JPH0330668A - Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria - Google Patents

Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria

Info

Publication number
JPH0330668A
JPH0330668A JP16726689A JP16726689A JPH0330668A JP H0330668 A JPH0330668 A JP H0330668A JP 16726689 A JP16726689 A JP 16726689A JP 16726689 A JP16726689 A JP 16726689A JP H0330668 A JPH0330668 A JP H0330668A
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
yeast
solution
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16726689A
Other languages
Japanese (ja)
Inventor
Hiroaki Yamauchi
宏昭 山内
Tomomi Matsushita
松下 智美
Kayo Sadamori
定森 佳世
Yumiko Sato
由美子 佐藤
Minoru Ueda
実 上田
Michiyoshi Oshima
大島 理可
Kozo Oya
大宅 甲三
Kan Hirakawa
平川 完
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP16726689A priority Critical patent/JPH0330668A/en
Publication of JPH0330668A publication Critical patent/JPH0330668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To improve stabilization of preserving lactic acid bacteria and to obtain simply usable lactic acid bacteria having high activity and stability by blending and dispersing lactic acid bacteria into squeezed yeast. CONSTITUTION:For example, lactic acid bacteria of genus Lactobacillus or Leuconostoc are blended and dispersed into squeezed yeast such as baker's yeast or wine yeast belonging to the genus Saccharomyces cerevisiae to stabilize the lactic acid bacteria. 10<6>-10<11> lactic acid bacteria are blended and dispersed into 1g squeezed yeast to give a stabilized lactic acid bacteria-containing material. As another stabilization of preservation, 105-1011 lactic acid bacteria are blended with a solution containing 0.1-30wt.% protein substance at pH4.0-6.0 to give a stabilized solution containing lactic acid bacteria and further 5-70 pts.wt. of the stabilized solution containing lactic acid bacteria as an aqueous phase part is blended with 95-30 pts.wt.. fat and oil part and 0.1-0.5 pts.wt. emulsifying agent to give a stabilized lactic acid bacteria-containing fat and oil composition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は乳酸菌の保存安定化に関し、更に詳しくは、乳
酸菌を圧搾酵母中に混合分散させたり、タンパク性物質
含有保存溶液のpHを適当な値に調整することによって
乳酸菌の保存安定性を向上させる方法、及び上記方法に
よって保存安定性の向上した乳酸菌含有物に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to storage stabilization of lactic acid bacteria, and more specifically, to mixing and dispersing lactic acid bacteria in compressed yeast and adjusting the pH of a proteinaceous storage solution to an appropriate level. The present invention relates to a method for improving storage stability of lactic acid bacteria by adjusting the storage stability to a certain value, and to a lactic acid bacteria-containing product whose storage stability is improved by the above method.

〔従来技術と問題点〕[Prior art and problems]

現在、乳酸菌は、醗酵孔、ヨーグルト、チーズ、パン等
多くの食品の製造に使用されているが、般に乳酸菌の保
存安定性は、酵母等に比べかなり悪いと言われている。
Currently, lactic acid bacteria are used in the production of many foods such as fermentation tubes, yogurt, cheese, and bread, but it is generally said that the storage stability of lactic acid bacteria is considerably worse than that of yeast and the like.

このため、現在まで乳酸菌の保存安定性の向上について
多くの研究が行われてきている。例えば、−80°Cと
いう低温で凍結し保存する低温凍結保存法、凍結後に乾
燥する凍結乾燥法、適当なキャリヤーと菌を混合後低温
で乾燥させ乳酸菌粉末にする方法等がある。
For this reason, many studies have been conducted to date on improving the storage stability of lactic acid bacteria. For example, there are a low-temperature cryopreservation method in which the material is frozen and preserved at a low temperature of -80°C, a freeze-drying method in which it is dried after freezing, and a method in which bacteria are mixed with a suitable carrier and then dried at a low temperature to form lactic acid bacteria powder.

しかしながら、これまで検討されてきた上記の方法は、
確かに菌の保存安定性を非常に向上させる効果があるが
、これらの方法で得られた乳酸菌を使用して上記の乳酸
菌利用食品(特にパン)を製造する場合、層下に示す種
々の欠点がある。
However, the above methods that have been considered so far are
Although it is true that it has the effect of greatly improving the storage stability of bacteria, when producing the above-mentioned lactic acid bacteria-based foods (especially bread) using lactic acid bacteria obtained by these methods, there are various disadvantages shown below. There is.

■上記の乳酸菌の保存安定化法(以下、従来法と記す)
は、凍結・乾燥などの操作を行うため、この操作後にお
いても生存する菌は長期に安定であるが、この操作によ
りかなりの菌が死滅し有効に利用できる菌の歩留が悪い
■The above storage stabilization method for lactic acid bacteria (hereinafter referred to as the conventional method)
Because operations such as freezing and drying are performed, the bacteria that survive after this operation remain stable for a long time, but this operation kills a considerable number of bacteria, resulting in a poor yield of bacteria that can be used effectively.

■従来法で作製した乳酸菌を、スターター(パン生地へ
の添加も含む)として利用する場合、通常使用前に適当
な培地で菌の活性化のための前培養を行う必要があり、
その使用法が非常に煩雑である。
■When using lactic acid bacteria produced using conventional methods as a starter (including addition to bread dough), it is necessary to pre-culture the bacteria in an appropriate medium before use.
Its usage is very complicated.

■上記の乳酸菌を活性化せずにそのまま使用すると、菌
の活性が弱いのみならず活性にバラツキがあるため、安
定して高品質の製品を製造することが困難である。
■If the above-mentioned lactic acid bacteria are used as they are without activation, the activity of the bacteria is not only weak but also variable, making it difficult to stably produce high-quality products.

■従来法は凍結・乾燥等のコストがかかる操作を要する
ため、出来た乳酸菌製品の価格が高くなるのみならず、
凍結品、凍結乾燥品については低温で保存する必要があ
り、価格の安い食品の製造には上記の如くコストの高い
乳酸菌は使用し難い。
■Conventional methods require costly operations such as freezing and drying, which not only increases the price of the lactic acid bacteria products, but also
Frozen products and freeze-dried products need to be stored at low temperatures, and the expensive lactic acid bacteria described above are difficult to use in the production of inexpensive foods.

以上のような理由から、比較的製品の価格が安く、且つ
安定的に乳酸菌の活性発現が要求されるパン製造等にお
いて、乳酸菌の働きはかなり明らかになって来ているに
も拘らず、工業的規模での多量生産においては乳酸菌が
ほとんど応用されていないのが現状である。
For the reasons mentioned above, even though the function of lactic acid bacteria has become quite clear in bread manufacturing, etc., where the product price is relatively low and stable expression of lactic acid bacteria activity is required, industrial Currently, lactic acid bacteria are hardly used in mass production on a commercial scale.

(問題点を解決するための手段) 本発明者らは、かかる実情に鑑み、特にパン製造に利用
する乳酸菌の保存安定化という観点から上記問題点を解
消するために鋭意研究した結果、乳酸菌を圧搾酵母中に
混合分散させて保存したり、あるいは保護効果のあるタ
ンパク性物質を含み且つpHを適当な値に調整した溶液
中で乳酸菌を保存することによって、菌の保存安定性が
i躍的に向上し、このような乳酸菌含有物あるいは溶液
あるいはO/Wエマルジョン型油脂組成物をパン製造に
使用すると、添加後直ちに乳酸生成活性を安定的に示す
ことを見い出し本発明を完成した。
(Means for Solving the Problems) In view of the above circumstances, the present inventors conducted intensive research to solve the above problems, especially from the viewpoint of storage stabilization of lactic acid bacteria used in bread production. By storing the lactic acid bacteria by mixing and dispersing them in compressed yeast, or by storing the lactic acid bacteria in a solution containing a protective proteinaceous substance and with the pH adjusted to an appropriate value, the storage stability of the bacteria can be dramatically improved. The present invention has been completed based on the discovery that when such lactic acid bacteria-containing materials, solutions, or O/W emulsion-type oil and fat compositions are used in bread production, they stably exhibit lactic acid production activity immediately after addition.

即ち、本発明の第1は、乳酸菌を圧搾酵母中に混合分散
させることにより乳酸菌の保存安定性を向上させること
を特徴とする乳酸菌の保存安定化方法を、 本発明の第2は、pl+を4.0〜6.0に調整したタ
ンパク性物質含有溶液中に乳酸菌を存在させることを特
徴とする乳酸菌の保存安定化方法を、本発明の第3は、
圧搾酵母1g当たり乳酸菌を106〜1011個混合分
散させた乳酸菌含有物を、本発明の第4は、タンパク性
物質0.1〜30重量%、乳酸菌1011〜10”個/
ml含み、pHが4゜0〜6.0である乳酸菌含有溶液
を、本発明の第5は、水相部として請求項7記載の乳酸
菌含有溶液5−70重量部、油脂部95〜30重量部、
乳化剤0.1〜5重量部からなるO/Wエマルジョン型
油脂組成物をそれぞれ内容とするものである。
That is, the first aspect of the present invention is a method for storage stabilizing lactic acid bacteria, which is characterized by improving the storage stability of lactic acid bacteria by mixing and dispersing lactic acid bacteria in compressed yeast. A third aspect of the present invention provides a method for storage stabilizing lactic acid bacteria, which is characterized in that lactic acid bacteria are present in a proteinaceous substance-containing solution adjusted to a concentration of 4.0 to 6.0.
The fourth aspect of the present invention is a lactic acid bacteria-containing material in which 106 to 1011 lactic acid bacteria are mixed and dispersed per 1 g of compressed yeast, and the fourth aspect of the present invention is a product containing 0.1 to 30% by weight of proteinaceous substances and 1011 to 10'' lactic acid bacteria/
The fifth aspect of the present invention is a lactic acid bacteria-containing solution containing 5 to 70 parts by weight of the lactic acid bacteria-containing solution according to claim 7 as an aqueous phase part and 95 to 30 parts by weight of an oil and fat part. Department,
Each content is an O/W emulsion type oil and fat composition containing 0.1 to 5 parts by weight of an emulsifier.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

先ず、圧搾酵母中に乳酸菌を混合分散させる方法として
は、例えば市販パン酵母(65〜75%の水分を含む菌
体)を水に熔解したミルク状のイースト懸濁液、又はイ
ースト製造工程において培養工程後に菌体を分離洗浄し
たイーストミルクに培養液より分離洗浄した乳酸菌if
!III液を一定量添加し混合後、真空濾過する方法が
挙げられるが、上記方法以外であっても圧搾酵母中に均
一に乳酸菌を混合分散させる方法であれば特に限定はな
い。
First, as a method for mixing and dispersing lactic acid bacteria in compressed yeast, for example, commercially available baker's yeast (bacterial cells containing 65 to 75% water) is dissolved in water to form a milky yeast suspension, or cultured in the yeast manufacturing process. Lactic acid bacteria if separated and washed from the culture solution into yeast milk whose bacterial bodies were separated and washed after the process
! A method may be mentioned in which a certain amount of liquid III is added, mixed, and then vacuum filtered, but there is no particular limitation on methods other than the above, as long as the lactic acid bacteria are uniformly mixed and dispersed in the compressed yeast.

圧搾酵母中の乳酸菌の菌数は圧搾酵母1g当たり101
1〜10目個が好ましく、これより多くなると若干安定
性が低下する傾向がある。添加する乳酸菌としては、ラ
クトバチルス属、ロイコノストック属、ストレプトコツ
カス属、ペディオコソカス属に屈する菌株が挙げられる
が、本発明法によって保存安定性が特に向上する菌株は
ラクトバチルス属、ロイコノストック属の乳酸菌である
The number of lactic acid bacteria in compressed yeast is 101 per gram of compressed yeast.
The number is preferably 1 to 10, and if the number is larger than this, the stability tends to decrease slightly. Examples of the lactic acid bacteria to be added include strains belonging to the genera Lactobacillus, Leuconostoc, Streptococcus, and Pediocoscus, but the strains whose storage stability is particularly improved by the method of the present invention are Lactobacillus and Leuconostoc. It is a lactic acid bacterium of the genus.

これらの乳酸菌は1種又は2種以上混合して用いられる
These lactic acid bacteria may be used alone or in combination of two or more.

これらの乳酸菌は、各種保存機関にあるタイプカルチャ
ーまたは乳製品、果物、醸造食品、パン酵母製品、小麦
粉などの穀類等の天然物や食品から分離することも出来
るし、これらの菌の変異処理菌株、細胞融合株などの育
種株を用いることもできる。代表的な菌株としては、ラ
クトバチルス・ブルガリカス(Lactobacill
us bulgaricus) IFO13953、ラ
クトバチルス・カゼイ(Lactobacillusc
asei) ATCC393、ラクトバチルス・プレビ
ス(L″″actobacillus brsvis)
 IFO3960、ラクトバチルス・ファーメンタム(
Lactobacillus fermentum)I
FO3956、ロイコノストック・オイヤノス(Leu
co−nostoc  oenos) ATCC232
79、ロイコノストック9メツセンチロイデス(Leu
conostoc 5esenteroid−es) 
IAM 1046、ストレプトコッカス・ボビス(St
r−eptococcus bovis) IPO12
057、ストレプトコッカス・サーモフィラス(Str
aptococcus thermophi−Ius)
 IFO13957、ペデイオコッカス・ハロフィラス
(Pediococcus halophilus) 
JCM 2014などが挙げられる。
These lactic acid bacteria can be isolated from type cultures in various preservation institutions or from natural products and foods such as dairy products, fruits, brewed foods, baker's yeast products, and grains such as flour, or from mutated strains of these bacteria. Breeding strains such as cell fusion strains and the like can also be used. A typical strain is Lactobacillus bulgaricus.
us bulgaricus) IFO13953, Lactobacillus casei (Lactobacillus casei)
asei) ATCC393, Lactobacillus brevis (L″″actobacillus brsvis)
IFO3960, Lactobacillus fermentum (
Lactobacillus fermentum) I
FO3956, Leuconostoc Oianus (Leu
co-nostoc oenos) ATCC232
79, Leuconostoc 9 methucentiroides (Leu
conostoc 5esenteroid-es)
IAM 1046, Streptococcus bovis (St
r-eptococcus bovis) IPO12
057, Streptococcus thermophilus (Str
aptococcus thermophi-Ius)
IFO13957, Pediococcus halophilus
Examples include JCM 2014.

圧搾酵母として使用する酵母の種類としては、パン酵母
、酒酵母、ビール酵母、ワイン酵母などのサン力ロミセ
ス・セレビシェに属する酵母であるが、人体に有害でな
く、生地中で醗酵力のある酵母であれば特に限定はない
Types of yeast used as compressed yeast include yeast belonging to the genus Romyces cerevisiae, such as baker's yeast, sake yeast, beer yeast, and wine yeast, but yeast that is not harmful to the human body and has fermentation power in the dough If so, there are no particular limitations.

圧搾酵母中に乳酸菌を混合分散させることによって乳酸
菌の安定性が向上する理由は明らかではないが、酵母と
乳酸菌が共存することによって酵母により何らかの安定
化効果が発揮されるものと考えられる。この圧搾酵母中
での乳酸菌の安定性は、乳酸菌を添加するイースト懸濁
液のpHを後述するpH!ll整物質で4.0〜6.0
に調整したり、イースト溶解に使用する水の代わりに後
述するpH調整タンパク性物質含有乳酸菌溶液を使用す
ることにより、これらの相乗効果によって更に向上する
The reason why the stability of lactic acid bacteria is improved by mixing and dispersing lactic acid bacteria in compressed yeast is not clear, but it is thought that the coexistence of yeast and lactic acid bacteria causes the yeast to exert some kind of stabilizing effect. The stability of the lactic acid bacteria in this compressed yeast is determined by the pH of the yeast suspension to which the lactic acid bacteria are added. 4.0-6.0 in ll regulation substance
The synergistic effect can be further improved by adjusting the pH of the yeast or by using a lactic acid bacteria solution containing a pH-adjusting proteinaceous substance, which will be described later, in place of the water used for dissolving the yeast.

保存安定性の優れた乳酸菌溶液は、乳酸菌保護効果の期
待されるタンパク性物質、例えば大豆タンパク、乳タン
パク、血液プラズマタンパク、小麦タンパク、コーンタ
ンパク、卵タンパク等の天然物、植物タンパクまたはこ
れらの加水分解物または酵素分解物の1種または2種以
上を適当量(0,1〜30重量%)含有する溶液のpH
を4.0〜6.0、好ましくは4.25〜5.5に調整
した溶液に乳酸菌を添加することによって得られる。保
存に最適なpH値は乳酸菌の種類、保存条件等によって
若干異なるが、上記pH範囲に調整すれば菌株の安定性
はかなり向上する。p[ljl整によって安定性が向上
する理由は不明であるが、生育に最適な中性pH値より
若干低いpit値で保存することによって、菌の活性が
適当なレベルに抑えられる一種の冬眠状態に置かれるこ
とによると考えられる。
A lactic acid bacteria solution with excellent storage stability is made of proteinaceous substances expected to have a protective effect on lactic acid bacteria, such as natural products such as soy protein, milk protein, blood plasma protein, wheat protein, corn protein, egg protein, vegetable proteins, or these. pH of a solution containing an appropriate amount (0.1 to 30% by weight) of one or more hydrolysates or enzymatically decomposed products
It can be obtained by adding lactic acid bacteria to a solution adjusted to 4.0 to 6.0, preferably 4.25 to 5.5. The optimal pH value for storage varies slightly depending on the type of lactic acid bacteria, storage conditions, etc., but if the pH is adjusted to the above range, the stability of the strain will be considerably improved. The reason why stability is improved by adjusting p[ljl is unknown, but by storing the bacteria at a slightly lower pit value than the neutral pH value that is optimal for growth, it is a kind of hibernation state in which the activity of the bacteria is suppressed to an appropriate level. This is thought to be due to the fact that it is placed in

添加する乳酸菌の濃度は1011〜101個/dが適当
であり、あまり少なくても多(でも安定性が悪くなる(
頃向がある。
The appropriate concentration of lactic acid bacteria to be added is 1011 to 101 cells/d.
There is a time.

溶液のpH調整のための物質としては例えば酸性物質と
しては、クエン酸、コハク酸、リンゴ酸、グルコン酸、
酒石酸、酢酸、フマル酸、乳酸などの有機酸類、アスパ
ラギン酸、グルタミン酸などのアミノ酸類、各種リン酸
塩、リン酸、塩酸、各種炭酸塩、炭酸等の無機の塩や酸
、リンゴ果汁、ミカン果汁等の天然物質が挙げられ、一
方、アルカリ性物質としては、水酸化ナトリウム、水酸
化カルシウムなどの無機のアルカリ性物質が挙げられる
が、乳酸菌の保存に悪影響がなく食品添加物として許可
されている物質であればよく、特に限定はない、使用に
あたっては、保存する乳酸菌が資化しない物質をなるべ
く使用し、酸性物質とアルカリ性物質を適当量使用して
、保存溶液に緩衝作用をもたせるようにすると一層効果
的である。
Substances for adjusting the pH of the solution include, for example, acidic substances such as citric acid, succinic acid, malic acid, gluconic acid,
Organic acids such as tartaric acid, acetic acid, fumaric acid, and lactic acid, amino acids such as aspartic acid and glutamic acid, various phosphates, inorganic salts and acids such as phosphoric acid, hydrochloric acid, various carbonates, and carbonic acid, apple juice, tangerine juice On the other hand, examples of alkaline substances include inorganic alkaline substances such as sodium hydroxide and calcium hydroxide, but these substances have no negative effect on the preservation of lactic acid bacteria and are permitted as food additives. There is no particular limitation, and it is only necessary to use a substance that is not assimilated by the lactic acid bacteria to be stored.It is even more effective if you use appropriate amounts of acidic and alkaline substances to give the storage solution a buffering effect. It is true.

対象となる乳酸菌は、圧搾酵母中に混合分散させるもの
と同様であり、タイプカルチャー、天然からの分離菌株
、変異株、細胞融合株等のいずれでもよいが、上記方法
によって特に保存安定性が向上するのはラクトバチルス
属、ロイコノストック属の菌株である。溶液での乳酸菌
の保存においても、理由は不明であるが、溶液中に圧搾
酵母を添加することによってさらに保存性が向上する。
The target lactic acid bacteria are the same as those mixed and dispersed in compressed yeast, and may be type cultures, naturally isolated strains, mutant strains, cell fusion strains, etc., but the above method particularly improves storage stability. The bacteria that do this are strains of the genus Lactobacillus and Leuconostoc. When preserving lactic acid bacteria in a solution, the preservation property is further improved by adding compressed yeast to the solution, although the reason is unknown.

また、別の形態として、p)IAII整済のタンパク性
物質含有乳酸菌?8液を水相部としたO/Wエマルジョ
ン型油脂組成物として保存することもできる。
In addition, as another form, p) IAII-treated lactic acid bacteria containing proteinaceous substances? It can also be stored as an O/W emulsion type oil and fat composition in which the 8 liquid is used as an aqueous phase.

この場合の乳化油脂組成物としては、水相部〔105〜
10”個/成の乳酸菌I8液(pH調整済)]55〜7
0重量部油脂部95〜30重量部、乳化剤0.1〜5重
量部からなる組成物が挙げられる。また、上記の油脂組
成物として乳酸菌を保存する場合、油脂組成物の水相部
のpHをあらかじめ調整したものに乳酸菌を添加しても
良い、このように油脂組成物中で乳酸菌を保存する場合
にも、水相部に一部圧搾酵母を添加することによってさ
らに保存性が向上する。
In this case, the emulsified oil and fat composition includes the aqueous phase [105-
10” lactic acid bacteria I8 solution (pH adjusted)] 55-7
A composition consisting of 0 parts by weight, 95 to 30 parts by weight of fats and oils, and 0.1 to 5 parts by weight of an emulsifier is exemplified. In addition, when storing lactic acid bacteria as the above-mentioned oil and fat composition, the lactic acid bacteria may be added to the aqueous phase of the oil and fat composition whose pH has been adjusted in advance. Also, by adding some compressed yeast to the aqueous phase, the storage stability is further improved.

本発明において、乳酸菌の保存安定性は一定温度で保存
した場合の経時での菌の生菌率、グルコースからの乳酸
生育活性、生地中での乳酸生育活性で評価した。
In the present invention, the storage stability of lactic acid bacteria was evaluated by the viability of bacteria over time when stored at a constant temperature, lactic acid growth activity from glucose, and lactic acid growth activity in dough.

生菌率の測定は、保存経時で乳酸菌溶液、乳酸菌含有圧
搾酵母(以下、乳酸菌イーストと記す)の一部を取り生
理食塩水で適当に希釈後、その−部を乳酸菌検出用のB
CP培地CBCP力ロプレートカウントアガール、日永
製薬製)に接種し平面培養を行い、出現したコロニーを
カウントすることによって行った。尚、乳酸菌イースト
の場合は、酵母の生育1■制のため培地にシクロへキシ
ミド100pp−を添加した。
To measure the viable bacteria rate, take a portion of the lactic acid bacteria solution and compressed yeast containing lactic acid bacteria (hereinafter referred to as lactic acid bacteria yeast) after storage, dilute it appropriately with physiological saline, and add a portion of it to B for lactic acid bacteria detection.
This was carried out by inoculating the cells into a CP medium (CBCP Cycloplate Count Agar (manufactured by Hinaga Pharmaceutical Co., Ltd.)), performing flat culture, and counting the colonies that appeared. In the case of lactic acid bacteria yeast, 100 pp of cycloheximide was added to the medium to control yeast growth.

グルコースからの乳酸生成活性(以下、GLF活性と記
す)の測定は、1重量%グルコース0.2Mリン酸緩衝
液(pit 5.0 )に上記の乳酸菌溶液の一定量を
添加し、30°Cで一定時間反応後の乳酸の生成量を高
速液体クロマトグラフィー(品性製作所製、LC−3A
)で測定して行った。
To measure lactic acid production activity from glucose (hereinafter referred to as GLF activity), a certain amount of the above lactic acid bacteria solution was added to 1% glucose in 0.2M phosphate buffer (PIT 5.0), and the mixture was incubated at 30°C. After a certain period of reaction, the amount of lactic acid produced was measured using high-performance liquid chromatography (LC-3A manufactured by Kinsei Seisakusho).
).

生地中での乳酸生成活性の測定は、上記乳酸菌溶液、乳
酸菌イーストを一部添加して醗酵1.5hrのストレー
ト法製パン実験(ホイロ醗酵まで)を行い、ホイロ終了
時の生地中の乳酸量を上記の高速液体クロマトグラフィ
ーで測定することによって行った。尚、生地中の乳酸の
定量は生11!!20gにloomの水を添加しホモジ
ナイズした後、遠心分離し、得られた上澄の乳酸量を測
定することによって行った。製パン操作、基本配合を以
下に示す。
To measure the lactic acid production activity in the dough, we added a portion of the above lactic acid bacteria solution and lactic acid bacteria yeast, performed a 1.5-hour fermentation straight bread making experiment (up to fermentation), and measured the amount of lactic acid in the dough at the end of the fermentation. This was carried out by measuring with the high performance liquid chromatography described above. In addition, the quantitative determination of lactic acid in the dough is raw 11! ! The test was carried out by adding room water to 20 g, homogenizing it, centrifuging it, and measuring the amount of lactic acid in the obtained supernatant. The bread making operation and basic recipe are shown below.

(生地配合) 小麦粉(強力粉)    100 重量部砂糖    
        5  〃食塩           
 2 ショートニング       5 イースト(圧搾酵母)2.2 イーストフード        O1l〃脱脂粉乳  
        2 水                 70(製パン操
作) ショートニング以外の原ネ1を投入し、低速1分、中速
1分、高速5分間混捏し、ショートニングを加え、さら
に低速1分、中速1分、高速5分間混捏し、27゛Cに
捏上げ、30’Cで1.5 hrll酵し、続いて分割
、丸目を行い、その後ヘンチタイムを20分取りモルダ
ーによる成形を行う。次に、38°C1湿度80%で5
0分ホイロ醗酵を行う。尚、乳酸菌溶液、乳酸菌イース
トを使用した場合、それぞれその添加量だけ水、イース
トの量を基本配合から減じて製パン実験を行った。
(Dough mixture) Wheat flour (strong flour) 100 parts by weight Sugar
5〃Table salt
2 Shortening 5 Yeast (pressed yeast) 2.2 Yeast food O1l Skimmed milk powder
2 Water 70 (Bread making operation) Add raw ingredients 1 other than shortening, knead on low speed for 1 minute, medium speed for 1 minute, and high speed for 5 minutes, add shortening, and then knead for another 1 minute on low speed, 1 minute on medium speed, and 5 minutes on high speed. The mixture is kneaded, kneaded at 27°C, fermented at 30°C for 1.5 hours, then divided and rounded, and then molded using a molder after a 20-minute hench time. Next, at 38°C and 80% humidity,
Perform 0 minute fermentation. In addition, when lactic acid bacteria solution and lactic acid bacteria yeast were used, the bread-making experiment was conducted by subtracting the amounts of water and yeast from the basic formulation by the respective added amounts.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳しく説明するが、本
発明がこれらに限定されるものでないことは勿論でる。
Hereinafter, the present invention will be explained in more detail with reference to examples, but it goes without saying that the present invention is not limited to these examples.

実施例1 乳酸菌を圧搾酵母中で保存した場合に保存安定性が向上
することを明らかにするため、ラクトバチルス・カゼイ
(ATCC393) 、ロイコノストック・メツセンチ
ロイデス(IAM1046)、ストレプトコッカス・ボ
ビス(IFO12057)、ペデイオコッカス・ハロフ
ィラス(J CM2O14)の4株について殺菌水中と
圧搾イースト中での乳酸菌の保存安定性の比較を行った
。尚、以下、殺菌水中に乳酸菌を懸濁した液を乳酸菌液
と略す。乳酸菌イーストの調製法を以下に示す。
Example 1 In order to clarify that storage stability is improved when lactic acid bacteria are stored in compressed yeast, Lactobacillus casei (ATCC393), Leuconostoc metsucentiloides (IAM1046), Streptococcus bovis ( IFO12057) and Pedeiococcus halophilus (JCM2O14), the storage stability of lactic acid bacteria in sterilized water and compressed yeast was compared. Note that hereinafter, a liquid obtained by suspending lactic acid bacteria in sterilized water will be abbreviated as lactic acid bacteria liquid. The method for preparing lactic acid yeast is shown below.

乳酸菌用のMR3培地(M、R,S、AGAR培地 イ
ギリス0XID■製)で上記乳酸菌を24時間培養し、
それを4縮洗浄しく洗浄は殺菌水で実施)、乳酸菌濃縮
液(菌濃度約1.0X101゜個/d)を得た。乳酸菌
液の場合はこの:農縮液を殺菌水に一定量添加して31
1製し、乳酸菌イーストの場合は、市販の生イース)7
0gを殺菌水30dに溶解し、この液に上記濃縮液5d
を添jm L 十分に混合後、濾紙をひいたメンチェで
真空濾過することによって調製し、菌数1.0〜2.0
XIO’個/乳酸菌イースl−gの乳酸菌イーストを得
た。
The above lactic acid bacteria were cultured for 24 hours in MR3 medium for lactic acid bacteria (M, R, S, AGAR medium manufactured by OXID■ in the UK),
This was then washed with sterilized water) to obtain a concentrated lactic acid bacteria solution (bacteria concentration of approximately 1.0×101°/d). In the case of lactic acid bacteria solution: Add a certain amount of agricultural shrinkage solution to sterilized water and use 31
If using lactic acid yeast, use commercially available raw yeast)7
Dissolve 0 g in 30 d of sterilized water, and add 5 d of the above concentrated solution to this solution.
After mixing thoroughly, prepare by vacuum filtration through a mensier with filter paper, and reduce the number of bacteria to 1.0 to 2.0.
XIO'/g of lactic acid bacteria yeast was obtained.

乳酸菌の保存安定性の評価は、5°Cで保存した場合の
経時での生菌率、生地中での乳酸生成活性で行った。
The storage stability of lactic acid bacteria was evaluated based on the survival rate over time when stored at 5°C and the lactic acid production activity in the dough.

第1図に、上記4菌株の乳酸菌液、乳酸菌イーストにつ
いて、調製直後を100%とした場合の生菌率を示す。
FIG. 1 shows the viability of the four strains of lactic acid bacteria and lactic acid yeast, with the value immediately after preparation taken as 100%.

また、第2図に生地中での乳酸生成活性(ホイロ後の乳
酸生成量)を調製直後の値を100%として示す。第1
図及び第2図より明らかな如く、乳酸菌イーストの形態
で乳酸菌を保存する場合は、乳酸菌液で保存する場合に
比べてその安定性が著しく向上し、特にラクトバチルス
・カゼイ(ATCC393) 、ロイコノストック・メ
ツセンチロイデス(IAM1046)両画の保存安定性
が顕著に向上した。
In addition, FIG. 2 shows the lactic acid production activity in the dough (the amount of lactic acid produced after fermentation), with the value immediately after preparation taken as 100%. 1st
As is clear from the figure and FIG. 2, when lactic acid bacteria are stored in the form of lactic acid yeast, their stability is significantly improved compared to when they are stored in lactic acid bacteria solution, and in particular, Lactobacillus casei (ATCC393), Leuconobacterium spp. The storage stability of both stock metsucentroides (IAM1046) images was significantly improved.

実施例2 実施例1で調製したラクトバチルス・カゼイ(ATCC
393) 、ロイコノストック・メジセンチロイデス(
lAM1046)の乳酸菌液、乳酸菌イーストについて
保存温度10°Cとした以外は実施例1と同様の保存安
定性の実験を行った。
Example 2 Lactobacillus casei (ATCC) prepared in Example 1
393), Leuconostoc mesicenthroides (
A storage stability experiment was conducted in the same manner as in Example 1, except that the storage temperature was 10°C for the lactic acid bacteria solution and lactic acid bacteria yeast (lAM1046).

その結果を第3図、第4図に示す。The results are shown in FIGS. 3 and 4.

これらの図により、10°C保存では全体に乳酸菌の安
定性はかなり低下するが、乳酸菌イースト中の乳酸菌の
安定性は乳酸菌液に比べてかなり良いことがわかる。
These figures show that although the overall stability of lactic acid bacteria decreases considerably when stored at 10°C, the stability of lactic acid bacteria in lactic acid bacteria yeast is considerably better than that in lactic acid bacteria liquid.

実施例3 乳酸菌の保存安定性がタンパク性物質含有保存溶液のp
Htl整によって向上することを明らかにするため、実
施例1と同様に調製したラクトバチルス・カゼイ(AT
CC393)菌、ロイコノストック・メツセンチロイデ
ス(IAM1046)菌の濃縮洗浄菌液を種々のpt+
に調整した10重量%脱脂乳培地に添加し、得られた乳
酸菌液の5°Cの保存安定性を乳酸菌液と比較し、生菌
率、GLF活性を評価した。尚、脱脂乳培地のρ11調
整は食添用DL−乳酸と4N水酸化ナトリウムを使用し
て行った。ラクトバチルス・カゼイ(ATCC393)
菌の結果を第5図、第6図に、ロイコノストック・メン
センチロイデス(IAM1046)菌の結果を第7図、
第8図に示す、これらの図から、菌株によって若干差異
があるが、両画ともpH4,0〜pH6,0の範囲に保
存溶液のpHを調整することによって保存安定性が向上
し、pH4,25〜pH5,5の範囲ではさらに向上す
ることがわかる。
Example 3 Storage stability of lactic acid bacteria
In order to clarify that Htl adjustment improves the effect, Lactobacillus casei (AT
CC393) and Leuconostoc metsucentiloides (IAM1046) were mixed into various pt+
The storage stability of the obtained lactic acid bacteria solution at 5°C was compared with that of the lactic acid bacteria solution, and the viability and GLF activity were evaluated. The ρ11 of the skim milk medium was adjusted using DL-lactic acid for food additives and 4N sodium hydroxide. Lactobacillus casei (ATCC393)
The results for bacteria are shown in Figures 5 and 6, and the results for Leuconostoc mencentiloides (IAM1046) are shown in Figure 7.
These figures shown in Figure 8 show that, although there are slight differences depending on the strain, storage stability is improved by adjusting the pH of the storage solution in the range of pH 4.0 to pH 6.0 in both images; It can be seen that the pH value is further improved in the range of pH 25 to 5.5.

実施例4 10重量%脱脂乳培地の代わりに小麦タンパクを含有す
る小麦粉上澄液を使用した以外は実施例3と同様にして
、上記2菌株について5°Cでの保存安定性の実験を行
った。尚、ここで小麦粉上澄液とは、市販の小麦粉10
gにl OOdの水を添加後、家庭用のミキサで5分ミ
キシングした液を3000rp曽で遠心分離して得られ
る液のことである。ラクトバチルス・カゼイ (ATC
C393)菌の結果を第9図、第10図に、ロイコノス
トック・メツセンチロイデス(IAM1046)菌の結
果を第11図、第12図に示す、これらの図より、両画
ともpH4,0〜pH6,0の範囲に保存溶液のpBを
調整することによって保存安定性が非常に向上すること
がわかる。
Example 4 A storage stability experiment at 5°C was conducted on the above two strains in the same manner as in Example 3, except that a wheat flour supernatant containing wheat protein was used instead of the 10% by weight skim milk medium. Ta. In addition, the wheat flour supernatant liquid here refers to commercially available wheat flour 10
This is a liquid obtained by adding lOOd of water to g and mixing the mixture for 5 minutes using a household mixer, followed by centrifugation at 3000 rpm. Lactobacillus casei (ATC
C393) bacteria are shown in Figures 9 and 10, and the results for Leuconostoc metsucentiloides (IAM1046) bacteria are shown in Figures 11 and 12.From these figures, both images show pH 4, It can be seen that storage stability is greatly improved by adjusting the pB of the storage solution to a range of 0 to pH 6.0.

実施例5 実施例3で調製した脱脂乳培地乳酸菌液(pH5゜0)
(以下、脱脂乳酸菌液と記す)、実施例4で調製した小
麦上澄乳酸菌液(all 5.0 )について乳酸菌の
安定性を、生地中での乳酸生成活性で評価した。尚、比
較のため、乳酸菌液pl+無調整の脱脂乳培地乳酸菌液
(all6.8)についても同様に評価した。第13図
にラクトバチルス・カゼイ(ATCC393)菌につい
ての結°果を示し、第14図にロイコノストック・メツ
センチロイデス(IAM1046)菌についての結果を
示す。これらの図から、両画ともタンパク性物質含有の
p)!無調整の脱脂乳培地中において安定性はかなり向
上し、さらにpHを調整した脱脂乳培地、小麦上澄液で
保存することにより、保存安定性が一層向上することが
わかる。
Example 5 Skim milk culture medium lactic acid bacteria solution prepared in Example 3 (pH 5°0)
(hereinafter referred to as defatted lactic acid bacteria solution), the wheat supernatant lactic acid bacteria solution (all 5.0) prepared in Example 4 was evaluated for the stability of the lactic acid bacteria based on the lactic acid production activity in the dough. For comparison, lactic acid bacteria solution pl+non-adjusted skim milk medium lactic acid bacteria solution (all6.8) was also evaluated in the same way. FIG. 13 shows the results for Lactobacillus casei (ATCC393), and FIG. 14 shows the results for Leuconostoc metsucentroides (IAM1046). From these figures, both images contain p)! It can be seen that the stability is considerably improved in an unadjusted skim milk medium, and that the storage stability is further improved by storing in a pH-adjusted skim milk medium or wheat supernatant.

実施例6 ホエータンパクを含有する耐酸性のO/W型油脂組成物
(tl淵化学■ FXOO5)の水相のpl+をクエン
酸と水酸化ナトリウムでpH5,0に調整した乳化油脂
を乳酸菌の保存溶液として使用する以外は実施例5と同
様の実験を行った。尚、比較のため、乳酸菌液、ρ■無
調整の上記油脂組成物中(pH17,0)での乳酸菌の
安定性についても評価した。第15図にラクトバチルス
・カゼイ(ATCC393)菌の結果を、第16図にロ
イコノストンク・メツセンチロイデス(IAM1046
)Wについての結果を示す、これらの図により、タンパ
ク性物質含有乳化油脂中においても、水相のpHを適当
な値に副節すれば乳酸菌の保存安定性が非常に向上する
ことがわかる。
Example 6 Preservation of lactic acid bacteria using emulsified oil prepared by adjusting the aqueous phase PL+ of an acid-resistant O/W type oil composition containing whey protein (TL Fuchi Kagaku FXOO5) to pH 5.0 with citric acid and sodium hydroxide. An experiment similar to Example 5 was conducted except that the solution was used as a solution. For comparison, the stability of the lactic acid bacteria in the lactic acid bacteria solution and the above oil and fat composition without ρ■ adjustment (pH 17,0) was also evaluated. Figure 15 shows the results for Lactobacillus casei (ATCC393), and Figure 16 shows the results for Leuconostonk metsucentroides (IAM1046).
) From these figures showing the results for W, it can be seen that even in emulsified fats and oils containing proteinaceous substances, the storage stability of lactic acid bacteria can be greatly improved if the pH of the aqueous phase is adjusted to an appropriate value.

実施例7 乳酸菌イーストの作製において、実施例4で調製したp
H5,0の小麦上澄乳酸菌液(ラクトバチルス・カゼイ
(ATCC393))を使用すること以外は実施例1と
同様にして乳酸菌イーストを作製し、10°Cでの保存
安定性を、生地中での乳酸生成活性で評価した。比較の
ために、実施例1の乳酸菌を使用して作製した乳酸菌イ
ーストについても同様に評価した。その結果を第17図
に示す。
Example 7 In the production of lactic acid bacteria yeast, p prepared in Example 4
Lactic acid yeast was prepared in the same manner as in Example 1 except that H5.0 wheat supernatant lactic acid bacteria solution (Lactobacillus casei (ATCC393)) was used, and the storage stability at 10°C was tested in the dough. The lactic acid production activity was evaluated. For comparison, lactic acid bacteria yeast produced using the lactic acid bacteria of Example 1 was also evaluated in the same manner. The results are shown in FIG.

同図より、pH414整した小麦上澄乳酸菌を使用する
ことにより、乳酸菌イースト中の乳酸菌の安定性が実施
例1の乳酸菌イーストに比べさらに向上することがわか
る。これは酵母による保護効果とpH調整タンパク性物
質溶液の安定化効果との相乗作用によるものと考えられ
る。
From the figure, it can be seen that by using the wheat supernatant lactic acid bacteria whose pH has been adjusted to 414, the stability of the lactic acid bacteria in the lactic acid bacteria yeast is further improved compared to the lactic acid bacteria yeast of Example 1. This is considered to be due to the synergistic effect of the protective effect of the yeast and the stabilizing effect of the pH-adjusted protein substance solution.

実施例8 乳酸菌の凍結乾燥品と本発明の1つの形態である乳酸菌
含有溶液の生地中での乳酸生成活性の比較をするために
、実施例3で調製したpH5,0の脱脂乳酸菌液(ラク
トバチルス・カゼイ(ATCC393))と、この液を
凍結乾燥した凍結乾燥品を用い、乳酸菌数(生菌数)が
同一になるようにパン生地に添加し、生地中での乳酸生
成活性を測定した。その結果、添加菌数を同しにしたに
もかかわらず凍結乾燥品は菌の活性化に時間ががかり脱
脂乳酸菌液に比ベホイロ後の乳酸生成量は5分のl程度
であった。このことから、パン製造への乳酸菌の利用の
ように、乳酸菌添加後安定に且つ直ちに活性の発渾が要
求される用途に本発明の保存安定性の良い乳酸菌含有物
、含有溶液は非常に有効であると考えられる。尚、乳酸
菌液の凍結乾燥は、上記脱脂乳酸菌液をバイセルに約5
mi入れ、−20’Cで凍結させ(約2時間)、その後
約24時間真空吸引することによって行った。
Example 8 In order to compare the lactic acid production activity in dough of a freeze-dried product of lactic acid bacteria and a solution containing lactic acid bacteria, which is one form of the present invention, a defatted lactic acid bacteria solution (pH 5.0) prepared in Example 3 was used. Bacillus casei (ATCC393)) and a freeze-dried product obtained by freeze-drying this solution were added to bread dough so that the number of lactic acid bacteria (viable bacteria) was the same, and the lactic acid production activity in the dough was measured. As a result, although the number of bacteria added was the same, it took longer for the bacteria to activate in the freeze-dried product, and the amount of lactic acid produced after boiling was about 5 times lower than in the defatted lactic acid bacteria solution. For this reason, the storage-stable lactic acid bacteria-containing products and solutions of the present invention are extremely effective for applications that require stable and immediate activity development after addition of lactic acid bacteria, such as the use of lactic acid bacteria in bread production. It is thought that. In addition, for freeze-drying the lactic acid bacteria solution, the above-mentioned defatted lactic acid bacteria solution is placed in a bicelle for approximately 50 minutes.
This was done by freezing the cells at -20'C (about 2 hours) and then vacuuming them for about 24 hours.

〔作用・効果〕[Action/Effect]

叙上の通り、本発明によれば、従来保存安定性の悪いと
いわれていた乳酸菌を圧搾酵母中に混合分散したり、適
当な範囲にpt+を調整したタンパク性物質含有溶液中
で保存することによってその保存安定性を飛躍的に向上
させることができる。そして、また、このような保存安
定性の向上した乳酸菌含有物、溶液又は油脂組成物を例
えばパン製造等に使用すると、従来の凍結乾燥乳酸菌、
凍結乳酸菌のように使用する前に前培養して活性化する
必要もなく生地中で安定的に高活性で乳酸を生成するた
め、使用が筒便である上に菌の添加量が少量ですむとい
う優れた特徴を有し、その有用性は頗る大である。また
、本発明の乳酸菌含有物、溶液又は油脂組成物は上記の
優れた性質から、パン製造以外においても極めて有用で
あることは言うまでもない。
As mentioned above, according to the present invention, lactic acid bacteria, which were conventionally said to have poor storage stability, can be mixed and dispersed in compressed yeast or stored in a proteinaceous substance-containing solution with pt+ adjusted to an appropriate range. Therefore, its storage stability can be dramatically improved. Furthermore, when such lactic acid bacteria-containing materials, solutions, or oil and fat compositions with improved storage stability are used, for example, in bread production, conventional freeze-dried lactic acid bacteria,
Unlike frozen lactic acid bacteria, it does not need to be pre-cultured and activated before use, and it stably produces highly active lactic acid in the dough, making it easy to use and requiring only a small amount of bacteria to be added. It has these excellent characteristics and is extremely useful. Furthermore, it goes without saying that the lactic acid bacteria-containing material, solution, or oil/fat composition of the present invention is extremely useful for purposes other than bread production due to the above-mentioned excellent properties.

【図面の簡単な説明】 第1図乃至第17図は、それぞれ実施例の結果を示すグ
ラフである。 第 5 図 研春PH橿 第 図 150ヒ ト 第6 図 第8図 0−イ奪irI日 杯L 1501− ト 第9図 第11図 x−n414日 50r 第10図 第12図 0 □イ→トイ’+’fB × □ノ号ヂ)114日 −IL挾生八へ株 (’/、) (薮徘G位(。7゜。 4L籠菌生代奉れ (’/、) +lL区生八シへ桟 (’/、)
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 17 are graphs showing the results of Examples. 5th figure spring PH 150 people 6th figure 8 0-I take away ir I day cup L 1501- 9th figure 11 +'fB pier ('/,)

Claims (1)

【特許請求の範囲】 1、乳酸菌を圧搾酵母中に混合分散させることにより乳
酸菌の保存安定性を向上させることを特徴とする乳酸菌
の保存安定化方法。 2、圧搾酵母がサッカロミセス・セレビシエに属する酵
母である請求項1記載の方法。 3、圧搾酵母がパン酵母、酒酵母、ビール酵母及びワイ
ン酵母から選択される1種又は2種以上である請求項2
記載の方法。 4、乳酸菌がラクトバチルス属及びロイコノストック属
に属する菌株から選択される1種又は2種以上である請
求項1記載の方法。 5、pHを4.0〜6.0に調整したタンパク性物質含
有溶液中に乳酸菌を存在させることを特徴とする乳酸菌
の保存安定化方法。 6、圧搾酵母1g当たり乳酸菌を10^6〜10^1^
1個混合分散させた乳酸菌含有物。 7、タンパク性物質0.1〜30重量%、乳酸菌10^
5〜10^1^1個/ml含み、pHが4.0〜6.0
である乳酸菌含有溶液。 8、水相部として請求項7記載の乳酸菌含有溶液5−7
0重量部、油脂部95〜30重量部、乳化剤0.1〜5
重量部からなるO/Wエマルジョン型油脂組成物。
[Scope of Claims] 1. A method for storage stabilizing lactic acid bacteria, which comprises improving the storage stability of lactic acid bacteria by mixing and dispersing lactic acid bacteria in compressed yeast. 2. The method according to claim 1, wherein the pressed yeast is yeast belonging to Saccharomyces cerevisiae. 3. Claim 2, wherein the pressed yeast is one or more selected from baker's yeast, sake yeast, beer yeast, and wine yeast.
Method described. 4. The method according to claim 1, wherein the lactic acid bacteria are one or more selected from strains belonging to the genus Lactobacillus and the genus Leuconostoc. 5. A method for storage stabilizing lactic acid bacteria, which comprises allowing lactic acid bacteria to exist in a proteinaceous substance-containing solution whose pH is adjusted to 4.0 to 6.0. 6. 10^6-10^1^ of lactic acid bacteria per 1g of compressed yeast
A substance containing lactic acid bacteria mixed and dispersed. 7. Protein substances 0.1-30% by weight, lactic acid bacteria 10^
Contains 5-10^1^1 piece/ml, pH is 4.0-6.0
A solution containing lactic acid bacteria. 8. Lactic acid bacteria-containing solution 5-7 according to claim 7 as the aqueous phase part
0 parts by weight, fats and oils part 95-30 parts by weight, emulsifier 0.1-5
An O/W emulsion type oil and fat composition consisting of parts by weight.
JP16726689A 1989-06-29 1989-06-29 Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria Pending JPH0330668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16726689A JPH0330668A (en) 1989-06-29 1989-06-29 Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16726689A JPH0330668A (en) 1989-06-29 1989-06-29 Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria

Publications (1)

Publication Number Publication Date
JPH0330668A true JPH0330668A (en) 1991-02-08

Family

ID=15846550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16726689A Pending JPH0330668A (en) 1989-06-29 1989-06-29 Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria

Country Status (1)

Country Link
JP (1) JPH0330668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636692A1 (en) * 1993-07-29 1995-02-01 LESAFFRE et Cie Stable biomass based on yeast cells and lactic acid bacteria and process for its preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636692A1 (en) * 1993-07-29 1995-02-01 LESAFFRE et Cie Stable biomass based on yeast cells and lactic acid bacteria and process for its preparation
FR2708621A1 (en) * 1993-07-29 1995-02-10 Lesaffre & Cie Stable biomass based on yeast cells and lactic acid bacteria and process for its preparation.

Similar Documents

Publication Publication Date Title
CA1333888C (en) Fermentation
Ashenafi A review on the microbiology of indigenous fermented foods and beverages of Ethiopia
CN103725633B (en) A kind of pickle fermentation bacteria agent and preparation method and application
RU2356230C2 (en) Bread improving agent and its usage in breadstuffs
TW510782B (en) Foods and animal feeds including antimycotic agent
CA2959252A1 (en) Bacillus compositions and uses thereof
JPH08501209A (en) Bake product containing live microorganisms and method for producing the same
JP2001299194A (en) Bread improver and method for producing breads
JP4728769B2 (en) Production and utilization of sour dough containing high concentrations of γ-aminobutyric acid
JPS58201960A (en) Preparation of agent for imparting taste and flavor to food
JP3903788B2 (en) Oil and fat emulsified composition and method for producing bread using the same
JPH0330668A (en) Stabilization of preserving lactic acid bacteria, material, solution and fat and oil composition contained in the stabilized lactic acid bacteria
JP2013078266A (en) Bacteriostatic agent for food
TW201038207A (en) Lactobacillus strain and food having antifungal activity
JP6262412B1 (en) Method for shortening fermentation time in production of fermented milk, and method for suppressing increase in sourness in fermented milk
KR100527345B1 (en) Fabrication method with ferments of frozen dough bread
JP4023791B2 (en) Antimicrobial substance-producing lactic acid bacteria and functional foods using the same
JP2003116454A (en) Method for baking bread having excellent taste, and bread dough and bread
RU2529357C1 (en) Sour cream sauce
JP4051353B2 (en) Lactic acid fermented food containing intestinal inhabiting lactic acid bacteria at a high concentration
KR102486964B1 (en) Solid medium composition comprising by-product of bread and method for producing dry yeast using the same
JPH01174321A (en) Preparation of breads using lactobacillus
KR20090029023A (en) Manufacturing method of muffin cake having soybean-curd dreg fermented by lactic bacteria and soybean-curd dreg fermented by lactic bacteria using the same
JP2000060535A (en) Preservation of microorganismal cell
RU2631902C1 (en) Mixture for preparing ice cream