gly V
al Val Gln Asn

370 Asn Val Pro Arg Arg Ile T
hr Pro Arg Glu

380 Cys Ala Arg Leu Gln Gly P
he Pro Asp Asp

390 Phe Ile Leu His Ser Asn A
sp Asn Phe Ala

400Tyr Lys Gln Leu Gly A
sn Ser Val Thr Val

410 Lys Val Val Glu Lys Val I
Le Glu Asp Leu

420 Phe Gln Asn Asn Val Asn G
lu Leu Phe Gly Gln Met Ly
s Leu Ala Asn Val Val
JP1163662A 1989-06-28 1989-06-28 DNA encoding the BanI restriction endonuclease Expired - Lifetime JPH084510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1163662A JPH084510B2 (en) 1989-06-28 1989-06-28 DNA encoding the BanI restriction endonuclease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1163662A JPH084510B2 (en) 1989-06-28 1989-06-28 DNA encoding the BanI restriction endonuclease

Publications (2)

Publication Number Publication Date
JPH0330679A true JPH0330679A (en) 1991-02-08
JPH084510B2 JPH084510B2 (en) 1996-01-24

Family

ID=15778204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1163662A Expired - Lifetime JPH084510B2 (en) 1989-06-28 1989-06-28 DNA encoding the BanI restriction endonuclease

Country Status (1)

Country Link
JP (1) JPH084510B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321268A2 (en) * 1987-12-17 1989-06-21 New England Biolabs, Inc. Method for producing the BanI restriction endonuclease and methylase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321268A2 (en) * 1987-12-17 1989-06-21 New England Biolabs, Inc. Method for producing the BanI restriction endonuclease and methylase

Also Published As

Publication number Publication date
JPH084510B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
KR870000701B1 (en) The human growth hormone preparing method
JP2882775B2 (en) Human-glia-derived neurite factor
KR100316347B1 (en) Recombinant microorganisms expressing a fusion protein of Escherichia coli enterotoxin II signal peptide and fusion protein of human growth hormone and a method of producing human growth hormone using the same
NZ211666A (en) Pharmaceutical compositions comprising tumour necrosis factor and its production via recombinant techniques
Segarra et al. Molecular characterization of the Enterococcus faecalis cytolysin activator
EP0020147B1 (en) A dna transfer vector for human pre-growth hormone, a microorganism transformed thereby, and a method of cloning therefor
JP2000512496A (en) Human DNase I hyperreactive mutant
JP2007143566A (en) Over-expression and purification of truncated thermostable dna polymerase by protein fusion
JP2006068019A (en) EXPRESSION PLASMIDS REGULATED BY osmB PROMOTER
JPH01501840A (en) Fibroblast growth factor production
EP0297291B1 (en) Outer membrane protein f of pseudomonas aeruginosa
DE69531301T2 (en) DNA ENGINEERING FOR THE BACILLUS LICHENIFORMIS PWD-1 KERATINASE
Kinsella et al. Nucleotide sequence of a cDNA coding for mitochondrial fumarase from human liver
CN101497863B (en) Method for preparing N-terminated acetylated thymosin alpha 1 and special engineering bacteria therefor
JPS58501121A (en) Human calcitonin precursor polyprotein structural gene
Sanjanwala et al. DNA polymerase III gene of Bacillus subtilis.
JPS58201798A (en) Alpha-interferon gx-1
AU612865B2 (en) A modified human psti
JPH0330679A (en) Dna for coding ban i restriction endonuclease, ban i methylase and dna for coding ban i methylase
Oppermann et al. Isolation and structure of repressor-like proteins from the archaeon Sulfolobus solfataricus: Co-purification of RNase A with Sso7c
RU2153535C1 (en) Recombinant plasmid dna psa v27 encoding synthesis of soluble streptavidine from streptomyces avidinii and bacterial strain escherichia coli as producer of soluble streptavidine from streptomyces avidinii
WO1992019737A1 (en) Process for producing a monocyte chemotactic factor polypeptide and a strain for the production thereof
US5045471A (en) Cloned DNA for P450scc and expression thereof
RU2143492C1 (en) Recombinant plasmid encoding fused protein as precursor of human insulin (variants), strain of bacterium escherichia coli - producer of fused protein as precursor of human insulin (variants), method of human insulin preparing
Hayashi et al. Processing of Bacillus licheniformis penicillinases lacking a lipoprotein modification site in Escherichia coli