JPH0330309A - Formation of aluminum foil for electrolytic capacitor - Google Patents

Formation of aluminum foil for electrolytic capacitor

Info

Publication number
JPH0330309A
JPH0330309A JP16507189A JP16507189A JPH0330309A JP H0330309 A JPH0330309 A JP H0330309A JP 16507189 A JP16507189 A JP 16507189A JP 16507189 A JP16507189 A JP 16507189A JP H0330309 A JPH0330309 A JP H0330309A
Authority
JP
Japan
Prior art keywords
depolarization
treatment
formation
aluminum foil
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16507189A
Other languages
Japanese (ja)
Inventor
Kazuyuki Adachi
安達 和幸
Masaru Endo
優 遠藤
Manabu Kazuhara
学 数原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP16507189A priority Critical patent/JPH0330309A/en
Publication of JPH0330309A publication Critical patent/JPH0330309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To decrease a leakage current in forming of foils by performing depolarization treatment for a prescribed time by using hypophosphorous acid and hypophosphite between respective formation stages and treating an aluminum foil with heat after performing final formation, thereby performing formation again after performing depolarization treatment by using further hypophosphorous acid and hypophosphite. CONSTITUTION:Depolarization treatment processes B and D are performed for a prescribed time by using hypophosphorous acid and hypophosphite at least between respective formation stages A, C, and E and then, heat treatment F is performed after completion of final formation E. Further, formation H is performed again after performing depolarization treatment G by using further hypophosphorous acid and hypophosphite. It is preferable to perform depolarization treatment for 1-30 min. and it is preferable to perform heat treatment in the air at a temperature 400-550 deg.C or in an atmosphere of inactive gases, e.g. an N2 gas or an Ar gas and the like. If such a temperature is lower than 400 deg.C, water content in an aluminum foil 1 is not dehydrated sufficiently and further, if its temperature exceeds 550 deg.C, the aluminum foil 1 is so fusible that it is not preferable for its foil. As to time required for heat treatment, it is advantageous to have tens of sec.tens of min. and yet, it is still better to continue treating 1-15 min. A leakage current in forming of foils is thus decreased.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は電解コンデンサ用アルミニウム箔の化成方法
に関し、さらに詳しく・言えば、同アルミニウム箔に異
なる化成電圧を印加して化成を行なうようにした多段化
成方法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a method for forming aluminum foil for electrolytic capacitors, and more specifically, the present invention relates to a method for forming aluminum foil for electrolytic capacitors. This invention relates to a multi-stage chemical conversion method.

〔従来の技術〕[Conventional technology]

一般に、アルミニウム電解コンデンサの陽極は、電極用
アルミニウム箔をエツチングした後に、陽trJA酸化
することにより製造される。高圧用の陽極箔をv5造す
るにあたって、従来ではまず第1段化成槽内で例えば2
00■の化成電圧を印加し、次に第2段化成槽内に移し
て300V電圧下で化成し、さらに第3段化成槽で37
0■化成を行なった後、順に減極処理、熱処理、再化成
などの工程を経るようにしている。
Generally, the anode of an aluminum electrolytic capacitor is manufactured by etching an aluminum foil for an electrode and then performing positive trJA oxidation. Conventionally, when producing V5 anode foil for high pressure, for example, 2
A chemical formation voltage of 00V is applied, then transferred to the second stage chemical conversion tank and chemically formed under a voltage of 300V, and then 37V in the third stage chemical conversion tank.
0) After chemical formation, steps such as depolarization treatment, heat treatment, and re-formation are performed in order.

〔発明が解決しようとするB題〕[Problem B that the invention attempts to solve]

上記のように多段階に化成を行なっているが、従来法に
よる限り、化成箔の漏れ電流を満足する値にまで低下さ
せることは困難であった。
Although chemical conversion is performed in multiple stages as described above, it has been difficult to reduce the leakage current of the chemically formed foil to a satisfactory value using conventional methods.

本発明者は、この点を解決すべく鋭意研究を行なった結
果、この発明をなすに至った。
The present inventor conducted extensive research to solve this problem, and as a result, he came up with this invention.

〔0!題を解決するための手段〕 上記課題を解決するため、この発明においては、電解コ
ンデンサ用アルミニウム箔に異なる化成電圧を多段階に
印加して同アルミニウム箔を化成するにあたって、少な
くとも各化成段階の間に、次損りん酸およびその塩を用
いて所定時間の減極処理を行ない、最終化成後に熱処理
を行ない、さらに次1にりん酸およびその塩を用いて減
極処理した後に再化成を行なうようにしている。
[0! Means for Solving the Problems] In order to solve the above problems, in the present invention, when applying different forming voltages to an aluminum foil for electrolytic capacitors in multiple stages to chemically form the aluminum foil, at least during each forming stage, First, depolarization treatment is performed for a predetermined time using phosphoric acid and its salt, heat treatment is performed after final chemical formation, and then re-formation is performed after depolarization treatment is performed using phosphoric acid and its salt. I have to.

第1図には化成を3段階に行なう場合の例が示されてい
るが、これについて説明すると、アルミニウム箔1は、
図示しない前処理工程において所要の純水煮沸処理を施
されたのち、まず工8への第一次化成槽2内で例えば電
圧200■を印加されて第一次化成される。次に、工程
Bの減極槽3内において減極処理がなされ、続いて工8
Cの第一次化成液4に移され、第二次化成(印加電圧3
00V)が行なわれる。その後、工V4Dの減極槽5内
で減極処理が行なわれ、工程Eの第三次化成槽6(印加
電圧370V)に移行する0ベニ8X−′の加熱室7に
よる熱処理が行なわれ、引き続き減極槽8内で減極処理
Gが行なわれ、さらに再化成槽9における再化成工程H
1後処理槽1a内での後処理工程工が行なわれる。
FIG. 1 shows an example in which chemical conversion is carried out in three stages. To explain this, the aluminum foil 1 is
After being subjected to a necessary pure water boiling treatment in a pretreatment step (not shown), a voltage of, for example, 200 cm is applied in the primary chemical conversion tank 2 to step 8 to perform primary chemical conversion. Next, depolarization treatment is performed in the depolarization tank 3 of step B, and then step 8
It is transferred to the primary chemical liquid 4 of C, and the secondary chemical liquid (applied voltage 3
00V) is performed. After that, depolarization treatment is performed in the depolarization tank 5 of process V4D, and heat treatment is performed in the heating chamber 7 of 0V 8X-', which is transferred to the tertiary chemical conversion tank 6 (applied voltage 370V) of process E. Subsequently, depolarization treatment G is performed in the depolarization tank 8, and then a reconstitution process H is performed in the reconstitution tank 9.
A post-processing process is performed in the post-processing tank 1a.

この発明において、上記各減極処理工程B、D。In this invention, each of the above depolarization treatment steps B and D.

Gの減極処理液には次、11Lりん看およびその塩が用
いられる。各減極処理液は同一の処理液であっても、ま
た配合成分などの異なる処理液であってもよい。減極処
理の時間としては1〜30分間が好ましい。
Next, 11L phosphorus and its salts are used in the depolarization treatment solution of G. Each depolarization treatment liquid may be the same treatment liquid, or may be a treatment liquid with different ingredients. The time for the depolarization treatment is preferably 1 to 30 minutes.

十、記の各化成槽2,4.6および91こ対応して第一
次、第二次および第三次化成用電源11.12゜13が
それぞれ用意され、アルミニウム箔1はそれら電源の(
+)側に接続され、各化成槽内にはそれに対応する各電
源の(−)側に接続されるマイナス電極が配置されてい
る。図示の例において、再化成槽9は第三次化成槽6と
同じく第三次代成用′屯源13に接続されている。第一
次化成液、第二次化成液、第三次化成液および再化成液
は同一の化成液であっても、またその他の異なる化成液
であってもよい。
10. Primary, secondary, and tertiary chemical conversion power supplies 11, 12, and 13 are prepared corresponding to the chemical conversion tanks 2, 4, 6, and 91, respectively, and the aluminum foil 1 is connected to the (
A negative electrode is connected to the (+) side, and a negative electrode connected to the (-) side of the corresponding power source is arranged in each chemical conversion tank. In the illustrated example, the reconversion tank 9 is connected to the tertiary conversion source 13 like the tertiary conversion tank 6. The primary chemical liquid, the secondary chemical liquid, the tertiary chemical liquid, and the regenerated chemical liquid may be the same chemical liquid or may be other different chemical liquids.

熱処理は400〜550℃の大気中、N2ガスもしくは
Arガスなどの不活性ガス中で行なうのが好ましく、4
00℃未満であるとアルミニウム箔中の水分が十分に脱
水できず、また550℃を越えるとアルミニウム箔が溶
解し好ましくない、熱処理時間は数十秒から数七分が好
ましく、1〜15分間がより好ましい。
The heat treatment is preferably carried out in the atmosphere at 400 to 550°C, or in an inert gas such as N2 gas or Ar gas.
If the temperature is less than 00°C, the water in the aluminum foil cannot be sufficiently dehydrated, and if it exceeds 550°C, the aluminum foil will melt, which is undesirable.The heat treatment time is preferably from several tens of seconds to several seven minutes, and from 1 to 15 minutes. More preferred.

〔発明の効果〕〔Effect of the invention〕

上記のように、多段化成を行なうにあたって、化成電圧
をステップアップさせるごとに、次曲りん酸およびその
塩を用いて減極処理を行ない、最終化成後に熱処理を行
ない、さらに次叱りん酸およびその塩を用いて減極処理
し5再化成を行なうことしこより、化成箔の漏れ電流を
小さくすることができる。
As mentioned above, in performing multi-stage chemical formation, each time the formation voltage is stepped up, depolarization treatment is performed using hypophosphoric acid and its salts, heat treatment is performed after the final chemical formation, and further heat treatment is performed using hypophosphoric acid and its salts. The leakage current of the chemically formed foil can be reduced by performing depolarization treatment using salt and reconforming.

〔実 施 例〕〔Example〕

以−ト、この発明の実施例を比較例とともに説明する。 Examples of the present invention will now be described along with comparative examples.

なお、各実施例、比較例ともに化或は第三次まで行なっ
ている。
It should be noted that each of the Examples and Comparative Examples has been carried out up to the third stage.

(実施例1)各化成槽2,4.6および9内に化成液と
して、硼酸濃度17%水溶液を入れた。また、各減極榊
3,5,8内には、次亜りん酸濃度1.5%水溶液(液
温75℃)を減損処理液として入れた。
(Example 1) An aqueous solution of boric acid having a concentration of 17% was placed in each of the chemical conversion tanks 2, 4, 6 and 9 as a chemical conversion liquid. In addition, an aqueous solution of hypophosphorous acid having a concentration of 1.5% (liquid temperature: 75° C.) was placed in each of the depolarizing sakakis 3, 5, and 8 as a depletion treatment liquid.

工程彊】−次化成槽2において、10mA/ crJの
定電流にて200vまで電圧を[−げ、この化成電圧を
定電圧状態にて10分間印加した。
[Process] - Next, in the chemical conversion tank 2, a voltage was applied to 200 V at a constant current of 10 mA/crJ, and this chemical forming voltage was applied for 10 minutes in a constant voltage state.

Eに程B;減極槽3の減極処理液内に8分間浸漬した。B: The sample was immersed in the depolarization solution in the depolarization tank 3 for 8 minutes.

工程C;第二次化成槽4において、lOmA/−の定電
流にて300■まで電圧を」―げ、この化成電圧を定電
圧状層にて10分間印カミ1シた。
Step C: In the second chemical conversion tank 4, a voltage of 300 μm was applied at a constant current of 10 mA/−, and this chemical conversion voltage was applied for 10 minutes using a constant voltage layer.

工程D;減極槽5の減極処理液内に上記工程13と同じ
く8分間浸漬した。
Step D: It was immersed in the depolarization treatment liquid in the depolarization tank 5 for 8 minutes in the same manner as in step 13 above.

工程E;第三次化成槽6において、10+++A/−の
定電流にて370■まで電圧を1−げ、この化成゛電圧
を定電圧状態にて10分間印加した。
Step E: In the tertiary chemical conversion tank 6, the voltage was increased to 370 .mu.m with a constant current of 10 +++ A/-, and this chemical formation voltage was applied for 10 minutes in a constant voltage state.

工程l・゛:加熱室7内で500℃、2分間の熱処理を
行なった。
Step 1・゛: Heat treatment was performed in the heating chamber 7 at 500° C. for 2 minutes.

工程G;滅極槽8の減極処理液内に十、記工程Bおよび
工程りと同じく8分間浸漬した。
Step G: It was immersed in the depolarization treatment solution in the depolarization tank 8 for 8 minutes in the same manner as in step B and step 1 above.

工8H1再化成槽9内において、−上記第三次化成と同
じ< 10mA/−の定電流にて370■まで電圧を1
−げ、この化成電圧を定電圧状態にて13分間印加した
In the reconversion tank 9 of 8H1, the voltage was increased to 370μ at a constant current of <10mA/-, which is the same as the tertiary reconstitution described above.
-, and this chemical formation voltage was applied for 13 minutes in a constant voltage state.

工程1;後処理槽10内において、リン蹟′a度2.5
%水溶液中に4分間浸漬した。
Step 1: In the after-treatment tank 10, the phosphorus a degree is 2.5
% aqueous solution for 4 minutes.

〔評価〕上記の各処理を終えたアルミニウム箔を陽極と
し、他方のアルミニウム箔の陰極とをセパレータを介し
て巻回し、このコンデンサ素子にエチレングリコールを
主溶媒としたSR解散を含浸させて、定格200V、3
0μFの電解コンデンサを製造したところ、その漏れ電
流は3.5.A(1分値)であった。
[Evaluation] The aluminum foil that has undergone the above treatments is used as an anode, and the other aluminum foil is wound as a cathode with a separator interposed between them. This capacitor element is impregnated with SR solution containing ethylene glycol as the main solvent, and the rated 200V, 3
When a 0μF electrolytic capacitor was manufactured, its leakage current was 3.5. It was A (1 minute value).

(実施例2)各化成槽2.4,6および9内の化成液は
、上記実施例1と同じmはa度17%水溶液とした。こ
れに対して、各減極槽3,5.8内の減極処理液には、
次亜りん酸アンモニウム2%水溶液を使用した。
(Example 2) The chemical conversion liquid in each of the chemical conversion tanks 2.4, 6 and 9 was an aqueous solution with a degree of a of 17%, the same as in Example 1 above. On the other hand, the depolarization treatment liquid in each depolarization tank 3, 5.8 has
A 2% aqueous solution of ammonium hypophosphite was used.

工程A;上記実施例1と同じ。Step A: Same as in Example 1 above.

工程B;減極槽3の減極処理液、すなわち次亜りん酸ア
ンモニウム2%水溶液内に8分間浸漬した。
Step B: It was immersed in the depolarization treatment liquid in the depolarization tank 3, that is, a 2% ammonium hypophosphite aqueous solution for 8 minutes.

工程C;上記実施例1と同じ。Step C: Same as in Example 1 above.

工程D;減極槽5の減極処理液内に上記工程Bと同じく
8分間浸漬した。
Step D: It was immersed in the depolarization treatment liquid in the depolarization tank 5 for 8 minutes in the same manner as in the above step B.

工程E;上記実施例1と同じ。Step E: Same as in Example 1 above.

[〕〕程Iパ:−ヒ記実施例と同じ。[]] Step I: - Same as Example 1.

]−程G;減極槽8の減極処理液内に1−記]、程Bお
よび工PAL)と同じく8分間浸漬した。
]-Step G: The sample was immersed in the depolarization treatment solution in the depolarization tank 8 for 8 minutes in the same manner as in Steps 1-], B, and PAL).

工程H; I−記″A施例1と同じ。Step H: Same as Example 1 in Section I-A.

工程工;−4―記′、A施例1と同じ。Process: -4-Note', A Same as Example 1.

〔評価〕上記実施例1と同様の製品を製造したところ、
その漏れ電流は3.3μA(1分値)であった。
[Evaluation] When a product similar to that of Example 1 was manufactured,
The leakage current was 3.3 μA (1 minute value).

(実施例3)各化成M2,4.6および9内の化成液は
、上記実施例1と同じ(−酸濃度17%、水浴液を使用
した。また、各減極槽3,5.8内には。
(Example 3) The chemical solution in each chemical conversion tank M2, 4.6 and 9 was the same as in Example 1 above (-acid concentration 17%, water bath liquid was used. Also, each depolarization tank 3, 5.8 Inside.

次亜りん酸すI〜リウム2%水溶液を滅極処6+I!液
として入れた。
Hypophosphorous acid I ~ 2% aqueous solution of lithium is depolarized 6 + I! I put it in as a liquid.

r、程A:上記実施例1と同じ。r, Step A: Same as in Example 1 above.

工程B;減極槽3の減極処理液内に8分間浸漬した。Step B: It was immersed in the depolarization treatment liquid in the depolarization tank 3 for 8 minutes.

工程C;上記実施例1と同じ。Step C: Same as in Example 1 above.

工程D;減極槽5の減極処理液内に8分間浸漬した。Step D: It was immersed in the depolarization treatment liquid in the depolarization tank 5 for 8 minutes.

工程E:上記実施例1と同じ。Step E: Same as Example 1 above.

工程エバ;減極槽8の減極処理液内に上記工程Bおよび
工程りと同じく8分間浸漬した。
Step Eva: It was immersed in the depolarization treatment liquid in the depolarization tank 8 for 8 minutes in the same manner as in the above steps B and 2.

]−程G;上記実施例1の工程Fと同じ。]-Step G: Same as Step F of Example 1 above.

工程FI;上記実施例1と同じ。Step FI: Same as in Example 1 above.

工程I;上記実施例1と同じ。Step I: Same as Example 1 above.

C評イー1〕上記実施例1と同様の製品を製造したとこ
ろ、その漏れ電流は3.5μA(1分値)であった。
C rating: E1] When a product similar to that of Example 1 was manufactured, its leakage current was 3.5 μA (1 minute value).

く比較例1〉各化成槽2,4,6および9内の化成液は
、上記実施例1と同じ硼酸濃度17%水溶液を使用した
。また、各減極槽3,5.8内にはりんfvI′a度1
%水溶液を使用した。
Comparative Example 1> As the chemical conversion liquid in each of the chemical conversion tanks 2, 4, 6, and 9, the same aqueous solution of boric acid with a concentration of 17% as in Example 1 was used. In addition, each depolarization tank 3, 5.8 contains phosphorus fvI'a degree 1
% aqueous solution was used.

工程A;上記実施例1と同じ。Step A: Same as in Example 1 above.

]SB;減極槽3内の減極処理液内に8分間浸漬した。]SB: Immersed in the depolarization treatment solution in the depolarization tank 3 for 8 minutes.

工8C;上記実施例1と同じ。Step 8C: Same as Example 1 above.

工程L)を減極槽5内の減極処理液内に上記]−程Bと
同じく8分間浸漬した。
Step L) was immersed in the depolarization treatment solution in the depolarization tank 5 for 8 minutes in the same manner as in Step B above.

工程E冨上記実施例1と同じ。Step E: Same as Example 1 above.

コー程Iパ;減極槽8内の減極処理液内に上記工程Bお
よび工程りと同じく8分間浸漬した。
Step I: The sample was immersed in the depolarization treatment solution in the depolarization tank 8 for 8 minutes in the same manner as in Step B and Step 2 above.

工程G;上記実施例1の工程Fと同じ。Step G: Same as Step F of Example 1 above.

工程C;上記実施例1と同じ。Step C: Same as in Example 1 above.

工程I;上記実施例1と同じ。Step I: Same as Example 1 above.

〔評価〕上記実施例1と同様の製品を製造したところ、
その漏れ電流は4.0μA(1分値)であった。
[Evaluation] When a product similar to that of Example 1 was manufactured,
The leakage current was 4.0 μA (1 minute value).

〈比較例2〉各化成槽2,4.6および9内の化成液は
、上記比較例1と同じ硼酸濃度17%水溶液を使用した
。また、各減極処理槽3,5.8内にはアンモニア水(
P H7〜9)を使用した。
<Comparative Example 2> As the chemical conversion liquid in each of the chemical conversion tanks 2, 4, 6, and 9, the same aqueous solution of boric acid having a concentration of 17% as in Comparative Example 1 was used. In addition, each depolarization treatment tank 3, 5.8 contains ammonia water (
PH7-9) was used.

工程A;上記比較例1と同じ。Step A: Same as Comparative Example 1 above.

工程B;減極槽3の減極処理液内に8分間浸漬した。Step B: It was immersed in the depolarization treatment liquid in the depolarization tank 3 for 8 minutes.

工程C:上記比較例1と同じ。Step C: Same as Comparative Example 1 above.

工1i!iiD;減極槽5の減極処理液内に上記工程B
と同じく8分間浸漬した。
Engineering 1i! iiD: The above step B is added to the depolarization treatment liquid in the depolarization tank 5.
It was soaked for 8 minutes in the same way.

工程E;上記比較例1と同じ。Step E: Same as Comparative Example 1 above.

工程ド;減極槽8の減極処理液内に上記工程Bおよび上
記工程りと同じく8分間浸漬した。
Step D: The sample was immersed in the depolarization treatment solution in the depolarization tank 8 for 8 minutes in the same manner as in the above steps B and 1.

工程G;上記比較例1の工程Iパと同じ。Step G: Same as Step I of Comparative Example 1 above.

工程H;上記比較例1と同じ。Step H: Same as Comparative Example 1 above.

工程工;上記比較例1と同じ。Process: Same as Comparative Example 1 above.

〔評価〕上記比較例1と同様の製品をH造したところ、
その漏れ電流は4,5.A(1分値)であった。
[Evaluation] When a product similar to that of Comparative Example 1 was manufactured,
The leakage current is 4.5. It was A (1 minute value).

上記各実施例から、この発明によれば、比較例に比べて
漏れ電流をより低く抑えこめることが確認された。
From the above examples, it was confirmed that according to the present invention, leakage current can be suppressed to a lower level than in the comparative example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による化成方法の一実施例に係る工程
図である。 1はアルミニウム箭、2.4,6.9は化成槽、3.5
.8は減極槽、7は加熱室である。
FIG. 1 is a process diagram of an embodiment of the chemical conversion method according to the present invention. 1 is aluminum cage, 2.4, 6.9 is chemical conversion tank, 3.5
.. 8 is a depolarization tank, and 7 is a heating chamber.

Claims (1)

【特許請求の範囲】[Claims] (1)電解コンデンサ用アルミニウム箔に異なる化成電
圧を多段階に印加して同アルミニウム箔を化成する化成
方法において、 少なくとも各化成段階の間に、次亜りん酸およびその塩
を用いて所定時間の減極処理を行ない、最終化成後に熱
処理を行ない、さらに次亜りん酸およびその塩を用いて
減極処理した後に再化成を行なうようにしたことを特徴
とする電解コンデンサ用アルミニウム箔の化成方法。
(1) In a chemical conversion method in which aluminum foil for electrolytic capacitors is chemically converted by applying different chemical conversion voltages in multiple stages, hypophosphorous acid and its salts are used at least between each chemical conversion step for a predetermined period of time. A method for chemically forming aluminum foil for an electrolytic capacitor, characterized in that depolarization treatment is performed, heat treatment is performed after final chemical formation, further depolarization treatment is performed using hypophosphorous acid and its salt, and then re-forming is performed.
JP16507189A 1989-06-27 1989-06-27 Formation of aluminum foil for electrolytic capacitor Pending JPH0330309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16507189A JPH0330309A (en) 1989-06-27 1989-06-27 Formation of aluminum foil for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16507189A JPH0330309A (en) 1989-06-27 1989-06-27 Formation of aluminum foil for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0330309A true JPH0330309A (en) 1991-02-08

Family

ID=15805319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16507189A Pending JPH0330309A (en) 1989-06-27 1989-06-27 Formation of aluminum foil for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0330309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080246A (en) * 2010-12-03 2011-06-01 浙江丰川电子科技有限公司 Device for producing medium-high voltage electrode foil at high speed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080246A (en) * 2010-12-03 2011-06-01 浙江丰川电子科技有限公司 Device for producing medium-high voltage electrode foil at high speed

Similar Documents

Publication Publication Date Title
KR102317276B1 (en) Method for manufacturing electrode foil for surface mount aluminum electrolytic capacitors
JPH0258317A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP2000073198A (en) Method and electrolyte for anodic treatment of valve metal
JPH06275473A (en) Production of anode foil for aluminum electrolytic capacitor
JP3853432B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP2663541B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JPH0330309A (en) Formation of aluminum foil for electrolytic capacitor
JP3478039B2 (en) Method of forming electrode foil for aluminum electrolytic capacitor
JPH02174213A (en) Formation of aluminum foil for electrolytic capacitor
JPH02128415A (en) Formation of aluminum foil for electrolytic capacitor
JPS5989795A (en) Manufacture of aluminum foil for electrolytic capacitor
JPH01266712A (en) Preparation of electrode foil for aluminum electrolytic capacitor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JPH04279017A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH04196305A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH03270117A (en) Manufacture of aluminum foil for electrolytic capacitor
JPH04196304A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPS6053453B2 (en) Aluminum chemical conversion method
JPH02216810A (en) Manufacture of aluminum foil for electrolytic capacitor
JPS6217185A (en) Production of electrode foil for aluminum electrolytic capacitor
JPH01287916A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH01289106A (en) Manufacture of electrode foil for aluminum electrolytic condenser
JP2523654B2 (en) Method for manufacturing electrode foil for aluminum electrolytic capacitors
JP2847001B2 (en) Manufacturing method of solid electrolytic capacitor
JPH06302476A (en) Formation method of electrode foil for aluminum electrolytic capacitor