JPH033009A - Numerical control method and device for working substrate - Google Patents

Numerical control method and device for working substrate

Info

Publication number
JPH033009A
JPH033009A JP13613389A JP13613389A JPH033009A JP H033009 A JPH033009 A JP H033009A JP 13613389 A JP13613389 A JP 13613389A JP 13613389 A JP13613389 A JP 13613389A JP H033009 A JPH033009 A JP H033009A
Authority
JP
Japan
Prior art keywords
substrate
working
top surface
processing
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13613389A
Other languages
Japanese (ja)
Other versions
JP2806479B2 (en
Inventor
Masahiro Kawamura
川村 正弘
Masao Nishigai
西貝 正夫
Shusuke Tateishi
秀典 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP13613389A priority Critical patent/JP2806479B2/en
Publication of JPH033009A publication Critical patent/JPH033009A/en
Application granted granted Critical
Publication of JP2806479B2 publication Critical patent/JP2806479B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To always attain working up to a required part in the plate thickness direction by using a value obtained by multiplying the plate thickness found out prior to real working by a previously set required ratio as working depth to execute working on each working position. CONSTITUTION:The upper face position of an X-Y table 2 is previously measured by a position detector 9 and stored in a numerical controller 11. A substrate 13 is set up on the X-Y table 2 and the numerical controller 11 calculates the plate thickness by the upper face position data of the base 21 measured by the position controller 9 and the already stored upper position data of the table 2 and multiplies the calculated value by the previously set required ratio. The numerical controller 11 moves the base 21 on the table 2 in the X and Y axis directions and works a spot facing by using the multiplied value as the working depth while moving a tool 8 in the Z axis direction. Consequently, the generation of defective working due to a change in the plate thickness can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基板板厚が基板面上の位置によって変化する
基板であっても、基板面上の所望の位置で、常に基板上
面(又は下面)から一定の割合の深さで加工を行う数値
制御基板加工方法及びその装置に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a method to always maintain the thickness of the substrate at a desired position on the substrate surface (or The present invention relates to a numerically controlled substrate processing method and apparatus for processing the substrate at a constant depth from the bottom surface.

〔従来の技術〕[Conventional technology]

基板、例えばプリント基板においては、その補強用とし
て、第2図に示すように、基板21の板厚方向の中央部
にガラス繊維をクロス状に膿んだガラス繊維層22を位
置させ、その両側にエポキシ層23.23を介在させ、
その上下面に銅箔層24 、24を被着形成したものが
ある。
For reinforcing a substrate, for example a printed circuit board, as shown in FIG. 2, a glass fiber layer 22 made of glass fibers is placed in the center of the substrate 21 in the thickness direction, and a glass fiber layer 22 made of glass fibers is placed on both sides. An epoxy layer 23.23 is interposed,
Some have copper foil layers 24, 24 deposited on their upper and lower surfaces.

そして、このような基板21に取り付けられるICチッ
プによっては、その放熱のため、ICチップ取付用の座
ぐり加工後、座ぐり加工部の内周面全面に銅めっきを行
っている。このとき、エポキシ層23よりガラス繊維層
22の方が前記めっきの乗りがよいため、ガラス繊維層
22の中央部分までの座ぐり加工(図中A部参照)の要
求がある。
Depending on the IC chip to be attached to such a substrate 21, in order to dissipate heat, copper plating is applied to the entire inner circumferential surface of the counterbore after the counterbore for mounting the IC chip is processed. At this time, since the glass fiber layer 22 is more easily coated with the plating than the epoxy layer 23, there is a demand for counterbore processing up to the center of the glass fiber layer 22 (see section A in the figure).

従来、数値制御基板加工装置を用い、このような基板2
1を、その上面から一定深さで座ぐり加工する方法は知
られている。これは、基板21上面の位置を常時検出し
、その検出値から所望の寸法だけ下がった位置まで工具
(図示せず)を下降させるものである。
Conventionally, a numerically controlled board processing device is used to process such a board 2.
A method of counterboring 1 at a constant depth from the top surface is known. This is to constantly detect the position of the upper surface of the substrate 21 and lower the tool (not shown) to a position that is a desired dimension lower than the detected value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしこのような従来方法では、次のような問題点があ
った。すなわち前記基板21の製造において、その内層
部分(層22.23.23部分)上下面に銅箔層24.
24を加熱加工して被着形成すると、基板板厚が基板2
1面上の位置によって変化する場合がある(通常は、基
板21の内方側が厚く、周辺側が薄くなる。この場合で
も、ガラス繊維層22は板厚方向中央に位置するのが通
常である)。従来方法では、このような基板21の常に
中央部に位置するガラス繊維層22までの座ぐり加工を
行う場合、基板板厚の厚いほうを基準にすると、基板板
厚の薄いほうが中央部のガラス繊維層22を越えて、そ
の下方のエポキシ層23まで達してしまい(図中B部参
照)、加工不良となった。逆に、基板板厚の薄いほうを
基準にすると、基板板厚の厚いほうはガラス繊維層22
まで達せず、その上方のw4箔層24とエポキシN23
の加工のみとなり、加工不良となった。
However, such conventional methods have the following problems. That is, in manufacturing the substrate 21, copper foil layers 24.
When the substrate 24 is heated and formed, the thickness of the substrate becomes the same as that of the substrate 2.
It may change depending on the position on one surface (usually, the inner side of the substrate 21 is thicker and the peripheral side is thinner. Even in this case, the glass fiber layer 22 is usually located at the center in the thickness direction) . In the conventional method, when performing counterbore processing up to the glass fiber layer 22, which is always located in the center of the substrate 21, when the thicker substrate is used as the reference, the thinner substrate is the glass fiber layer in the center. It went beyond the fiber layer 22 and reached the epoxy layer 23 below it (see section B in the figure), resulting in processing defects. On the other hand, if the thinner board is used as a reference, the thicker board will have the glass fiber layer 22.
W4 foil layer 24 and epoxy N23 above it
This resulted in a machining defect.

このように上記従来技術では、基板板厚の変化に伴い座
ぐり深さを変化させる点については、配慮されておらず
、基板21の中央層まて座ぐり加工するという場合、基
準とする板厚より厚かったり、薄かったりした加工位置
では、それぞれ座ぐり深さが浅かったり、深すぎたりす
るといった問題があった。
In this way, the above-mentioned conventional technology does not take into account the fact that the depth of the counterbore changes as the thickness of the board changes. At processing positions where the material is thicker or thinner than the thickness, there is a problem that the counterbore depth is shallow or too deep, respectively.

本発明の目的は、基板板厚変化に影響されず、常に板厚
方向の所望部分までの加工が可能な数値制御基板加工方
法及びその装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a numerically controlled board processing method and an apparatus therefor, which are not affected by changes in board thickness and are capable of always processing up to a desired portion in the board thickness direction.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、各加工位置において実際の加工の前に基板
板厚を求め、その板厚を基準として、予め設定された所
望の比率(上述例では基板上面よりガラス繊維層までの
基板板厚に対する比率)を乗算して得た値を加工深さと
して加工(上述例では座ぐり加工)を行うことにより達
成される。
The above purpose is to obtain the board thickness at each processing position before actual processing, and then use that board thickness as a reference to determine a preset desired ratio (in the above example, the thickness of the board from the top surface of the board to the glass fiber layer). This is achieved by performing machining (spot boring in the above example) using the value obtained by multiplying the ratio) as the machining depth.

〔作用〕[Effect]

上述例において、基板21のガラス繊維層22は、板厚
の変化があっても通常、板厚方向中央に位置されること
は既に述べた通りである。本発明では、このガラス繊維
層22まで座ぐり加工する場合、各加工位置において板
厚を求め、この板厚に対するガラス繊維層22までの寸
法の比率で座ぐり深さを決定する。このため、板厚方向
中央に配置されたガラス繊維層22まで座ぐり加工を行
う場合、50%の座ぐり深さを指示すれば板厚の変化に
は関係なく、板厚方向中央部のガラス繊維層までの座ぐ
り加工が行え、基板板厚変化で加工不良が発生すること
はない。
In the above-described example, the glass fiber layer 22 of the substrate 21 is normally positioned at the center in the thickness direction even if the thickness changes. In the present invention, when performing counterbore processing up to the glass fiber layer 22, the board thickness is determined at each processing position, and the counterboring depth is determined by the ratio of the dimension up to the glass fiber layer 22 to this board thickness. Therefore, when performing counterbore processing up to the glass fiber layer 22 located at the center of the board in the thickness direction, if a 50% counterbore depth is specified, the glass fiber layer at the center of the board in the thickness direction will be Countersinking can be performed up to the fiber layer, and processing defects will not occur due to changes in board thickness.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。第1図
は、本発明による数値制御基板加工方法及びその装置の
一実施例を説明するための構成図である。この第1図に
おいて、1はベツド、2ハX 、 Y チー 7’ル、
3はクロスレールで、ベツド1、クロスレール3をベー
スとし、X、Yテーブル2の前後移動(図示面に対して
垂直方向の移動)によりX軸移動を行う。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram for explaining an embodiment of a numerically controlled board processing method and apparatus according to the present invention. In this figure 1, 1 is Bed, 2 is X, Y is 7',
Reference numeral 3 denotes a cross rail, which is based on the bed 1 and the cross rail 3, and moves along the X axis by moving the X and Y tables 2 back and forth (movement in the direction perpendicular to the plane of illustration).

また4はサドル、5はZ軸モータ、6はY軸モータ、7
はスピンドル、8は工具で、スピンドル7を取り付けた
サドル4をY軸モータ6により左右移動(図中左右方向
に移動)させることによりY軸移動を行い、スピンドル
7とサドル4をZ軸モータ5により上下移動(図中上下
方向に移動)させることにより工具8のZ軸移動を行う
Also, 4 is the saddle, 5 is the Z-axis motor, 6 is the Y-axis motor, and 7
8 is a spindle, and 8 is a tool. Y-axis movement is performed by moving the saddle 4 to which the spindle 7 is attached to the left and right by the Y-axis motor 6 (moves in the left-right direction in the figure), and the spindle 7 and saddle 4 are moved by the Z-axis motor 5. By moving the tool 8 up and down (in the vertical direction in the figure), the tool 8 is moved along the Z axis.

以上のようなX、Y軸移動により位置決め、切削送りを
行い、2軸移動により座ぐり深さまでの切削送りを行う
Positioning and cutting feed are performed by the X- and Y-axis movements as described above, and cutting feed to the counterbore depth is performed by two-axis movement.

さらに、9はZ軸方向の位置を検出する位置検出器、l
Oは位置検出器9の検出子の直線移動をバルス数に変換
するパルス変換器、11は数値制御装置、21は第2図
と同様の基板である。ここで数値制御装置11は、数値
制御基板加工装置の数値制御装置としての一般的な制御
手段として機能すると共に、次の手段としても兼用され
る。すなわち、前記位置検出器9により検出された前記
X、 Yテーブル2の上面位置及びX、 Yテーブル2
上に載置された基板21の上面位置から前記基板21の
板厚を算出し、その算出値に対し、予め設定された所望
の比率、ここでは50χを乗算して加工深さを求める演
算手段及びこれにより求められた加工深さに工具8を下
降させる工具制御手段をも兼用している。
Furthermore, 9 is a position detector for detecting the position in the Z-axis direction;
O is a pulse converter that converts the linear movement of the detector of the position detector 9 into a pulse number, 11 is a numerical control device, and 21 is a board similar to that shown in FIG. 2. Here, the numerical control device 11 functions as a general control means as a numerical control device of a numerically controlled board processing apparatus, and also serves as the following means. That is, the top surface position of the X, Y table 2 detected by the position detector 9 and the X, Y table 2
Calculating means that calculates the plate thickness of the substrate 21 from the top surface position of the substrate 21 placed thereon, and multiplies the calculated value by a preset desired ratio, here 50χ, to obtain the machining depth. It also serves as tool control means for lowering the tool 8 to the machining depth determined thereby.

すなわち本発明は、予め位置検出器9によりX。In other words, in the present invention, the position detector 9 detects X in advance.

Yテーブル2の上面位置を測定し、その値をパルス変換
器10を通して数値制御装置11内に記憶する。
The upper surface position of the Y table 2 is measured and the value is stored in the numerical control device 11 through the pulse converter 10.

続いて、基板13をX、Yテーブル2上にセットし、加
工が行われるが、各加工位置において、位置検出器9は
基板21の上面位置を測定する。
Subsequently, the substrate 13 is set on the X, Y table 2 and processed, and the position detector 9 measures the top surface position of the substrate 21 at each processing position.

数値制御装置11は、各加工位置において、位置検出器
9で測定された基板21の上面位置データと、既に記憶
されているX、 Yテーブル2の上面位置データ(一定
値)とにより基板板厚を算出し、かつその算出値に対し
て予め設定された所望の比率、ここでは50%を乗算す
る。さらに数値制御装置11・は、前記50χ乗算値を
加工深さとして工具8をZ軸道りしつつ、X、Yテーブ
ル2でX、 Y軸道りして座ぐり加工するものである。
The numerical control device 11 determines the substrate thickness at each processing position based on the top surface position data of the substrate 21 measured by the position detector 9 and the top surface position data (constant values) of the X and Y tables 2 that have already been stored. is calculated, and the calculated value is multiplied by a preset desired ratio, in this case 50%. Further, the numerical control device 11 performs spot facing processing by using the X, Y table 2 to move the tool 8 along the Z axis and move the tool 8 along the X and Y axes, using the 50x multiplied value as the processing depth.

上述実施例では、本発明を座ぐり加工に適用した場合に
ついて説明したが、盲孔穴明加工についても適用できる
ことは勿論である。
In the above-described embodiment, the present invention is applied to counterbore machining, but it goes without saying that it can also be applied to blind hole machining.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板板厚に対する所望加工層位置の比
率で加工深さ、例えば座ぐり深さが決められるので、板
厚方向中央層など、所望位置を狙って加工する場合、板
厚の変化によって加工不良が発生することを防止できる
という効果がある。
According to the present invention, the processing depth, for example, the counterbore depth, is determined by the ratio of the desired processing layer position to the board thickness. This has the effect of preventing processing defects from occurring due to changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法及び装置の一実施例を説明するため
の構成図、第2図は従来技術の問題点を説明するための
基板断面図である。 1・・・ベツド、2・・・X、Yテーブル、3・・・ク
ロスレール、4・・・サドル、5・・・2Mモータ、6
・・・Y軸モータ、7・・・スピンドル、8・・・工具
、9・・・位置検出器、10・・・パルス変換器、11
・・・数値制御装置、21・・・基板、22・・・ガラ
ス繊維層、23・・・エポキシ層、24・・・銅箔層。
FIG. 1 is a block diagram for explaining one embodiment of the method and apparatus of the present invention, and FIG. 2 is a cross-sectional view of a substrate for explaining problems of the prior art. 1...Bed, 2...X, Y table, 3...Cross rail, 4...Saddle, 5...2M motor, 6
... Y-axis motor, 7... Spindle, 8... Tool, 9... Position detector, 10... Pulse converter, 11
... Numerical control device, 21 ... Substrate, 22 ... Glass fiber layer, 23 ... Epoxy layer, 24 ... Copper foil layer.

Claims (2)

【特許請求の範囲】[Claims] 1.数値制御基板加工装置を用いて基板加工を行う数値
制御基板加工方法において、前記加工装置のX,Yテー
ブルの上面位置を測定すると共に、各加工位置について
前記X,Yテーブル上に載置された基板の上面位置を測
定し、各加工位置について前記基板の板厚を算出し、そ
の算出値に対し、予め設定された所望の比率を乗算して
得た値を加工深さとして加工することを特徴とする数値
制御基板加工方法。
1. In a numerically controlled board processing method in which a board is processed using a numerically controlled board processing device, the top surface positions of the X and Y tables of the processing device are measured, and the top surface positions of the X and Y tables are measured for each processing position. The top surface position of the substrate is measured, the board thickness of the substrate is calculated for each processing position, and the calculated value is multiplied by a preset desired ratio, and the obtained value is used as the processing depth. Characteristic numerical control board processing method.
2.X,Yテーブルの上面位置及びX,Yテーブル上に
載置された基板の上面位置を各々測定する位置検出手段
と、この位置検出手段により検出された前記各上面位置
から前記基板の板厚を算出し、その算出値に対し、予め
設定された所望の比率を乗算して加工深さを求める演算
手段と、この演算手段で求められた加工深さに工具を下
降させる工具制御手段とを具備することを特徴とする数
値制御基板加工装置。
2. position detection means for measuring the top surface positions of the X and Y tables and the top surface positions of the substrates placed on the X and Y tables; and the thickness of the substrate from the respective top surface positions detected by the position detection means. and a calculation means for calculating the machining depth by multiplying the calculated value by a preset desired ratio, and a tool control means for lowering the tool to the machining depth determined by the calculation means. A numerically controlled board processing device characterized by:
JP13613389A 1989-05-31 1989-05-31 Numerical control substrate processing method and apparatus Expired - Lifetime JP2806479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13613389A JP2806479B2 (en) 1989-05-31 1989-05-31 Numerical control substrate processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13613389A JP2806479B2 (en) 1989-05-31 1989-05-31 Numerical control substrate processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH033009A true JPH033009A (en) 1991-01-09
JP2806479B2 JP2806479B2 (en) 1998-09-30

Family

ID=15168080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13613389A Expired - Lifetime JP2806479B2 (en) 1989-05-31 1989-05-31 Numerical control substrate processing method and apparatus

Country Status (1)

Country Link
JP (1) JP2806479B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962981A (en) * 1988-08-30 1990-10-16 Tokyo Electric Company, Ltd. Optical scanner
JP2016122825A (en) * 2014-02-21 2016-07-07 ビアメカニクス株式会社 Back drilling method and back drilling device
US9655251B2 (en) 2014-02-21 2017-05-16 Via Mechanics, Ltd. Backdrilling method, and backdrilling apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962981A (en) * 1988-08-30 1990-10-16 Tokyo Electric Company, Ltd. Optical scanner
JP2016122825A (en) * 2014-02-21 2016-07-07 ビアメカニクス株式会社 Back drilling method and back drilling device
US9655251B2 (en) 2014-02-21 2017-05-16 Via Mechanics, Ltd. Backdrilling method, and backdrilling apparatus

Also Published As

Publication number Publication date
JP2806479B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JPH02262941A (en) Spot facing work for printed circuitboard and device therefor
EP0669792A2 (en) Drill coordinate optimization for multi-layer printed circuit board
JPS6325885B2 (en)
JP2001310208A (en) Standard hole drilling machine
JP3253784B2 (en) Method for detecting position of inner layer pattern of multilayer printed circuit board, method for drilling, and apparatus therefor
JP3805945B2 (en) Reference hole drilling machine
JPH033009A (en) Numerical control method and device for working substrate
JP2003001548A (en) Machining method for blind hole and inspection method for the workpiece
JPH03178731A (en) Electric discharge machine
JPH09248797A (en) Printed circuit board finishing device
JP3375113B2 (en) Drilling method for printed circuit boards
US7952050B2 (en) Drilling method and laser machining apparatus
JPH01188207A (en) Processing method for printed circuit board and device thereof
JP2609825B2 (en) Method for manufacturing multilayer wiring board
JP4649125B2 (en) Reference hole drilling machine and error correction method thereof
JP3127134B2 (en) A processing machine that can measure the workpiece reference position using a processing tool
JPS62166914A (en) Reference hole drilling device for multilayer printed board
CN110896593B (en) Method for manufacturing circuit board and drilling machine
JPH06198534A (en) Position correcting jig for table and work and position precision correcting method for machine with plural tables using this jis
JPH04310353A (en) Blind hole machining method
JP4319607B2 (en) Processing method and processing apparatus
US20020141835A1 (en) Method for determining uncertainties for printed circuit board drilling machines
JPH09109099A (en) Outline machining device for printed circuit board
KR102483513B1 (en) How to improve interlayer eccentricity
JPH06232564A (en) Wiring board boring method and borer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080724

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090724

Year of fee payment: 11

EXPY Cancellation because of completion of term