JPH0330414B2 - - Google Patents

Info

Publication number
JPH0330414B2
JPH0330414B2 JP59020622A JP2062284A JPH0330414B2 JP H0330414 B2 JPH0330414 B2 JP H0330414B2 JP 59020622 A JP59020622 A JP 59020622A JP 2062284 A JP2062284 A JP 2062284A JP H0330414 B2 JPH0330414 B2 JP H0330414B2
Authority
JP
Japan
Prior art keywords
hollow fibers
dialysis
cellulose
liquid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59020622A
Other languages
Japanese (ja)
Other versions
JPS60166008A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2062284A priority Critical patent/JPS60166008A/en
Publication of JPS60166008A publication Critical patent/JPS60166008A/en
Publication of JPH0330414B2 publication Critical patent/JPH0330414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 発明の背景 (技術分野) 本発明は、透析用中空繊維の製造方法に関する
ものである。詳しく述べると、水蒸気滅菌処理時
に収縮の少ない透析用中空繊維の製造方法に関す
るものである。 (先行技術) 最近、浸透作用、限外濾過作用等を利用する人
工腎臓装置の発展はめざましく、医療界において
広く使用されている。しかして、このような人工
腎臓装置においては、極めて細い透析用中空繊維
が最も重要な部材となつている。 このような中空繊維は、いずれも銅アルモニア
セルロース溶液等のセルロース溶液または合成繊
維溶液よりなる紡糸原液と環状紡糸孔から空気中
に押出し、その下方に自重落下させ、その際、線
状に紡出される紡糸原液の内部中央部に該紡糸原
液に対する非凝固性液体を導人充填して吐出さ
せ、それから自重落下により充填伸張したのち、
酸またはアルカリ溶液中に浸漬して凝固再生を行
ない、ついで、洗浄を行ない、さらに必要により
グリセリン処理を行なつたのち、乾燥することに
より製造されている。 このような中空繊維は所定の長さに切断したの
ち、その束を人工腎臓の筒状本体に挿入し、その
両者をポツテイング材により固定して隔壁を形成
させ、該隔壁の両外側にヘツダーを取付けること
により人工腎臓が形成されている。 しかしながら、このような人工腎臓は、オート
クレーブ内で水蒸気滅菌される場合に収縮するた
めに、前記筒状本体内で比較的緩んだ状態で崇高
く挿入されていた中空繊維が前記収縮によりピン
と張ることになる。このため、前記筒状本体内面
と前記中空繊維束との間および各中空繊維同士の
間〓が広くなり、該人工腎臓を使用して透析を行
なう際に、透析液が中空繊維と充分接触すること
なく、通過する恐れがあり、このため充分な透析
効果が得られないという欠点があつた。 発明の目的 したがつて、本発明の目的は、新規な透析用中
空繊維の製造方法を提供することにある。本発明
の他の目的は、水蒸気滅菌処理時に収縮の少ない
透析用中空繊維の製造方法を提供することにあ
る。本発明のさらに他の目的は、除水能の優れた
透析用中空繊維の製造方法を提供することにあ
る。 これらの諸目的は、セルロース系紡糸原液を環
状紡糸孔から吐出させ、同時に内部中央部に非凝
固性液を導入充填し、ついで凝固性液中を通過さ
せて凝固再生したのち水洗し、このようにして得
られた中空繊維を95〜110℃の温度および0〜0.4
Kg/cm2(ゲージ圧)の圧力下に1〜4秒間水蒸気
と接触させて処理する工程と、可塑化処理する工
程とを有し、さらに乾燥することを特徴とする透
析用中空繊維の製造方法により達成される。 また、本発明は、中空繊維の水蒸気との接触が
100〜110℃および0〜0.4Kg/cm2(ゲージ圧)の
圧力下に2〜4秒間行なわれてなる透析用中空繊
維の製造方法である。また、本発明は、セルロー
ス系紡糸原液が銅アンモニアセルロース溶液であ
る透析用中空繊維の製造方法である。 発明の具体的説明 本発明により製造される中空繊維としては、銅
アンモニアセルロース、酢酸セルロース等のセル
ロース系繊維があり、特に銅アンモニアセルロー
スである。セルロースとしては種々のものが使用
できるが、一例を挙げると、例えば平均重合度
500〜2500のものが好ましく使用される。しかし
て、銅アンモニアセルロース溶液は常法により調
整される。例えば、まずアンモニア水、塩基性硫
酸銅水溶液および水を混合して銅アンモニア水溶
液を調整し、これに酸化防止材(例えば亜硫酸ナ
トリウム)を加え、ついで原料セルロースを投入
して撹拌溶解を行ない、さらに水酸化ナトリウム
水溶液を添加して未溶解セルロースを完全に溶解
させて銅アンモニアセルロース溶液を得る。この
銅アンモニアセルロース溶液には、さらに透過性
制御剤を混合して配位結合させてもよい。 紡糸方法としては種々の方法があり、例えば空
中落下方法、特開昭57−71408号および同57−
71410号に記載の非凝固性液中へ吐出したのち該
非凝固性液層と凝固性液との界面を通過させる方
法、特開昭57−71409号に記載の非凝固性液中へ
直接吐出したのち、凝固性液中を通過させる方
法、特開昭57−71411号に記載の非凝固性液に囲
繞させて吐出し、ついで凝固再生する方法、特開
昭57−199808号に記載の凝固性液を上層にハロゲ
ン化炭化水素よりなる非凝固性液を下層に充填し
てなる溶液の該非凝固性液中に環状紡糸孔から直
接吐出し、同時に内部中央部に非凝固性液を導入
充填し、ついで凝固性液中を通過させて凝固再生
する方法(以下、浮上法という。)等があるが、
特に最後者の浮上法が好ましいので、これを例に
とつて、以下、図面を参照しつつ本発明を説明す
る。 第1図は、本発明による方法および装置を用い
て中空繊維を製造するための装置全体の概略を示
す側面図である。すなわち、底部に非凝固性液槽
1を設けた浴槽2において、前記非凝固性液槽1
に下層としてハロゲン化炭化水素よりなりかつ前
記セルロース系紡糸原液に対する非凝固性液3
を、また上層として前記非凝固性液よりも比重が
小さくかつ前記紡糸原液に対する凝固性液4を供
給して二層を浴槽2に形成させる。原液貯槽(図
示せず)内の紡糸原液を導管5によ圧送し、紡糸
口金装置6の上向きに設けられた環状紡糸孔(図
示せず)から前記下層の非凝固性液3中に直接押
出す。その際、内部液貯槽(図示せず)内に貯蔵
されている前記紡糸原液に対する非凝固性液を内
部液として導管7より前記紡糸口金装置に供給
し、前記環状に押出された線状紡糸原液8の内部
中央部に導入して吐出させる。環状紡糸孔より押
出された線状紡糸原液8は、内部に非凝固性液を
含んだままなんら凝固することなく下層の非凝固
性液3中を上方へ進む。この場合、線状紡糸原液
8は、前記非凝固性液との比重差によりその浮力
を受けながら上昇する。ついでこの線状紡糸原液
8は上層の凝固性液4中に上昇するので、これを
該凝固性液4中に設けられた変向棒9により変向
させて前記凝固性液4中を充分通過させたのち、
ロール10により引上げる。さらに、ドライブロ
ール11により引上げられた凝固再生中空繊維
は、搬送装置12により搬送しながら、その上部
に設けられたアルカリ洗浄装置13、第1水洗薦
装置14、酸洗浄装置15および第2水洗装置1
6によりそれぞれシヤワー洗浄を施して、再凝
固、水洗、脱銅、および水洗を施す。ついで、こ
のようにして洗浄された中空繊維は、水蒸気処理
装置18に導入して水蒸気と接触させて処理し、
必要により可塑化処理槽17でグリセリン処理し
たのち、さらに乾燥装置19に導入して乾燥され
る。 しかして、水蒸気処理は、種々の方法で行なう
ことができるが、例えば、第2図に示すように、
両端のに端板20a,20bを備えた筒状本体2
1内を隔壁22a,22b,22c,22d,2
2e,22fにより仕切つて複数個の水蒸気処理
室23a,23b,23c,23d,23e,2
3f,23gを形成し、該水蒸気処理室の少なく
とも一つ、例えばほぼ中央の水蒸気処理室に水蒸
気導入口24を設けるとともに、前記端板20
a,20b、および隔壁22a,22b…に中央
繊維通過孔24を設けてなる水蒸気処理装置18
内の前記中央繊維通過孔25に中空繊維を通過さ
せ、前記水蒸気導入口24より水蒸気を導入して
接触させる。水蒸気処理室23dに導入した水蒸
気は、該水蒸気処理室23d内を走行する中空繊
維8と接触したのち、中空繊維通過孔24を経て
隣接する水蒸気処理室23cおよび23eに侵入
して中空繊維8と接触し、さらに順次同様な方法
で隣接する水蒸気処理室に侵入して中空繊維8と
の接触を繰返す。最後に末端の水蒸気処理室で接
触処理に供されたのち、水蒸気排出口26または
中空繊維通過孔25から排出される。なお、各水
蒸気処理室には、必要によりドレーン(図示せ
ず)が設けられる。また、筒状本体21の外部に
は、必要により保温が施される。 しかして、水蒸気としては、95〜110℃3好ま
しくは100〜110℃で0〜0.4Kg/cm(ゲージ圧)
のものが使用され、中空繊維との接触時間は1〜
4秒、好ましくは2〜4秒である。 グリセリン処理は、可塑化処理糟17内に収納
されているグリセリン水溶液中に中空繊維8を浸
漬して走行させ、ついで、ローラにより引上げて
乾燥装置19へ送ることにより行なわれる。この
グリセリン水溶液の濃度は通常0.5〜5重量%、
好ましくは1〜4.5重量%である。また、グリセ
リン水溶液の液温は20〜60℃、好ましくは40〜60
℃である。このグリセリン処理による可塑化工程
は、水蒸気処理工程の前に設けてもよいことはも
ちろんである。 なお、乾燥は、常法によつて行なわれる。 つぎに、実施例を挙げて本発明方法を、さらに
詳細に説明する。 実施例 1 25%アンモニア水溶液2354gに塩基性硫酸銅
540gを懸濁させて銅アンモニア水溶液を調整し、
これに10%亜硫酸ナトリウム水溶液1690gを添加
した。この溶液に重合度約1000(±100)のコツト
ンリンターパルプを湿式粉砕し、脱水した含水リ
ンター(含水率69.7%)2273gを投入して濃度調
整用RO水210gを添加して撹拌溶解を行ない、
ついで、10%水酸化ナトリウム水溶液1233gを添
加して銅アンモニアセルロース水溶液(比重
1.08)を調整して紡糸原液とした。 一方、第1図に示すような装置を用いて、浴槽
2の非凝固性液糟1に非凝固性液3として1,
1,1−トリクロルエタンを供給して下層を形成
させ、ついで凝固性液として50g/の濃度の水
酸化ナトリウム水溶液を供給して上層を形成させ
た。前記紡糸原液を環状紡糸孔を上向きに装着し
た紡糸口金装置6に導き、5Kg/cm2の窒素圧で紡
糸孔より前記下層の液温20±2℃の非凝固性液3
中に直接吐出させた。紡糸孔の孔径は3.8mmであ
り、紡糸原液(cell7.8%、1.100p(20℃))の吐出
量は5.86ml/分とした。一方、紡糸口金装置6に
装着した非凝固性液の導入管7よりミリスチン酸
イソプロピル(比重0.854)を導入し、前記線状
吐出原液に内包させて吐出させた。上記導入管の
管径は1.2mmであり、ミリスチン酸イソプロピル
の吐出量は1.50ml/分とした。ついで、吐出原液
(非凝固性液を内包)8(比重1.026)を1,1,
1−トリクロルエタン中に上昇させ、さらに上層
の水酸化ナトリウム水溶液(20±2℃)中を上昇
させたのち、変向棒9により水平方向に走行させ
た。このときの非凝固性液の層高は200mmであり、
界面から変向棒9の上端まで距離は150mmであり、
紡糸速度60m/分、トラバースワイド80、走行距
離4.4mであつた。この浴槽からローラ10によ
り引上げたのち、搬送装置12上に堆積させ、該
搬送装置12上で12%水酸化ナトリウム水溶液を
シヤワー状に振りかけ充分凝固させ、水洗処理
し、5%硫酸により再生処理(脱銅処理)をし、
さらに水洗処理したのち、水蒸気処理に供した。 水蒸気処理は、第2図に示すように水蒸気導入
口24より110℃(0.4Kg/cm2・G)の水蒸気を導
入し、2.5秒間中空繊維と接触させて行なつた。
ついで、このようにして水蒸気処理された中空繊
維を1.5重量%のグリセリン水溶液(液温20℃)
に20分間浸漬して可塑化処理を行なつた。さら
に、該中空繊維を80℃の温度で39秒間熱風乾燥を
行なつて透析用中空繊維を得た。 このようにして得られた透析用中空繊維につい
て、水蒸気滅菌後の収縮率、UFRおよび中分子
除去能を測定したところ第1表のとおりであつ
た。 実施例 2〜4 実施例1の方法において、水蒸気処理の条件を
第1表に示すように種々変えた以外は、同様な方
法で透析用中空繊維を構造し、かつ同様な試験を
行なつたところ、第1表の結果が得られた。 比較例 実施例1の方法において、水蒸気処理を省略し
た以外は、同様な方法で透析用中空繊維を製造
し、かつ同様な試験を行なつたところ、第1表の
結果が得られた。 比較例 2〜7 実施例1の方法において、水蒸気の処理条件を
第1表に示すように種々変えた以外は、同様な方
法で透析用中空繊維を製造し、同様な試験を行な
つたところ、第1表の結果が得られた。
BACKGROUND OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing hollow fibers for dialysis. More specifically, the present invention relates to a method for producing hollow fibers for dialysis that have little shrinkage during steam sterilization. (Prior Art) Artificial kidney devices that utilize osmotic action, ultrafiltration action, etc. have recently made remarkable progress and are widely used in the medical world. Therefore, in such an artificial kidney device, the extremely thin hollow fiber for dialysis is the most important component. Such hollow fibers are extruded into the air through a spinning dope made of a cellulose solution such as a copper alumonia cellulose solution or a synthetic fiber solution and an annular spinning hole, allowed to fall under their own weight, and then spun into a linear shape. A non-coagulable liquid for the spinning dope is filled and discharged into the center of the spinning dope, and then filled and expanded by falling under its own weight.
It is produced by immersing it in an acid or alkaline solution to coagulate and regenerate it, then washing it, and if necessary, treating it with glycerin, and then drying it. After cutting such hollow fibers to a predetermined length, the bundle is inserted into the cylindrical body of the artificial kidney, and both are fixed with potting material to form a partition, and headers are placed on both outsides of the partition. By attaching it, an artificial kidney is formed. However, since such an artificial kidney contracts when steam sterilized in an autoclave, the hollow fibers inserted relatively loosely within the cylindrical body become taut due to the contraction. become. Therefore, the space between the inner surface of the cylindrical body and the hollow fiber bundle and between each hollow fiber becomes wide, so that when performing dialysis using the artificial kidney, the dialysate can sufficiently contact the hollow fibers. There is a risk that the membrane may pass through the membrane without causing any damage, and this has the disadvantage that a sufficient dialysis effect cannot be obtained. OBJECT OF THE INVENTION Therefore, an object of the present invention is to provide a novel method for producing hollow fibers for dialysis. Another object of the present invention is to provide a method for producing hollow fibers for dialysis that exhibit less shrinkage during steam sterilization. Still another object of the present invention is to provide a method for producing hollow fibers for dialysis with excellent water removal ability. These objectives are to discharge cellulose-based spinning dope through an annular spinning hole, simultaneously introduce and fill the center of the interior with a non-coagulable liquid, pass through the coagulable liquid to solidify and regenerate, and then wash with water. The hollow fibers obtained at 95-110℃ and 0-0.4
Production of a hollow fiber for dialysis, which comprises a step of contacting with water vapor for 1 to 4 seconds under a pressure of Kg/cm 2 (gauge pressure), a step of plasticizing treatment, and further drying. This is accomplished by a method. Further, the present invention provides that the hollow fibers do not come into contact with water vapor.
This is a method for producing hollow fibers for dialysis, which is carried out for 2 to 4 seconds at 100 to 110° C. and a pressure of 0 to 0.4 Kg/cm 2 (gauge pressure). Further, the present invention is a method for producing hollow fibers for dialysis, in which the cellulose-based spinning dope is a copper ammonia cellulose solution. DETAILED DESCRIPTION OF THE INVENTION Hollow fibers produced according to the present invention include cellulose fibers such as cuprammonium cellulose and cellulose acetate, particularly cuprammonium cellulose. Various types of cellulose can be used, but to give an example, for example, average degree of polymerization
500 to 2500 is preferably used. Thus, the cuprammonium cellulose solution is prepared by a conventional method. For example, first, aqueous ammonia, a basic aqueous copper sulfate solution, and water are mixed to prepare an aqueous cupric ammonia solution, an antioxidant (e.g., sodium sulfite) is added to this, then the raw material cellulose is added and dissolved with stirring, and then An aqueous sodium hydroxide solution is added to completely dissolve undissolved cellulose to obtain a cuprammonium cellulose solution. This cuprammonium cellulose solution may further be mixed with a permeability control agent for coordination bonding. There are various spinning methods, such as the aerial drop method, Japanese Patent Application Laid-Open Nos. 57-71408 and 57-
The method of discharging into a non-coagulable liquid and then passing through the interface between the non-coagulable liquid layer and the coagulating liquid as described in No. 71410, and the method of discharging directly into a non-coagulable liquid as described in JP-A-57-71409. Thereafter, a method of passing through a coagulable liquid, a method of surrounding the non-coagulable liquid and discharging it as described in JP-A No. 57-71411, and then coagulating and regenerating it, and a method of coagulating the liquid as described in JP-A-57-199808. A liquid is directly discharged from an annular spinning hole into the non-coagulable liquid of a solution in which the upper layer is filled with a non-coagulable liquid made of a halogenated hydrocarbon and the lower layer is filled, and at the same time, the non-coagulable liquid is introduced and filled into the central part of the inside. There are methods of solidifying and regenerating the material by passing it through a coagulable liquid (hereinafter referred to as flotation method), etc.
Since the latter levitation method is particularly preferred, the present invention will be described below by taking this as an example and referring to the drawings. FIG. 1 is a side view schematically showing an entire apparatus for producing hollow fibers using the method and apparatus according to the present invention. That is, in a bathtub 2 provided with a non-coagulable liquid tank 1 at the bottom, the non-coagulable liquid tank 1
and a non-coagulable liquid 3 comprising a halogenated hydrocarbon as a lower layer and relative to the cellulose-based spinning stock solution.
Further, as an upper layer, a coagulable liquid 4 having a smaller specific gravity than the non-coagulable liquid and relative to the spinning stock solution is supplied to form two layers in the bathtub 2. The spinning stock solution in a stock solution storage tank (not shown) is pumped through a conduit 5 and is directly pushed into the lower non-coagulable liquid 3 through an annular spinning hole (not shown) provided upward in a spinneret device 6. put out. At that time, a non-coagulable liquid for the spinning dope stored in an internal liquid storage tank (not shown) is supplied as an internal liquid to the spinneret device through a conduit 7, and the linear spinning dope is extruded into an annular shape. 8 and discharged. The linear spinning dope 8 extruded from the annular spinning hole advances upward in the non-coagulable liquid 3 in the lower layer without coagulating at all while containing the non-coagulable liquid inside. In this case, the linear spinning dope 8 rises while receiving buoyancy due to the difference in specific gravity with the non-coagulable liquid. Then, this linear spinning stock solution 8 rises into the coagulable liquid 4 in the upper layer, so it is changed in direction by a direction changing rod 9 provided in the coagulable liquid 4 and sufficiently passed through the coagulable liquid 4. After letting
It is pulled up by roll 10. Further, while the coagulated and regenerated hollow fibers pulled up by the drive roll 11 are conveyed by the conveying device 12, an alkali cleaning device 13, a first water washing device 14, an acid cleaning device 15, and a second water washing device are installed on the conveying device 12. 1
Shower cleaning is performed in step 6, followed by re-solidification, water washing, decopper removal, and water washing. The hollow fibers thus cleaned are then introduced into a steam treatment device 18 and treated by contacting them with steam,
After being treated with glycerin in the plasticizing treatment tank 17 if necessary, it is further introduced into the drying device 19 and dried. The steam treatment can be carried out in various ways, but for example, as shown in Figure 2,
A cylindrical body 2 with end plates 20a and 20b at both ends.
1 inside partition walls 22a, 22b, 22c, 22d, 2
A plurality of steam treatment chambers 23a, 23b, 23c, 23d, 23e, 2 partitioned by 2e and 22f.
3f and 23g, and a steam inlet 24 is provided in at least one of the steam treatment chambers, for example, a substantially central steam treatment chamber, and the end plate 20
a, 20b, and partition walls 22a, 22b... with a central fiber passage hole 24.
The hollow fibers are passed through the central fiber passage hole 25 in the center, and water vapor is introduced from the water vapor introduction port 24 and brought into contact with the hollow fibers. The steam introduced into the steam treatment chamber 23d comes into contact with the hollow fibers 8 running inside the steam treatment chamber 23d, and then enters the adjacent steam treatment chambers 23c and 23e through the hollow fiber passage holes 24, and the hollow fibers 8 and The fibers contact the hollow fibers 8, and then successively enter adjacent steam treatment chambers in the same manner to repeat the contact with the hollow fibers 8. Finally, after being subjected to contact treatment in the steam treatment chamber at the end, it is discharged from the steam outlet 26 or the hollow fiber passage hole 25. Note that each steam treatment chamber is provided with a drain (not shown) if necessary. Further, the outside of the cylindrical main body 21 is provided with heat insulation if necessary. Therefore, as water vapor, 0 to 0.4 Kg/cm (gauge pressure) at 95 to 110°C, preferably 100 to 110°C.
is used, and the contact time with the hollow fiber is from 1 to
4 seconds, preferably 2 to 4 seconds. The glycerin treatment is carried out by immersing the hollow fibers 8 in an aqueous glycerin solution stored in the plasticizing chamber 17 and running them, then pulling them up with rollers and sending them to the drying device 19. The concentration of this glycerin aqueous solution is usually 0.5 to 5% by weight.
Preferably it is 1 to 4.5% by weight. In addition, the temperature of the glycerin aqueous solution is 20 to 60℃, preferably 40 to 60℃.
It is ℃. Of course, this plasticizing step using glycerin treatment may be provided before the steam treatment step. Note that drying is performed by a conventional method. Next, the method of the present invention will be explained in more detail with reference to Examples. Example 1 Add basic copper sulfate to 2354 g of 25% ammonia aqueous solution.
Prepare a copper ammonia aqueous solution by suspending 540g,
To this was added 1690 g of a 10% aqueous sodium sulfite solution. To this solution, 2273 g of wet-pulverized Kotton linter pulp with a degree of polymerization of about 1000 (±100) and dehydrated water-containing linter (water content 69.7%) was added, and 210 g of RO water for concentration adjustment was added and dissolved with stirring. ,
Next, 1233 g of 10% sodium hydroxide aqueous solution was added to make a copper ammonia cellulose aqueous solution (specific gravity
1.08) was prepared and used as a spinning stock solution. On the other hand, using a device as shown in FIG.
1,1-trichloroethane was fed to form a lower layer, and then an aqueous sodium hydroxide solution with a concentration of 50 g/ml was fed as a coagulating liquid to form an upper layer. The spinning dope is introduced into a spinneret device 6 equipped with an annular spinning hole facing upward, and a non-coagulating liquid 3 with a liquid temperature of 20±2° C.
It was discharged directly into the interior. The diameter of the spinning hole was 3.8 mm, and the discharge rate of the spinning stock solution (cell 7.8%, 1.100 p (20°C)) was 5.86 ml/min. On the other hand, isopropyl myristate (specific gravity 0.854) was introduced from the non-coagulable liquid introduction pipe 7 attached to the spinneret device 6, and was included in the linear discharge stock solution and discharged. The diameter of the introduction tube was 1.2 mm, and the discharge rate of isopropyl myristate was 1.50 ml/min. Next, the discharge stock solution (containing non-coagulable liquid) 8 (specific gravity 1.026) was heated 1, 1,
After rising in 1-trichloroethane and further rising in the upper layer of an aqueous sodium hydroxide solution (20±2°C), it was moved in a horizontal direction using a deflection rod 9. The layer height of the non-coagulable liquid at this time is 200 mm,
The distance from the interface to the upper end of the deflection rod 9 is 150 mm,
The spinning speed was 60 m/min, the traverse width was 80, and the running distance was 4.4 m. After being pulled up from this bath by rollers 10, it is deposited on a conveying device 12, and on the conveying device 12, a 12% aqueous sodium hydroxide solution is sprinkled in a shower to fully solidify, washed with water, and regenerated with 5% sulfuric acid ( Copper removal treatment)
After further washing with water, it was subjected to steam treatment. The steam treatment was carried out by introducing steam at 110° C. (0.4 Kg/cm 2 ·G) from the steam inlet 24 as shown in FIG. 2, and bringing it into contact with the hollow fibers for 2.5 seconds.
Next, the hollow fibers treated with water vapor in this way were placed in a 1.5% by weight glycerin aqueous solution (liquid temperature 20°C).
Plasticization treatment was performed by immersing the material in water for 20 minutes. Further, the hollow fibers were dried with hot air at a temperature of 80° C. for 39 seconds to obtain hollow fibers for dialysis. Regarding the hollow fiber for dialysis thus obtained, the shrinkage rate, UFR and middle molecule removal ability after steam sterilization were measured and the results were as shown in Table 1. Examples 2 to 4 Hollow fibers for dialysis were constructed in the same manner as in Example 1, except that the steam treatment conditions were varied as shown in Table 1, and the same tests were conducted. However, the results shown in Table 1 were obtained. Comparative Example Hollow fibers for dialysis were produced in the same manner as in Example 1, except that the steam treatment was omitted, and the same tests were conducted, and the results shown in Table 1 were obtained. Comparative Examples 2 to 7 Hollow fibers for dialysis were produced in the same manner as in Example 1, except that the water vapor treatment conditions were varied as shown in Table 1, and the same tests were conducted. , the results shown in Table 1 were obtained.

【表】【table】

【表】 発明の具体的効果 以上述べたように、本発明は、セルロース系紡
糸原液を環状紡糸孔から吐出させ、同時に内部中
央部に非凝固性液を導入充填し、ついで凝固性液
中を通過させて凝固再生したのち水洗し、このよ
うにして得られた中空繊維を95〜110℃の温度お
よび0〜0.4Kg/cm2(ゲージ圧)の圧力下に1〜
4秒間水蒸気と接触させて処理する工程と、可塑
化処理する工程とを有し、さらに乾燥することを
特徴とする透析用中空繊維の製造方法であるか
ら、該中空繊維を使用した人工腎臓等を水蒸気滅
菌した場合、その収縮が非常に小さいので、両末
端をポツテイング剤で固定してあるにもかかわら
ず、人工腎臓の筒状本体内で比較的緩んだ状態で
崇高性を保つことができ、このため前記筒状本体
内面と中空繊維束との間および各中空繊維同士の
間隙が比較的〓くなり、該人工腎臓を使用して透
析を行なう際に、透析液が中空繊維と充分接触す
ることができ、このため充分な透析効果が得られ
る。また、UFRおよび中分子除去能が大きいと
いう利点がある。 また、水蒸気処理を100〜110℃で0〜0.4Kg/
cm2・Gで2〜4秒間行なうことにより前記効果は
さらに増大する。さらに、セルロースとして銅ア
ンモニアセルロースを使用する場合には、特に優
れた効果を発揮する。
[Table] Specific Effects of the Invention As described above, the present invention discharges a cellulose-based spinning stock solution from an annular spinning hole, simultaneously introduces and fills a non-coagulable liquid into the center of the interior, and then drains the coagulable liquid. After being coagulated and regenerated by passing through the fibers, the hollow fibers thus obtained are washed with water at a temperature of 95 to 110°C and a pressure of 0 to 0.4 Kg/cm 2 (gauge pressure).
Since this is a method for producing hollow fibers for dialysis, which includes a step of contacting with water vapor for 4 seconds, a step of plasticizing treatment, and further drying, artificial kidneys etc. using the hollow fibers can be produced. When sterilized with steam, the shrinkage is very small, so even though both ends are fixed with a potting agent, it remains relatively loose within the cylindrical body of the artificial kidney. Therefore, the gaps between the inner surface of the cylindrical body and the hollow fiber bundle and between the hollow fibers are relatively small, so that when performing dialysis using the artificial kidney, the dialysate is in sufficient contact with the hollow fibers. Therefore, a sufficient dialysis effect can be obtained. It also has the advantage of having a high ability to remove UFR and middle molecules. In addition, steam treatment is carried out at 100 to 110℃ for 0 to 0.4 kg/
The above effect is further enhanced by carrying out the test at cm 2 ·G for 2 to 4 seconds. Furthermore, particularly excellent effects are exhibited when cuprammonium cellulose is used as the cellulose.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法において使用される装置全
体の概略を示す側面図であり、また第2図は本発
明方法で使用される水蒸気処理装置の概略を示す
部分破断斜視図である。 6……紡糸口全装置、8……線状紡糸原液、1
2……搬送装置、14,16……水洗装置、17
……可塑化処理槽、18……水蒸気処理装置、1
9……乾燥装置。
FIG. 1 is a side view schematically showing the entire apparatus used in the method of the present invention, and FIG. 2 is a partially cutaway perspective view schematically showing the steam treatment apparatus used in the method of the present invention. 6...All spinneret equipment, 8...Linear spinning dope, 1
2... Conveyance device, 14, 16... Water washing device, 17
...Plasticization treatment tank, 18 ...Steam treatment device, 1
9...Drying device.

Claims (1)

【特許請求の範囲】 1 セルロース系紡糸原液を環状紡糸孔から吐出
させ、同時に内部中央部に非凝固性液を導入充填
し、ついで凝固性液中を通過させて凝固再生した
のち水洗し、このようにして得られた中空繊維を
95〜110℃の温度および0〜0.4Kg/cm2(ゲージ
圧)の圧力下に1〜4秒間水蒸気と接触させて処
理する工程と、可塑化処理する工程とを有し、さ
らに乾燥することを特徴とする透析用中空繊維の
製造方法。 2 中空繊維と水蒸気との接触は、95〜110℃の
温度および0〜0.4Kg/cm2(ゲージ圧)の圧力下
に2〜4秒間行なわれてなる特許請求の範囲第1
項に記載の透析用中空繊維の製造方法。 3 セルロース系紡糸原液が銅アンモニアセルロ
ース溶液である特許請求の範囲第1項または第2
項に記載の透析用中空繊維の製造方法。
[Scope of Claims] 1. A cellulose-based spinning dope is discharged from an annular spinning hole, a non-coagulable liquid is introduced and filled into the center of the interior at the same time, and then passed through a coagulable liquid to be solidified and regenerated, and then washed with water. The hollow fibers obtained in this way are
A process of contacting with water vapor for 1 to 4 seconds at a temperature of 95 to 110°C and a pressure of 0 to 0.4 Kg/cm 2 (gauge pressure), and a process of plasticizing treatment, and further drying. A method for producing hollow fibers for dialysis, characterized by: 2. The contact between the hollow fiber and water vapor is carried out for 2 to 4 seconds at a temperature of 95 to 110°C and a pressure of 0 to 0.4 Kg/cm 2 (gauge pressure).
The method for producing hollow fibers for dialysis as described in 2. 3. Claim 1 or 2, wherein the cellulose-based spinning dope is a copper ammonia cellulose solution.
The method for producing hollow fibers for dialysis as described in 2.
JP2062284A 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis Granted JPS60166008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2062284A JPS60166008A (en) 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2062284A JPS60166008A (en) 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis

Publications (2)

Publication Number Publication Date
JPS60166008A JPS60166008A (en) 1985-08-29
JPH0330414B2 true JPH0330414B2 (en) 1991-04-30

Family

ID=12032336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2062284A Granted JPS60166008A (en) 1984-02-07 1984-02-07 Preparation of hollow yarn for dialysis

Country Status (1)

Country Link
JP (1) JPS60166008A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157204A (en) * 1984-08-27 1986-03-24 Terumo Corp Dialytic hollow yarn and its preparation
JP2008295868A (en) * 2007-06-01 2008-12-11 Toyobo Co Ltd Method for producing blood purifier and blood purifier
JP5138572B2 (en) * 2008-12-25 2013-02-06 三菱レイヨン株式会社 Hollow fiber membrane manufacturing method and hollow fiber membrane drying apparatus
US9151538B2 (en) 2010-07-07 2015-10-06 Mitsubishi Rayon Co., Ltd. Drying device and drying method for hollow fiber membranes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164127A (en) * 1981-04-02 1982-10-08 Asahi Chem Ind Co Ltd Production of regenerated cellulose molding
JPS58120808A (en) * 1982-01-11 1983-07-18 Teijin Ltd Production of hollow fiber of regenerated cellulose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164127A (en) * 1981-04-02 1982-10-08 Asahi Chem Ind Co Ltd Production of regenerated cellulose molding
JPS58120808A (en) * 1982-01-11 1983-07-18 Teijin Ltd Production of hollow fiber of regenerated cellulose

Also Published As

Publication number Publication date
JPS60166008A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
JPS5860010A (en) Hollow fiber and dialytic membrane consisting of said hollow fiber
EP0359636B1 (en) Hollow cellulose fibers, method for making, and fluid processing apparatus using same
US5505890A (en) Process for manufacturing cellulose acetate membranes
JPS6133601B2 (en)
EP0175948B1 (en) Method for manufacture of hollow fibers for dialysis
JPH0330414B2 (en)
GB2086798A (en) Microporous cellulose membrane
JPH047256B2 (en)
JPH0254132B2 (en)
JPS60166007A (en) Preparation of hollow yarn for dialysis
JPH0194902A (en) Polysulfone hollow fibrous membrane and production thereof
JPH035847B2 (en)
JPH0371144B2 (en)
JPS6329005B2 (en)
JPH0829231B2 (en) Cellulose hollow system and method for producing the same
JP3494466B2 (en) Method for producing hollow fiber for dialysis
JPS6160165B2 (en)
JPS6259607B2 (en)
JPH04210066A (en) Reproduced cellulosic hollow yarn film for blood dialysis and its manufacture
JPH1147267A (en) Cellulosic hollow fiber filter membrane and filter
JPS6132043B2 (en)
JPS5818405A (en) Hollow fiber regenerated from cuprammonium cellulose and its production
JP2707274B2 (en) Method for producing porous regenerated cellulose hollow fiber
JP2002066273A (en) Method for suppressing oxidation of hollow fiber membrane
JPH03278822A (en) Dialyzing membrane and production thereof