JPH01174321A - Preparation of breads using lactobacillus - Google Patents
Preparation of breads using lactobacillusInfo
- Publication number
- JPH01174321A JPH01174321A JP62336098A JP33609887A JPH01174321A JP H01174321 A JPH01174321 A JP H01174321A JP 62336098 A JP62336098 A JP 62336098A JP 33609887 A JP33609887 A JP 33609887A JP H01174321 A JPH01174321 A JP H01174321A
- Authority
- JP
- Japan
- Prior art keywords
- lactic acid
- acid bacteria
- dough
- bread
- alcohol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000008429 bread Nutrition 0.000 title claims abstract description 50
- 241000186660 Lactobacillus Species 0.000 title claims abstract description 16
- 229940039696 lactobacillus Drugs 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims abstract description 200
- 235000014655 lactic acid Nutrition 0.000 claims abstract description 100
- 239000004310 lactic acid Substances 0.000 claims abstract description 100
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 82
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 44
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims abstract description 44
- 241000894006 Bacteria Species 0.000 claims description 79
- 238000004519 manufacturing process Methods 0.000 claims description 21
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 claims description 12
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 claims description 12
- 239000001630 malic acid Substances 0.000 claims description 12
- 235000011090 malic acid Nutrition 0.000 claims description 12
- 230000005070 ripening Effects 0.000 claims description 7
- 235000012180 bread and bread product Nutrition 0.000 claims description 3
- 239000000796 flavoring agent Substances 0.000 abstract description 16
- 235000019634 flavors Nutrition 0.000 abstract description 16
- 230000032683 aging Effects 0.000 abstract description 10
- 150000007524 organic acids Chemical class 0.000 abstract description 9
- 238000009825 accumulation Methods 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 36
- 239000002609 medium Substances 0.000 description 26
- 235000013312 flour Nutrition 0.000 description 17
- 230000000694 effects Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 241000209140 Triticum Species 0.000 description 10
- 235000021307 Triticum Nutrition 0.000 description 10
- 230000001580 bacterial effect Effects 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 244000199866 Lactobacillus casei Species 0.000 description 8
- 235000015097 nutrients Nutrition 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 235000013958 Lactobacillus casei Nutrition 0.000 description 7
- 239000003925 fat Substances 0.000 description 7
- 229940017800 lactobacillus casei Drugs 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 230000002503 metabolic effect Effects 0.000 description 6
- 235000005985 organic acids Nutrition 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000004898 kneading Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- YPHMISFOHDHNIV-FSZOTQKASA-N cycloheximide Chemical compound C1[C@@H](C)C[C@H](C)C(=O)[C@@H]1[C@H](O)CC1CC(=O)NC(=O)C1 YPHMISFOHDHNIV-FSZOTQKASA-N 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- 235000020183 skimmed milk Nutrition 0.000 description 4
- 238000009395 breeding Methods 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 210000005253 yeast cell Anatomy 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 2
- 108010068370 Glutens Proteins 0.000 description 2
- 244000199885 Lactobacillus bulgaricus Species 0.000 description 2
- 235000013960 Lactobacillus bulgaricus Nutrition 0.000 description 2
- 241000192132 Leuconostoc Species 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- -1 but propatool Chemical compound 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 235000021312 gluten Nutrition 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 229940004208 lactobacillus bulgaricus Drugs 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- IOCJWNPYGRVHLN-MMALYQPHSA-N (2r)-2-amino-3-[[(2r)-2-amino-2-carboxyethyl]disulfanyl]propanoic acid;hydrochloride Chemical compound Cl.OC(=O)[C@@H](N)CSSC[C@H](N)C(O)=O IOCJWNPYGRVHLN-MMALYQPHSA-N 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 240000001046 Lactobacillus acidophilus Species 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 240000006024 Lactobacillus plantarum Species 0.000 description 1
- 235000013965 Lactobacillus plantarum Nutrition 0.000 description 1
- 241000192134 Oenococcus oeni Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 241000194020 Streptococcus thermophilus Species 0.000 description 1
- 241000006364 Torula Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000015895 biscuits Nutrition 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000012495 crackers Nutrition 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229940035429 isobutyl alcohol Drugs 0.000 description 1
- 229940039695 lactobacillus acidophilus Drugs 0.000 description 1
- 229940072205 lactobacillus plantarum Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 230000010198 maturation time Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 235000014594 pastries Nutrition 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000007793 ph indicator Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 235000012794 white bread Nutrition 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Landscapes
- Bakery Products And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、乳酸菌を用いるパン類の製造法に関する。更
に詳しくは、乳酸菌の中から、アルコール耐性株を選択
し、かかる乳酸歯を生地中に存在せしめて生地熟成を行
なうことを特徴とするパン類の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing bread using lactic acid bacteria. More specifically, the present invention relates to a method for producing bread, which comprises selecting an alcohol-resistant strain from among lactic acid bacteria, allowing such lactic acid bacteria to exist in the dough, and ripening the dough.
(従来の技術と発明が解決しようとする問題点)パン類
は、小麦粉を主成分とし、油脂、イースト、砂糖類、食
塩、脱脂粉乳など乳製品、水など副原料を混捏して得ら
れる生地を熟成する工程を経て、焼成により生産される
が、工場生産の為の生地の機械耐性、食感に関る内相や
外相(クラスト)、パン類特有の風味、製品の新鮮さの
保持(老化防止)など、複雑な機能が要求される。(Problems to be solved by conventional technology and the invention) Bread is a dough made by kneading wheat flour as its main ingredient and auxiliary ingredients such as fats and oils, yeast, sugars, salt, dairy products such as skim milk powder, and water. It is produced by baking after going through a process of aging, but for factory production, there are many important factors such as the mechanical resistance of the dough, the internal and external texture (crust), the unique flavor of bread, and the preservation of the freshness of the product ( complex functions such as anti-aging) are required.
このような特性に関する、主副原料の品質、生地の混捏
(ミキシング)など機械的な操作の影響、熟成工程の違
いなど、種々検討が加えられ、改善法も見出されている
が、主副原料の微妙な品質変動や熟成条件の微妙な変化
によって、パン類の生地状態の変化や製品の品質変動が
あり、熟練した専門家の経験に基いた対応が必要とされ
る状況であった。工業的には、種々の製パン改良剤が開
発され、例えば風味の特性は多少犠牲にして、機械生産
に必要な物性の付与を余儀なくされている状況があり、
多様化し、より美味なパン類を求める消費のニーズに応
える、新らしい技術手段が望まれている。即ち、パン類
本来の熟成を十分行った豊かな風味を持つパン類を工業
的に安定して生産する方法が望まれていた。Various studies have been conducted regarding these characteristics, including the quality of the main and sub-ingredients, the influence of mechanical operations such as dough mixing, and differences in the aging process, and improvement methods have been found. Subtle changes in the quality of raw materials and aging conditions can lead to changes in the dough condition of bread products and variations in product quality, and the situation requires responses based on the experience of seasoned professionals. Industrially, various bread-making improvers have been developed, and for example, it is necessary to give physical properties necessary for mechanical production at the expense of some flavor characteristics.
New technological means are desired to meet the diversified consumer needs for more delicious breads. That is, there has been a desire for a method for industrially stably producing breads that have undergone the proper aging process and have a rich flavor.
サワー・ドーのパンなど、サツカロミセス属に属する2
種以上の野性酵母、例えばサツカロミセス・エキヌグス
、サツカロミセス・クルバークス、サツカロミセス・シ
ュバリエリなどや、トルラ酵母などと、ラクトバチルス
局に肩する乳酸菌、例えばラクトバチルス・プランタラ
ム、ラクトバチルス・プレビス、ラクトバチルス・ファ
ーメンティ、ラクトバチルス・カゼイ、ラクトバチルス
・バストリアヌスなど、バクテリア(細m)群との共同
作用による特有の風味を利用する方法として欧米を中心
に古くから利用されているが、変動が大きく、長年の経
験に基く技術が必要とされている。食パンの風味に影響
する要因として、通常、イーストに含まれる乳酸菌の関
りを示唆する報告もあるが、風味を改善又は制御する技
術として確立されるに至っていない。また、パン類の風
味が、パン酵母のメーカーによって微妙に異ること、同
一種のパン酵母でも風味の微妙な変動があることなど経
験的には知られていたが、その差異の原因は明らかでな
く、有効な改善法は見出されていない。2 belonging to the genus Satucharomyces, such as sour dough bread
More than one species of wild yeast, such as Satucharomyces equinugus, Satucharomyces curbacus, Satucharomyces chevalieri, etc., and Torula yeast, and lactic acid bacteria belonging to the Lactobacillus department, such as Lactobacillus plantarum, Lactobacillus plebis, and Lactobacillus spp. Fermentii, Lactobacillus casei, Lactobacillus bastrianus, etc., have been used for a long time mainly in Europe and the United States as a method to utilize the unique flavor produced by the collaboration with a group of bacteria (fine microorganisms). Technology based on experience is needed. Although there are reports suggesting that lactic acid bacteria normally contained in yeast are involved as a factor that affects the flavor of bread, no technology has been established to improve or control the flavor. Additionally, it has been known from experience that the flavor of breads differs slightly depending on the baker's yeast manufacturer, and that there are subtle variations in flavor even with the same type of baker's yeast, but the cause of these differences is clear. However, no effective improvement method has been found.
(問題点を解決する為の手段および作用)本発明者らは
、イーストを含む生地中で、小麦粉由来のリンゴ酸を代
謝し、乳酸の蓄積を増大させる乳酸菌を選択し、これを
パン類の生地調製に用いることによって、生地改良効果
と共に風味のすぐれたパン類が得られることを発見し、
既に特許出願を行なった。その後、生地中で活発な代謝
能力を有するこれらの乳酸菌について詳細な検討を加え
たところ、共通な性質として高濃度のエタノールの存在
下に生育し、代謝能を発揮できる「アルコール耐性」の
性質を有することを発見した。この知見をもとに、多く
の乳酸菌の中から、高濃度のエタノールで生育可能な菌
株を選び、イーストを含む生地での熟成に与える影響を
調べたところ、アルコール耐性乳酸菌は、本来もってい
る代謝能を発揮し、製パン改良効果を発揮するに対して
、アルコール耐性のない菌株は、生地中で死滅するか、
代謝能をほとんど発揮せず、生地物性や風味など製パン
特性に与える影響が少ないことを認めた。即ち、「アル
コール耐性」を指標にして、極めて効率よく、製パン改
良効果をもつ乳酸菌を選択することが可能となり、かか
る乳酸菌をパン類の製造の改善法として利用可能なこと
を見出し、本発明を完成した。(Means and effects for solving the problem) The present inventors selected lactic acid bacteria that metabolize malic acid derived from wheat flour and increase the accumulation of lactic acid in yeast-containing dough, and used this lactic acid bacteria in breads. It was discovered that by using it in dough preparation, breads with excellent flavor as well as dough improvement effects can be obtained.
A patent application has already been filed. After that, we conducted a detailed study of these lactic acid bacteria, which have active metabolic ability in dough, and found that a common property of these lactic acid bacteria is ``alcohol tolerance,'' which allows them to grow in the presence of high concentrations of ethanol and exhibit their metabolic ability. I discovered that it has. Based on this knowledge, we selected strains that can grow in high concentrations of ethanol from among many lactic acid bacteria, and investigated the effect on the ripening of yeast-containing dough. On the other hand, strains that are not tolerant to alcohol may die in the dough or
It was found that it exerts almost no metabolic ability and has little effect on bread-making characteristics such as dough physical properties and flavor. That is, it has become possible to extremely efficiently select lactic acid bacteria that have the effect of improving bread production using "alcohol tolerance" as an index, and it has been discovered that such lactic acid bacteria can be used as a method for improving bread production, and the present invention completed.
パン酵母(サツカロミセス・セレビシェ)のアルコール
耐性株をパン類の生産に用いる方法は知られているが、
乳酸菌のアルコール耐性株を選択し、パン類の生産に用
いる方法は知られていない。Although it is known that alcohol-tolerant strains of baker's yeast (Saccharomyces cerevisiae) are used for bread production,
There is no known method for selecting alcohol-resistant strains of lactic acid bacteria and using them for bread production.
本発明の機作については、その詳細は明らかでないが、
イーストを含む生地中では比較的高濃度のエタノールが
蓄積することが知られており、通常の乳酸菌は、エタノ
ールの存在によって、代謝が抑制されるに対し、アルコ
ール耐性株はその抑制が弱く、本来もっている代謝能を
発揮するものと思われる。ただ、一般に乳酸菌は、他の
細菌にくらべて、アルコール耐性が強いことが報告され
ており、生地中に蓄積されるエタノールは1.0〜2.
0%程度とされているので、アルコールの存在はあまり
影響しないのではないか、という見方が一般的であった
と思われる。本発明者らが、見出した知見から類推する
と、半固体状の生地中の熟成(発酵)では、部分的には
高いアルコール濃度に達している可能性があること、生
地中の他の成分との相乗作用により、低濃度で、より強
い抑制効果を受けている可能性が考えられる。Although the details of the mechanism of the present invention are not clear,
It is known that relatively high concentrations of ethanol accumulate in yeast-containing dough, and while normal lactic acid bacteria's metabolism is suppressed by the presence of ethanol, alcohol-tolerant strains have weaker inhibition and are naturally unable to do so. It is thought that they are exerting their metabolic ability. However, it has been reported that lactic acid bacteria generally have stronger alcohol tolerance than other bacteria, and the amount of ethanol accumulated in dough is 1.0 to 2.
Since it is said to be about 0%, it seems that the general view was that the presence of alcohol did not have much of an effect. By analogy with the knowledge discovered by the present inventors, it is possible that during aging (fermentation) in a semi-solid dough, a high alcohol concentration may be partially reached, and that there is a possibility that the concentration of alcohol may be high in some parts of the dough. It is possible that the synergistic effect of the two causes a stronger inhibitory effect at low concentrations.
以下、本発明の内容を詳細に説明する。Hereinafter, the content of the present invention will be explained in detail.
先ず、本発明に云うアルコール耐性乳酸菌(アルコール
耐性株)は、以下のような方法により選択することが出
来る。乳酸菌は、糖質より50に以上の収率で乳酸を生
産する細菌と定義される。First, the alcohol-resistant lactic acid bacteria (alcohol-resistant strain) referred to in the present invention can be selected by the following method. Lactic acid bacteria are defined as bacteria that produce lactic acid at a yield of 50 times higher than that of carbohydrates.
乳酸菌としては、ラクトバチルス属、ロイコノストック
属、ストレプトコツカス属、ペデイオコッカス属に属す
る菌株があげられる。乳製品、果物、醸造食品、パン酵
母製品、小麦粉など穀類等の天然物や食品から分離する
こともできる。これら乳酸菌の変異処理菌株、細胞融合
株など育種株を用いることもできる。代表的な例として
は、ラクトバチルス・ブルガリクス、ラクトバチルス・
カゼイ、ラクトバチルス・プレビス、ラクトバチルス・
ファーメンタム、ロイコノストック・オイヤノス、スト
レプトコッカス・サーモフィラス、ペデイオコッカス・
ハロフィラスなどがあげられる。Examples of lactic acid bacteria include strains belonging to the genus Lactobacillus, Leuconostoc, Streptococcus, and Pedeiococcus. It can also be isolated from natural products and foods such as dairy products, fruits, brewed foods, baker's yeast products, and cereals such as flour. Breeding strains of these lactic acid bacteria, such as mutation-treated strains and cell fusion strains, can also be used. Representative examples include Lactobacillus bulgaricus and Lactobacillus bulgaricus.
casei, Lactobacillus plebis, Lactobacillus casei
Fermentum, Leuconostoc oyanus, Streptococcus thermophilus, Pedeiococcus
Examples include Halophilus.
これら乳酸菌を多数含む試料、又は乳酸−の変異処理株
など育種株からアルコール耐性株を選択する方法として
は、例えば以下のような方法が採用される。As a method for selecting an alcohol-tolerant strain from a sample containing a large number of these lactic acid bacteria or a breeding strain such as a lactic acid mutation-treated strain, the following method is adopted, for example.
(1)アルコール耐性株の濃縮
予め乳酸菌を栄養培地に増殖させ、エタノールを5〜1
2重量%含む培地に、10〜10個/mI!接種し、3
0〜40℃で静置培養を行ない、菌が生育したら、更に
エタノールを含む培地に植えつぎ、この操作をくり返す
、集積培養(Enrichment culture)
を行なう方法があげられる。エタノール濃度は徐々に高
濃度にする方が好ましい。この過程でアルコール耐性株
が濃縮され、最後にアルコールを8に以上含む固型培地
(プレート)に、希釈液を拡げて培養し、生育したコロ
ニーを釣菌することによってアルコール耐性株が得られ
る。炭酸カルシウムや、pH指示薬をプレート培地に添
加することによって、乳酸の生産能を同時にチエツクす
ることもできる。即ち、乳酸菌のコロニーのまわりに、
有機酸(主として乳酸)が蓄積し、酸の生成能力に応じ
てハローを形成する。(1) Concentration of alcohol-resistant strains Grow lactic acid bacteria in a nutrient medium in advance, add ethanol to 5-1
10 to 10 cells/mI in a medium containing 2% by weight! Inoculate, 3
Enrichment culture is performed by statically culturing at 0 to 40°C, and when the bacteria grow, they are further planted in a medium containing ethanol and this operation is repeated.
Here are some ways to do it. It is preferable to gradually increase the ethanol concentration. In this process, the alcohol-resistant strain is concentrated, and finally, the diluted solution is spread on a solid medium (plate) containing 8 or more alcohols, cultured, and the grown colonies are harvested to obtain the alcohol-resistant strain. By adding calcium carbonate or a pH indicator to the plate medium, the lactic acid production ability can be checked at the same time. That is, around the lactic acid bacteria colony,
Organic acids (mainly lactic acid) accumulate and form a halo depending on the acid production capacity.
(11)耐性アルコール濃度の判定
単離同定された菌株について、アルコール耐性を判定す
る方法として次の方法があげられる(アルコールとして
は、エタノールを採用したが、プロパツール、ブタノー
ル、イソプロパツール、イソブチルアルコールなどを用
いることもできる。(11) Determination of alcohol tolerance concentration The following methods can be used to determine the alcohol tolerance of isolated and identified bacterial strains (ethanol was used as the alcohol, but propatool, butanol, isopropatool, isobutyl Alcohol etc. can also be used.
この場合、アルコールの種類に応じて判定基準は異る)
。In this case, the criteria differ depending on the type of alcohol)
.
常法通り、乳酸菌栄養培地で前培養を行い、所定の濃度
にエタノールを添加した試験培地に、初発菌数106/
mI!とじて、前培養液を添加し、25〜37℃で24
〜72時間培養を行う。24.72時間の660 nm
における培地の濁度を測定し、各濃度のエタノール量で
の生育曲線を求める。As usual, pre-culture was carried out in lactic acid bacteria nutrient medium, and the initial number of bacteria was 106 /
mI! Close, add preculture solution, and incubate at 25-37°C for 24 hours.
Cultivate for ~72 hours. 660 nm for 24.72 hours
Measure the turbidity of the medium and determine the growth curve at each concentration of ethanol.
アルコール耐性の判定は、72時間後のOD値が初期の
5倍以上、生成乳酸量、が培地中0.5 my/me以
上のとき、アルコール耐性の目安となる。Alcohol tolerance is determined when the OD value after 72 hours is 5 times or more than the initial value and the amount of lactic acid produced is 0.5 my/me or more in the medium.
本発明に使用できるアルコール耐性乳酸菌としては、耐
性アルコール濃度8π以上、好ましくは11%以上の耐
性株、例えばラクトバチルス・カゼイ(Lactoba
cillus casei)6 B 1、ラクトバチル
ス・プレビス(Lactobacillus brev
is)号として徹工研に寄託している)、ロイコノスト
ック・オイヤノス(Leuconostoc oeno
s)ATOO28279を挙げることができる。Alcohol-resistant lactic acid bacteria that can be used in the present invention include strains with a resistant alcohol concentration of 8π or higher, preferably 11% or higher, such as Lactobacillus casei (Lactobacillus casei).
Lactobacillus casei) 6 B 1, Lactobacillus brev
is), Leuconostoc oenos
s) ATOO28279.
本発明法によって選択された乳酸菌をパン類の生地中に
存在せしめる方法としては、乳酸菌のスターターとして
生地混捏時に添加する方法、液種として添加する方法、
パン酵母などイースト製品に混合して用いる方法、油脂
の水相部に混合して乳化配合した油脂組成物として用い
る方法、発酵を終った生地の一部を冷蔵保存して用いる
老麺法などがあげられる。Methods for making the lactic acid bacteria selected by the method of the present invention exist in bread dough include a method of adding the lactic acid bacteria as a starter during dough kneading, a method of adding the lactic acid bacteria as a liquid seed,
Methods include mixing it with yeast products such as baker's yeast, using it as an emulsified oil composition by mixing it with the aqueous phase of oil and fat, and the old noodle method using a part of the fermented dough that is kept refrigerated. can give.
パン酵母に混合する方法としては、市販パン酵母(65
〜75πの水分を含む湿菌体)を水に溶解したミルク状
のイースト湛濁液、又はイースト製造工程において培養
工程後に菌体を分能洗浄したイースト・ミルクに乳酸菌
の培養液を添加し、真空濾過する方法があげられる。As a method of mixing with baker's yeast, commercially available baker's yeast (65
A culture solution of lactic acid bacteria is added to a milky yeast suspension in which moist bacterial cells containing ~75π water are dissolved in water, or to yeast milk in which bacterial cells have been washed after the culture step in the yeast manufacturing process, One example is vacuum filtration.
得られるケーキ状又は粒状の湿菌体が冷蔵保存されて、
パン類の製造に用いられているが、流動乾燥などによっ
て乾燥酵母として使用することもできる。The resulting cake-like or granular wet bacterial cells are stored under refrigeration,
Although it is used in the production of breads, it can also be used as dry yeast by fluidized drying.
油脂組成物として用いる方法としては、水相部に10〜
10個/mfの乳酸菌を添加したものを5〜50部、油
脂部95〜50部、乳化剤0.1〜5部の乳化油脂組成
物があげられる。小麦粉又は活性グルテンをイースト自
己消化液で処理した液に乳酸菌を添加した液を水相部と
して用いることもできる。小麦粉又は活性グルテンの処
理物の乳化力を利用し、30〜40℃の低温で油脂組成
物を調製する方法として有効である。5〜3oπの小麦
粉懸濁液に乳酸菌を接何し、pH−4〜7で乳酸菌を増
殖させた液を用いて、油脂組成物に乳化配合することも
できる。As a method for using it as an oil and fat composition, 10 to
Examples include emulsified oil and fat compositions containing 5 to 50 parts of lactic acid bacteria added at 10/mf, 95 to 50 parts of oil and fat, and 0.1 to 5 parts of emulsifier. A solution obtained by adding lactic acid bacteria to a solution obtained by treating wheat flour or active gluten with a yeast autolysis solution can also be used as the aqueous phase. This method is effective as a method for preparing an oil and fat composition at a low temperature of 30 to 40°C by utilizing the emulsifying power of processed wheat flour or activated gluten. It is also possible to add lactic acid bacteria to a flour suspension of 5 to 3 oπ and grow the lactic acid bacteria at a pH of -4 to 7, and then emulsify the mixture into an oil or fat composition.
生地中の乳酸菌の濃度としては、10’〜1o9個/i
生地)の範囲であるが、生地熟成時間が4〜6時間以内
の場合は、好ましくは105〜109個/g(生地)の
範囲、低温長時間発酵やクラッカー生地の熟成のように
8時間以上の熟成時間をとる場合は104〜106個/
l生地)の低濃度でも効果を発揮できる。The concentration of lactic acid bacteria in the dough is 10' to 109 pieces/i.
However, if the dough aging time is within 4 to 6 hours, it is preferably in the range of 105 to 109 pieces/g (dough), and for 8 hours or more as in low temperature long fermentation or cracker dough aging. 104 to 106 pieces/
It can be effective even at low concentrations of 1 dough).
本発明法の生地熟成の特徴としては、通常の場合より、
生地p I(低下が速く、より短時間で熟成過程が進む
。生地中の有機酸の蓄積をみると、小麦粉或いは副原料
由来の基質を乳酸菌が活発に利用し、熟成の初期から乳
酸の蓄積が進むことがあげられる。代表的な現象として
、小麦粉由来のリンゴ酸が消費され、生地中に通常より
高い濃度の乳酸が蓄積される。従って、焼成後の製品の
有機酸分析では、リンゴ酸が低く、乳酸の含有量が高い
傾向がみられる。本発明に従い、アルコール耐性乳酸菌
を使用した場合、パン類の製品中のリンゴ酸の含有量が
25m、9に以下、乳酸50m、9に以上を示す。即ち
、本発明法によって、先に本発明者らが見出した、イー
ストを含む生地中で小麦粉由来のリンゴ酸を代謝し、乳
酸の蓄積を増大させる菌体が効率よく選択可能なことが
認められた。The characteristics of the dough aging method of the present invention are as follows:
Dough p I (decreases quickly, and the ripening process progresses in a shorter time. Looking at the accumulation of organic acids in the dough, lactic acid bacteria actively utilize the substrate derived from wheat flour or auxiliary raw materials, and lactic acid accumulates from the early stage of ripening. A typical phenomenon is that malic acid derived from wheat flour is consumed, and a higher than normal concentration of lactic acid accumulates in the dough. Therefore, in organic acid analysis of baked products, malic acid When alcohol-resistant lactic acid bacteria are used according to the present invention, the malic acid content in bread products is lower than 25 m, 9, and lactic acid is 50 m, higher than 9. In other words, the method of the present invention can efficiently select bacterial cells that metabolize malic acid derived from wheat flour and increase the accumulation of lactic acid in yeast-containing dough, as previously discovered by the present inventors. was recognized.
本発明によって選択されるアルコール耐性乳酸菌は、リ
ンゴ酸を消費し、乳酸蓄積を増大させる特徴のみではな
く、採用する乳酸菌の本来もっている代謝能力に応じて
、生地中で活発な特徴ある代謝の経過を示す。The alcohol-tolerant lactic acid bacteria selected by the present invention not only have the characteristics of consuming malic acid and increasing lactic acid accumulation, but also have a characteristic metabolic process that is active in the dough, depending on the inherent metabolic ability of the lactic acid bacteria used. shows.
本発明で云うパン類としては、食パン、フランスパン、
イギリスパン、菓子パンなどのパン、ビスケット、クラ
ッカーなどを挙げることができる。The breads referred to in the present invention include white bread, French bread,
Examples include breads such as British bread and pastries, biscuits, and crackers.
(発明の効果)
従来、乳酸菌をパン類の生地熟成の促進法として、又は
風味改善の目的で、利用する試みがされてきたが、大部
分の乳酸菌が生地中では機能を発揮できず、製パン性を
制御、或いは改善する有効な技術的手段として確立でき
なかった原因は、イーストによって生成するアルコール
に対する乳酸菌の影響に対する視点が欠けていた為と思
われる。(Effect of the invention) Previously, attempts have been made to use lactic acid bacteria as a method for accelerating the ripening of bread dough or for the purpose of improving flavor. The reason why it could not be established as an effective technical means to control or improve bread quality is thought to be due to a lack of perspective on the influence of lactic acid bacteria on the alcohol produced by yeast.
本発明によって、従来法では制御困難であった、生地熟
成における有機酸の−W積を制御することが可能となり
、そのことによって、生地物性、風味など、重要な製パ
ン性の指標を改善可能となったことは最も大きな進歩で
ある。更に、多くの乳酸菌の中から、「アルコール耐性
」の指標により、効率よく、製パン性改良効果を有する
菌株を選択可能となる点が重要な利点としてあげられる
。例えば、変異処理など育種手段によって得られる多数
の菌株の中から、製パン改良効果を発揮する菌株を選択
するには、従来法では多大の労力と時間を要するが、本
発明法では簡便な操作により短期間で優れた菌株を選択
することができる。The present invention makes it possible to control the -W product of organic acids during dough ripening, which was difficult to control with conventional methods, thereby improving important bread-making properties such as dough physical properties and flavor. This is the biggest advancement. Furthermore, an important advantage is that it is possible to efficiently select strains that have the effect of improving bread-making properties from among many lactic acid bacteria based on the index of "alcohol tolerance." For example, conventional methods require a great deal of effort and time to select a strain that exhibits the effect of improving bread production from a large number of strains obtained through breeding methods such as mutation treatment, but the method of the present invention requires a simple operation. This makes it possible to select excellent bacterial strains in a short period of time.
本発明の効果としては、上記のほか、パン類の風味の改
善と共に、機械耐性など生地物性の安定化と改善に高い
効果を示すことがあげられる。生地熟成時間の短縮も可
能である。例えば、ストレート法食パンに適用する場合
、乳酸菌の働きにより、より短時間に生地中への乳酸の
蓄積、I)f(の低下が進み、機械耐性の優れた中種法
(より長時間の発酵を要する)の生地に匹敵する生地物
性が得られるので、風味や食感の優れたストレート法の
特徴を工場における生産に適用可能となる。In addition to the above-mentioned effects, the present invention is highly effective in improving the flavor of breads as well as stabilizing and improving physical properties of dough such as mechanical resistance. It is also possible to shorten the dough maturation time. For example, when applied to straight bread, due to the action of lactic acid bacteria, lactic acid accumulates in the dough in a shorter time and I Since the physical properties of the dough can be obtained comparable to those of the dough (required), the characteristics of the straight method, which has excellent flavor and texture, can be applied to factory production.
(実施例) 以下、本発明を実施例により説明する。(Example) The present invention will be explained below using examples.
実施例1
乳酸菌の中で、イーストを含む製パン用生地中で、小麦
粉由来のリンゴ酸を消費し、乳酸を著量lF!する菌株
2株:ラクトバチルス・カゼイ(Lb。Example 1 Among lactic acid bacteria, malic acid derived from wheat flour is consumed in bread dough containing yeast, and a significant amount of lactic acid is produced! Two strains: Lactobacillus casei (Lb.
casei ) 6 B l来、ラクトバチルス・プレ
ビス(Lb。casei) 6 B1, Lactobacillus plebis (Lb.
brevis)IFO18110、及びこのような性質
を示さない菌株2株:ラクトバチルス・アシドフィラス
(Lb、 acidophilus )K −85−ス
トレプトコッカス・ラクチス(8t、 1actis)
Ka O**、(来は岡山大学農学部より分譲、未来
はクリスチャン・ハンセン社より購入し、発明者が菌株
名を付した)についてアルコール耐性の比較を行なった
。乳酸菌用の栄養培地で各乳酸菌を培養し、それぞれの
菌株を、エタノールを5〜11に含む栄養培地で80℃
、72時間静置培養を行ない、乳酸菌の生育度を660
nmの濁度で比較した。培養終了後の乳酸の生成量につ
いて、高速液体クロマトグラフィ(島津製作所製、LO
−6A型)で測定した。Lactobacillus acidophilus (Lb, acidophilus) K-85-Streptococcus lactis (8t, 1actis)
Alcohol tolerance was compared for KaO**, (currently distributed by the Faculty of Agriculture, Okayama University, future purchased from Christian Hansen, and the strain name was given by the inventor). Each lactic acid bacteria was cultured in a nutrient medium for lactic acid bacteria, and each strain was incubated at 80°C in a nutrient medium containing 5 to 11 parts of ethanol.
, static culture was performed for 72 hours, and the growth rate of lactic acid bacteria was 660.
The turbidity was compared in nm. The amount of lactic acid produced after the completion of the culture was measured using high-performance liquid chromatography (Shimadzu Corporation, LO
-6A type).
(乳酸菌用栄養培地)
グルコース 1(1
ペプトン 10I
酵母エキス 5I
ツイーン80 1g
L−シスチン塩酸塩 0゜1g
水 11p H6,8
〜7.0
得られた結果を図1及び表1に示した。(Nutritional medium for lactic acid bacteria) Glucose 1 (1) Peptone 10I Yeast extract 5I Tween 80 1g L-cystine hydrochloride 0°1g Water 11p H6,8
~7.0 The obtained results are shown in FIG. 1 and Table 1.
図1及び表1に示したように、パン生地中で特徴ある代
謝活性を示す2株は、アルコール8%以上の存在で生育
を示すに対し、一般の乳酸菌はエタノール8%以上の存
在で生育が抑えられることがわかる。5%エタノールで
も生育度には差異がみられることから、生地中で他の成
分又は代謝物が存在する場合、5〜7%の範囲でも活性
発現が抑えられる可能性が示唆される。乳酸の生成度は
、菌の生育度と対応しており、アルコール存在下の乳酸
の生成度によっても、乳酸菌のアルコール耐性の比較が
可能なことを示している。As shown in Figure 1 and Table 1, the two strains that exhibit characteristic metabolic activity in bread dough grow in the presence of 8% or more alcohol, whereas general lactic acid bacteria do not grow in the presence of 8% or more ethanol. I know it can be suppressed. Since there is a difference in the growth rate even with 5% ethanol, it is suggested that if other components or metabolites are present in the dough, the expression of activity may be suppressed even in the range of 5 to 7%. The degree of production of lactic acid corresponds to the degree of growth of the bacteria, indicating that the alcohol tolerance of lactic acid bacteria can also be compared based on the degree of production of lactic acid in the presence of alcohol.
実施例2 イースト(市販パン酵母)中の乳酸菌の分離を試みた。Example 2 An attempt was made to isolate lactic acid bacteria in yeast (commercially available baker's yeast).
即ち、イーストを水に溶解し、殺菌した生理食塩水で希
釈し、乳酸菌選択培地(酵母の生育を抑制するため、シ
クロへキシミドを1100pp添加、更に乳酸の生産能
をチエツクする目的で0.2%の炭酸カルシウムを添加
)を用いて、平面(プレート)培養を行い、コロニーの
まわりに溶解した環(ハロー)を生ずる菌株を採取し、
穿刺培養を行なった。20株の菌株を採取し、実施例1
に示した乳酸菌用栄養培地に植菌し、30℃で2日間静
置培養し、エタノール11%を含む乳酸菌用栄養培地1
0mj?にo、 t J7植菌し、30℃で3日間静置
培養を行なった。20株のうち、1株が生育を示した。That is, yeast was dissolved in water, diluted with sterilized physiological saline, and a lactic acid bacteria selective medium (1,100 pp of cycloheximide was added to suppress yeast growth, and 0.2 pp of cycloheximide was added for the purpose of checking lactic acid production ability). % of calcium carbonate) to perform flat (plate) culture, and collect strains that produce a halo of lysis around the colony.
Puncture culture was performed. Twenty strains were collected and used in Example 1.
The cells were inoculated into the nutrient medium for lactic acid bacteria shown in Figure 1, and cultured for 2 days at 30°C to form nutrient medium 1 for lactic acid bacteria containing 11% ethanol.
0mj? The cells were inoculated with o, t J7 and statically cultured at 30°C for 3 days. One of the 20 plants showed growth.
得られた菌株をエタノール8にを含む寒天培地上でプレ
ート培養を行ない、生育する菌株を釣菌して試験管培地
(寒天培地で、炭酸カルシウム0.5.9含有)に保存
した。The obtained bacterial strain was plate cultured on an agar medium containing 8 parts of ethanol, and the growing strains were harvested and stored in a test tube medium (an agar medium containing 0.5.9 parts of calcium carbonate).
菌株の菌学的性質を表2に示す。その結果、ラクトバチ
ルス・カゼe工研条寄第76ノ2号)と同定された。The mycological properties of the strains are shown in Table 2. As a result, it was identified as Lactobacillus casee e Koken Joyori No. 76-2).
実施例1に基づき、アルコール剛性度を調べた結果、1
1にエタノール含有培地での660nmの72hrにお
ける濁度の変化は0.870であり、乳酸のN債(72
hr )はり、 92 rrV/mlが検出され、アル
コール耐性が確認された。Based on Example 1, the alcohol stiffness was examined and found to be 1
The change in turbidity at 660 nm for 72 hours in the ethanol-containing medium was 0.870, and the N bond of lactic acid (72
hr) 92 rrV/ml was detected, confirming alcohol tolerance.
実施例3 用いて、中種法食パンの製パン試験を試みた。Example 3 Using this method, we attempted a bread-making test using the medium-dough method.
使用するパン酵母中に混在する乳酸菌の量を測定したと
ころ、約10 個/g(イースト湿菌体)が認められた
。実施例2と同様に、乳酸菌のアルコール耐性を調べた
ところ、8%以上のアルコール存在下で生育できる乳酸
菌は認められなかった。When the amount of lactic acid bacteria mixed in the baker's yeast used was measured, it was found to be about 10 lactic acid bacteria/g (wet yeast cells). As in Example 2, when the alcohol tolerance of lactic acid bacteria was examined, no lactic acid bacteria that could grow in the presence of 8% or more alcohol was found.
このパン酵母を次の製パン試験に用いた。This baker's yeast was used in the next bread making test.
アルコール耐性乳酸菌は、乳酸菌用栄養培地で培養した
ものを遠心分能によって濃縮して添加した(生地ISI
当り10 個相当)。Alcohol-resistant lactic acid bacteria were cultured in a nutrient medium for lactic acid bacteria, concentrated by centrifugation, and added (Dough ISI
equivalent to 10 pieces).
(生地配合)
中種配合
小麦粉(強力粉) 70部
イースト・フード 01部
イースト(市販パン酵母)2.0部
水 40部乳酸菌液
2部
本捏配合
小麦粉(強力粉) aO部
油脂(ショートニング) 5部砂糖
5部
食塩 2部
脱脂粉乳 2部
水 25部(操作)
1)混捏条件
(中種) 低速3分、高速1分
C本捏) 低速2分、中速1分、高速5分油脂投入
低速1分、中速1分、高速5分
2)捏上温度 27〜29℃
3)発酵時間
中 種 4時間半
ベンチタイム 20分
ホイロタイム 40〜60分
(一定容積に達する時間で示す)
4)焼成温度、時間
180℃、35分
製パン工程中の有機酸の変化を高速液体クロマトグラフ
ィーで測定した結果を図2に示す。製パン結果は表3に
示す。(Dough composition) Medium flour (strong flour) 70 parts Yeast food 01 parts Yeast (commercially available baker's yeast) 2.0 parts Water 40 parts Lactic acid bacteria solution
2 parts Honkneaded flour (strong flour) aO parts oil (shortening) 5 parts sugar
5 parts salt 2 parts skim milk powder 2 parts water 25 parts (operation) 1) Kneading conditions (medium kneading) Low speed 3 minutes, high speed 1 minute minutes, medium speed 1 minute, high speed 5 minutes 2) Kneading temperature 27-29℃ 3) Fermentation time Seeds 4 and a half hours bench time 20 minutes Incubation time 40-60 minutes (indicates the time to reach a certain volume) 4) Firing temperature FIG. 2 shows the results of measuring changes in organic acids during the bread making process at 180° C. for 35 minutes using high performance liquid chromatography. The bread making results are shown in Table 3.
表3
来 生地状態及びパンの官能評価は専門家による評価(
5点法)
5 良 好 2 やや劣る
4 やや良好 1 劣 る
3普通
図2に示したように、アルコール耐性乳酸菌を用いた場
合、中種発酵の初期からリンゴ酸が消費され、乳酸の蓄
積が増大することが注目される。Table 3 The dough condition and sensory evaluation of bread were evaluated by experts (
5 points) 5 Good 2 Slightly Poor 4 Slightly Good 1 Poor 3 Average As shown in Figure 2, when alcohol-resistant lactic acid bacteria are used, malic acid is consumed from the early stage of medium seed fermentation, and the accumulation of lactic acid is reduced. It is noteworthy that the
使用パン酵母中に含まれていた乳酸菌は、生地中106
個/、GB生地)のレベルにあるにもかかわらず、乳酸
の蓄積は少く、リンゴ酸は殆んど変化がみられない。The lactic acid bacteria contained in the baker's yeast used were 106 in the dough.
Despite being at the same level as 100%, the accumulation of lactic acid is small, and almost no change is observed in malic acid.
製パン上の特徴は表3に示したように、生地の粘弾性が
すぐれ、モルダーでの生地状態が良好であった。ホイロ
時間が短縮され、風味が優れているという評価が得られ
た。As shown in Table 3, the bread-making characteristics were that the dough had excellent viscoelasticity and the dough condition in the molder was good. It was evaluated that the roasting time was shortened and the flavor was excellent.
実施例4
実施例2で得た乳酸菌ラクトバチルス・カゼイに−3(
徹工研条寄第#28号)と、実施例1に示した菌株ラク
トバチルス・カゼイ 6B1を、栄養培地で培養し、遠
心分離によって濃縮した液を、それぞれ、市販パン酵母
を水に懸濁した液(濃度湿菌体60%)に添加し、真空
許過を行ない、水分的70%を含むパン酵母湿菌体Ig
当り、乳酸菌を10 個を含むケーキ状のイースト菌体
を調製した。得られたイースト菌体を用いて、ストレー
ト法食パンの製パン試験を試みた。Example 4 The lactic acid bacterium Lactobacillus casei obtained in Example 2 was treated with -3 (
Lactobacillus casei strain 6B1 shown in Example 1 was cultured in a nutrient medium and concentrated by centrifugation, and commercially available baker's yeast was suspended in water. (concentration of wet bacterial cells 60%) and vacuum permeation to obtain baker's yeast wet bacterial cells Ig containing 70% water content.
Each time, a cake-like yeast cell containing 10 lactic acid bacteria was prepared. Using the obtained yeast cells, a bread making test of straight bread was attempted.
(生地配合)
小麦粉(強力粉) 100部
砂糖 5部
食塩 2部
ショートニング 5部
イースト 2.5部イーストフード
0.1部脱脂粉乳
2部
水 69部(操作)
ショートニングを除く原料を混合し、低速2分、中速1
分、高速5分間混捏し、ショートニングを加え、さらに
低速1分、中速1分、高速5分間混捏し、28℃に捏上
げ、30℃で1時間発酵し、パンチ後、さらに30分発
酵を続けた。続いて、分割、丸目、ねかし、モルダーに
よる成型を行ない、30℃、湿度80%でホイロ発酵を
行った。(Dough mix) Wheat flour (strong flour) 100 parts Sugar 5 parts Salt 2 parts Shortening 5 parts Yeast 2.5 parts Yeast food 0.1 part Skim milk powder
2 parts water 69 parts (Procedure) Mix all ingredients except shortening, mix on low speed for 2 minutes, then on medium speed for 1 minute.
minutes, knead on high speed for 5 minutes, add shortening, then knead on low speed for 1 minute, medium speed for 1 minute, and high speed for 5 minutes, raise the temperature to 28℃, ferment at 30℃ for 1 hour, punch, and ferment for another 30 minutes. continued. Subsequently, the mixture was divided, rounded, rolled, and molded using a molder, and then subjected to foil fermentation at 30° C. and 80% humidity.
ホイロ終了後(ケースの1.5 cmのレベルに達スル
まで)焼成を行った。製パン結果を表4に示した。After the proofing was completed (until the case reached a level of 1.5 cm), firing was performed. The bread making results are shown in Table 4.
表4
[−
■
[
実施例5
本発明法で製造した食パンの、市販の食パンとの差異を
調べるために、10種の食パンについて、内相(クラム
)中の有機酸分析を試みた。即ち、食パンの内相10.
9をとり、水aomz添加し、均質化後、遠心分離によ
って得られた上清をフィルター濾過し、F液を高速液体
クロマトグラフィーに供し、有機酸の含有量を調べた。Table 4 [- ■ [Example 5] In order to examine the differences between the bread produced by the method of the present invention and commercially available bread, analysis of organic acids in the internal phase (crumb) of 10 types of bread was attempted. In other words, the internal aspects of bread 10.
9 was taken, water aomz was added, and after homogenization, the supernatant obtained by centrifugation was filtered, and the F solution was subjected to high performance liquid chromatography to examine the organic acid content.
得られた結果を表5に示す。The results obtained are shown in Table 5.
表 5
米 アルコール耐性乳酸菌の生地中の添加量及び生地発
酵条件、裂パン法(例えば、ストレート法、中種法)に
よって異るが、代表的な例を示した。Table 5 Rice Although it varies depending on the amount of alcohol-resistant lactic acid bacteria added to the dough, dough fermentation conditions, and split bread method (for example, straight method, dough method), typical examples are shown.
表5に示したように、本発明の特徴の例として、リンゴ
酸含有量が低く、乳酸の含有量が非常に高い点があげら
れる。リンゴ酸の消費量にくらべて、乳酸の増加量が多
いことから、例えばイーストによって提供される代謝物
や、小麦粉や脱脂粉乳など、生地の主副原料由来の成分
を基質として乳酸を蓄積していることも考えられる。As shown in Table 5, examples of the characteristics of the present invention include low malic acid content and very high lactic acid content. Since the amount of lactic acid increases compared to the amount of malic acid consumed, lactic acid is accumulated using the metabolites provided by yeast and components derived from the main and sub-raw materials of dough, such as wheat flour and skim milk powder, as substrates. It is also possible that there are.
図1は、エタノールを5%、8におよび11に添加した
培地での乳酸菌のアルコール耐性を試験したグラフ、図
2は、実施例2で得られたアルコール耐性乳酸菌を用い
た製パン工程中の主要な有機酸の変化を示すグラフであ
る。
特許出願人 鐘淵化学工業株式会社
代理人 弁理士 浅 野 真 −Figure 1 is a graph showing the alcohol tolerance of lactic acid bacteria tested in a medium containing 5% ethanol, 8 and 11, and Figure 2 is a graph showing the alcohol tolerance of lactic acid bacteria during the bread making process using the alcohol tolerant lactic acid bacteria obtained in Example 2. It is a graph showing changes in major organic acids. Patent applicant Makoto Asano, agent of Kanebuchi Chemical Industry Co., Ltd. −
Claims (6)
ル耐性株を選択し、該乳酸菌の一種又は二種以上を用い
て生地熟成を行なうことを特徴とするパン類の製造法。(1) A method for producing bread, which comprises selecting an alcohol-resistant strain from among lactic acid bacteria and ripening the dough using one or more of the lactic acid bacteria.
乳酸生成可能なアルコール耐性乳酸菌である特許請求の
範囲第1項記載の製造法。(2) The production method according to claim 1, wherein the lactic acid bacteria are alcohol-resistant lactic acid bacteria that can grow and produce lactic acid in the presence of 11% or more ethanol.
属に属する菌株から選択される菌株である特許請求の範
囲第1項記載の製造法。(3) The production method according to claim 1, wherein the lactic acid bacteria is a strain selected from strains belonging to the genus Lactobacillus and the genus Leuconostoccus.
4個〜10^9個を含有せしめた圧搾パン酵母、乾燥酵
母、またはこれらパン酵母製品をパン類の生地に用いる
特許請求の範囲第1項記載の製造法。(4) 10% of lactic acid bacteria resistant to real alcohol per gram
2. The manufacturing method according to claim 1, wherein compressed baker's yeast, dry yeast, or products of these baker's yeast containing 4 to 10^9 are used in bread dough.
それぞれ25mg%以下、50mg%以上であることを
特徴とするパン類。(5) The content of malic acid and lactic acid in bread products is
Breads characterized by containing 25 mg% or less and 50 mg% or more, respectively.
^4個〜10^9個/g含有するパン類の生地。(6) Contain alcohol-resistant lactic acid bacteria at 10% per 1g.
Bread dough containing ^4 to 10^9 pieces/g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336098A JPH0793857B2 (en) | 1987-12-28 | 1987-12-28 | Method for producing bread using lactic acid bacteria |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336098A JPH0793857B2 (en) | 1987-12-28 | 1987-12-28 | Method for producing bread using lactic acid bacteria |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01174321A true JPH01174321A (en) | 1989-07-10 |
JPH0793857B2 JPH0793857B2 (en) | 1995-10-11 |
Family
ID=18295675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62336098A Expired - Lifetime JPH0793857B2 (en) | 1987-12-28 | 1987-12-28 | Method for producing bread using lactic acid bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0793857B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015039322A (en) * | 2013-08-21 | 2015-03-02 | 株式会社明治 | Culture method of lactic acid bacterium and food material |
KR20170114795A (en) * | 2016-04-06 | 2017-10-16 | 노은지 | Bread with yoghurt and carbonated water, and method for preparing thereof |
JP6462173B1 (en) * | 2018-08-08 | 2019-01-30 | 国立大学法人帯広畜産大学 | Lactic acid bacteria, bread manufacturing method, bread dough and bread |
CN111436477A (en) * | 2019-01-17 | 2020-07-24 | 刘群立 | Bread fermented by probiotics and making method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102025116B1 (en) * | 2018-06-05 | 2019-09-25 | 노한승 | Bakery product with blood sugar control effect produced by fermenting the dough containing whey |
-
1987
- 1987-12-28 JP JP62336098A patent/JPH0793857B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015039322A (en) * | 2013-08-21 | 2015-03-02 | 株式会社明治 | Culture method of lactic acid bacterium and food material |
KR20170114795A (en) * | 2016-04-06 | 2017-10-16 | 노은지 | Bread with yoghurt and carbonated water, and method for preparing thereof |
JP6462173B1 (en) * | 2018-08-08 | 2019-01-30 | 国立大学法人帯広畜産大学 | Lactic acid bacteria, bread manufacturing method, bread dough and bread |
JP2020022403A (en) * | 2018-08-08 | 2020-02-13 | 国立大学法人帯広畜産大学 | Lactic acid bacteria, method for producing bread, bread dough and bread |
CN111436477A (en) * | 2019-01-17 | 2020-07-24 | 刘群立 | Bread fermented by probiotics and making method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0793857B2 (en) | 1995-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4666719A (en) | Admixture of a lactobacillus brevis and a saccharomyces dairensis for preparing leavening barm | |
RU2360418C2 (en) | Bread, containing bread improving agent and its manufacturing method | |
US3404984A (en) | Process of making a frozen bacterial concentrate | |
DE69937346T2 (en) | METHOD AND COMPOSITIONS FOR PRODUCING VERGESTER WHEAT PRODUCTS | |
KR100893385B1 (en) | The preparation method of jeungpyun using rice sourdough | |
JP4014167B2 (en) | Novel baker's yeast and bread using the same | |
US3963835A (en) | Fermented flour and method of preparation | |
JP4402633B2 (en) | Method for preparing fermented species using lactic acid bacteria | |
Gelinas et al. | Sourdough-type bread from waste bread crumb | |
Gezginc et al. | The effect of exopolysaccharide producing Lactobacillus plantarum strain addition on sourdough and wheat bread quality | |
JP6454305B2 (en) | Method for preparing fermented species | |
JP6099073B2 (en) | Method for producing pizza crust with excellent flavor and texture | |
JPH01174321A (en) | Preparation of breads using lactobacillus | |
RU2573352C2 (en) | Improvement of bread bakery products with high yeast content | |
JP3066587B2 (en) | How to make sour bread | |
JPH04631B2 (en) | ||
JP2627513B2 (en) | Bread manufacturing method and bread with enhanced flavor | |
JP4775689B2 (en) | Bread production method | |
JP6462173B1 (en) | Lactic acid bacteria, bread manufacturing method, bread dough and bread | |
WO2010119874A1 (en) | Lactobacillus strain and food having antifungal activity | |
CN117546894B (en) | Application of leuconostoc mesenteroides D3 in improving quality of fermented flour products | |
KR102383112B1 (en) | Novel saccharomyces cerevisiae le pain2021-1 strain reducing stink | |
JPH11113482A (en) | Production of bakery product | |
JPH04346746A (en) | Baking of bread and frozen dough of bread | |
KR20090029023A (en) | Manufacturing method of muffin cake having soybean-curd dreg fermented by lactic bacteria and soybean-curd dreg fermented by lactic bacteria using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071011 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 13 |