JPH0330097A - Photoelectric smoke sensor - Google Patents

Photoelectric smoke sensor

Info

Publication number
JPH0330097A
JPH0330097A JP16632689A JP16632689A JPH0330097A JP H0330097 A JPH0330097 A JP H0330097A JP 16632689 A JP16632689 A JP 16632689A JP 16632689 A JP16632689 A JP 16632689A JP H0330097 A JPH0330097 A JP H0330097A
Authority
JP
Japan
Prior art keywords
light
signal
output
amplifier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16632689A
Other languages
Japanese (ja)
Inventor
Masanobu Ogawa
正信 小川
Tomizo Terasawa
富三 寺澤
Hironori Kami
浩則 上
Masao Arakawa
雅夫 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP16632689A priority Critical patent/JPH0330097A/en
Publication of JPH0330097A publication Critical patent/JPH0330097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To accurately detect only a weak output signal caused by scattered light due to smoke by inserting an inverting amplifier in the preceding stage of a comparing circuit and connecting a switch circuit, which is turned on and off before generation of a light emitting signal, and a capacitor in parallel between the inverted input and the output of this amplifier. CONSTITUTION:A switch circuit Q consists of a bidirectional switch element and is switched by a gate signal phi. The signal phi is generated before the light emitting signal to be given to a light emitting element, and the circuit Q is turned on when the signal phi goes to the high level, and the output terminal of an inverting amplifier A3 is set to a reference voltage. Therefore, though a DC error voltage is generated in the output signal of a light receiving amplifier 20 at the time of light emission of the light emitting element after the signal phi rises to turn on the circuit Q, the error signal is removed and the output is outputted. Consequently, only the weak output signal caused by scattered light due to smoke is accurately detected.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、煙による光の散乱を検出する光電式煙感知器
に関するものである. [従来の技術] 第3図は光電式の煙感知器の従来例を示すブロック図で
ある。発光素子1は発振回FI@10により間欠的に光
信号を発生する。発光素子1からの光の放射方向と、受
光素子2による光の受光方向とは異なり、煙感知器内に
煙が存在しないときには、受光素子2は光をほとんど受
光しない.一方、煙感知器内に煙が存在するときには、
発光素子1からの光は煙によって散乱されるので、受光
素子2は煙による散乱光を受光する.この散乱光は極め
て微弱なものであるので、受光アンプ20にて増幅した
後、比較回路21にて所定の基準レベルと比較する.比
較回路21の出力は信号処理回路22にて信号処理され
、信頼性のある検出信号が得られたときには、発報回路
23にて煙感知信号を発報する.比較回路21は煙濃度
が所定濃度以上であるか否かを判定しており、信号処理
回路22は電磁ノイズなどによる誤動作を防ぐための信
号処理を行っている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a photoelectric smoke detector that detects light scattering due to smoke. [Prior Art] FIG. 3 is a block diagram showing a conventional example of a photoelectric smoke detector. The light emitting element 1 intermittently generates optical signals by the oscillation circuit FI@10. The direction in which light is emitted from the light emitting element 1 is different from the direction in which light is received by the light receiving element 2, and when there is no smoke within the smoke detector, the light receiving element 2 receives almost no light. On the other hand, when smoke is present in the smoke detector,
Since the light from the light emitting element 1 is scattered by the smoke, the light receiving element 2 receives the light scattered by the smoke. Since this scattered light is extremely weak, it is amplified by a light receiving amplifier 20 and then compared with a predetermined reference level by a comparison circuit 21. The output of the comparison circuit 21 is processed by the signal processing circuit 22, and when a reliable detection signal is obtained, the alarm circuit 23 issues a smoke detection signal. The comparison circuit 21 determines whether the smoke density is higher than a predetermined concentration, and the signal processing circuit 22 performs signal processing to prevent malfunctions due to electromagnetic noise or the like.

第4図は受光アンプ20と比較回路21の具体回路例を
示している。受光アンプ20はオペアンプA 1, A
 2を縦続接続したものであり、オペアンプA1は帰還
インピーダンスとしてコンデンサCと抵抗R1を接続さ
れ、受光素子2からの光電流を電圧信号に変換する。コ
ンデンサC1は高域カット用であり、抵抗R1は電流一
電圧変換係数設定用である。オペアンブA2は入力抵抗
R2と帰還抵抗R3とを有し、オペアンプA,の出力電
圧を増幅する。増幅率は(−R,/R2)となる。オペ
アンプA2の出力電圧には、各オペアンブA + , 
A 2のオフセットや受光素子2の暗電流の成分が含ま
れ、これらは周囲温度によって大きく変動する。そこで
、コンデンサC2によって直流成分を除去し、発光素子
lの発光時に生じた散乱光による変動戒分のみを比較回
路21にて検出している.比較回路21の負入力端子に
は、電源電圧を抵抗R.,R.にて分圧した電圧が基準
レベルとして印加されており、正入力端子の電圧が上記
基準レベルを越えたときに、比較回路21の出力が゛’
High”レベルとなる。一端をコンデンサC2に接続
された抵抗R,の他端には基準電圧Vrefが印加され
ており、散乱光による入力信号が無いときには、コンデ
ンサC2と抵抗R4との接続点の電圧は、基準電圧Vr
efに等しくなる。この基準電圧Vrefは比較回路2
1の負入力端子に印加された基準レベルよりも低く設定
されている。
FIG. 4 shows a specific circuit example of the light receiving amplifier 20 and the comparison circuit 21. The light receiving amplifier 20 is an operational amplifier A1, A
The operational amplifier A1 is connected with a capacitor C and a resistor R1 as a feedback impedance, and converts the photocurrent from the light receiving element 2 into a voltage signal. The capacitor C1 is for high frequency cut, and the resistor R1 is for setting the current-voltage conversion coefficient. Operational amplifier A2 has an input resistor R2 and a feedback resistor R3, and amplifies the output voltage of operational amplifier A. The amplification factor is (-R, /R2). The output voltage of operational amplifier A2 includes each operational amplifier A + ,
This includes the offset of A2 and the dark current component of the light receiving element 2, and these vary greatly depending on the ambient temperature. Therefore, the DC component is removed by the capacitor C2, and the comparison circuit 21 detects only the fluctuations caused by the scattered light generated when the light emitting element 1 emits light. A power supply voltage is connected to the negative input terminal of the comparison circuit 21 through a resistor R. ,R. The voltage divided by is applied as a reference level, and when the voltage at the positive input terminal exceeds the reference level, the output of the comparator circuit 21 becomes ``''.
The resistor R is connected to the capacitor C2 at one end, and the reference voltage Vref is applied to the other end.When there is no input signal due to scattered light, the connection point between the capacitor C2 and the resistor R4 is applied. The voltage is the reference voltage Vr
It becomes equal to ef. This reference voltage Vref is
The reference level applied to the negative input terminal of No. 1 is set lower than the reference level applied to the negative input terminal of No. 1.

[発明が解決しようとする課題] 上述の従来技術において、オペアンプA + , A 
2にオフセットが無ければ、ゼロ入力時のオペアンブA
2の出力は電圧VBに等しくなるが、現実にはオペアン
プA + , A 2にオフセツl・が存在するので、
そのオフセット電圧を各々VOS.,VO!32とする
と、オペアンブA2の出力は、ゼロ入力時の電圧VBに
比べてΔVの誤差電圧を生じる。
[Problem to be solved by the invention] In the above-mentioned conventional technology, operational amplifiers A + , A
If there is no offset in 2, operational amplifier A at zero input
The output of A2 is equal to the voltage VB, but in reality there is an offset l in the operational amplifiers A + and A2, so
The offset voltage is set to VOS. , VO! 32, the output of the operational amplifier A2 produces an error voltage of ΔV compared to the voltage VB at zero input.

ΔV=  (R3/R.2)(VOSI−Vos2)例
えば、V 09+ = 1 mV、VOS2=  3n
V.Rl/ R 2 = 3 0とすると、ΔV−−3
0(1+3)120mVとなる。
ΔV= (R3/R.2) (VOSI-Vos2) For example, V 09+ = 1 mV, VOS2 = 3n
V. If Rl/R2 = 30, ΔV--3
0(1+3)120mV.

今、煙による散乱光に起因する受光電流を10nA,R
,=lMΩ、R 3 / R 2 = 3 0とすると
、煙による受光アンプ20の出力信号Vsは、Vs=1
 0nAX IMΩX30=300mVとなる。この出
力信号Vsに比べて、誤差電圧ΔVが比較的大きいため
、オペアンプA2の出力を比較回路2lにそのまま入力
すると、発報すべき煙濃度で発報しなかったり、逆に低
い煙濃度で発報するという不都合が生じてしまう。受光
素子2の暗電流が大きくなっても同じようなことが起こ
る。そこで、従来の回路ではコンデンサC2と抵抗R4
によりハイパスフィルタを構成し、直流戒分をカットし
ている。ハイパスフィルタの低域遮断周波数は、C 2
= 1 0 0 nF , R4−1 0 KΩとすれ
ば、fc=1/2πCzR<#160Hzとなる。
Now, the light receiving current caused by light scattered by smoke is 10nA, R.
, = lMΩ, R 3 / R 2 = 30, the output signal Vs of the light receiving amplifier 20 due to smoke is Vs = 1
0nAX IMΩX30=300mV. Since the error voltage ΔV is relatively large compared to this output signal Vs, if the output of the operational amplifier A2 is directly input to the comparator circuit 2l, an alarm may not be issued at the smoke concentration that should be issued, or conversely, it may not be issued at a low smoke density. This creates the inconvenience of having to report the situation. A similar situation occurs even when the dark current of the light receiving element 2 becomes large. Therefore, in the conventional circuit, capacitor C2 and resistor R4
This constitutes a high-pass filter and cuts out the direct current. The low cutoff frequency of the high-pass filter is C2
= 100 nF, R4-10 KΩ, then fc=1/2πCzR<#160Hz.

ところが、第4図に示す回路を集積回路化してコストダ
ウンと小型軽量化を図ろうとした場合には、半導体集積
回路では大容量のコンデンサや高抵抗は実現困難となる
という問題が生じる。半導体集積回路で実現できるコン
デンサの容量の上限値は実用的にはsopp程度であり
、抵抗の上限値は50KΩ程度である。したがって、こ
れらの値でハイバスフィルタを横戒しても、低域遮断周
波数はfcξ64KHzとなり、実用的な使用周波数帯
域〈l〜20K82程度)を大きく越えてしまい、直流
カットの目的を果たせない。
However, if an attempt is made to reduce cost, size, and weight by integrating the circuit shown in FIG. 4, a problem arises in that it is difficult to realize large-capacity capacitors and high resistance in semiconductor integrated circuits. Practically speaking, the upper limit of capacitance that can be realized in a semiconductor integrated circuit is about sopp, and the upper limit of resistance is about 50KΩ. Therefore, even if the high-pass filter is used with these values, the low cutoff frequency will be fcξ64KHz, which greatly exceeds the practical frequency band (approximately 1 to 20K82), and the purpose of DC cut cannot be achieved.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、受光素子の暗電流や増幅器のド
リフトによる誤差電圧の影響を除去できるようにした光
電式煙感知器を半導体集積回路化に適した楕戒で提供す
ることにある。
The present invention has been made in view of the above points, and its purpose is to provide a photoelectric smoke detector using a semiconductor device that can eliminate the influence of dark current of the light receiving element and error voltage due to drift of the amplifier. The goal is to provide an elliptical format suitable for integrated circuits.

[課題を解決するための手段] 本発明にあっては、上記の課題を解決するために、第3
図に示すように、間欠的に発光信号を発生する発振回路
10と、発振回路10から出力される発光信号に応じて
間欠的に光信号を発生する発光素子1と、発光素子1か
ら放射された光信号が感知器内部に侵入した煙により散
乱された光を受光する受光素子2と、受光素子2の受光
出力を増幅する受光アンプ20と、受光アンプ20の出
力信号から煙濃度が所定値以上か否かを刊定する比較回
路21とを備える光電式煙感知器において、第1図に示
すように、受光アンプ20と比較回路21の間に反転増
幅器A,を備え、受光アンプ20の出力と反転増幅器A
,の反転入力との間に第1のコンデンサC2を接続し、
反転増幅器A3の反転入力と出力との間に前記発光信号
の発生前にオン・オフされるスイッチ回路Qと第2のコ
ンデンサC3を並列接続したことを特徴とするものであ
る。
[Means for Solving the Problems] In the present invention, in order to solve the above problems, the third
As shown in the figure, an oscillation circuit 10 that intermittently generates a light emission signal, a light emitting element 1 that intermittently generates an optical signal in response to the light emission signal output from the oscillation circuit 10, and a light emitting element 1 that emits light from the light emitting element 1. A light receiving element 2 receives the light scattered by the smoke that entered the sensor, a light receiving amplifier 20 amplifies the light receiving output of the light receiving element 2, and a smoke density is determined from the output signal of the light receiving amplifier 20 to a predetermined value. In a photoelectric smoke detector equipped with a comparison circuit 21 that determines whether or not the Output and inverting amplifier A
, a first capacitor C2 is connected between the inverting input of ,
This device is characterized in that a switch circuit Q, which is turned on and off before the generation of the light emission signal, and a second capacitor C3 are connected in parallel between the inverting input and output of the inverting amplifier A3.

[作用] 本発明にあっては、このように、受光アンプ20と比較
回路21の間に反転増幅器A,を備え、受光アンプ20
の出力と反転増幅器A,の反転入力との間に第1のコン
デンサC2を接続し、反転増幅器A,の反転入力と出力
との間に前記発光信号の発生前にオン・オフされるスイ
ッチ回路Qと第2のコンデンサC3を並列接続したので
、受光アンプ20のオフセット電圧や受光素子2の暗電
流により受光アンプ20の出力に誤差電圧Δ■があっで
も、発光信号の発生前に、スイッチ回路Qがオン・オフ
されることにより反転増幅器A,の出力電圧が所定の基
準電圧Vrefに設定され、誤差電圧ΔVは比較回路2
1には入力されない。したがって、受光アンブ20の出
力のうち、煙による散乱光に起因する微弱な出力信号V
sのみを正確に検出することができる。
[Function] In the present invention, as described above, the inverting amplifier A is provided between the light receiving amplifier 20 and the comparison circuit 21, and the light receiving amplifier 20
A first capacitor C2 is connected between the output of the inverting amplifier A and the inverting input of the inverting amplifier A, and the switch circuit is turned on and off between the inverting input and the output of the inverting amplifier A. Q and the second capacitor C3 are connected in parallel, so even if there is an error voltage Δ■ in the output of the light-receiving amplifier 20 due to the offset voltage of the light-receiving amplifier 20 or the dark current of the light-receiving element 2, the switch circuit is connected before the light emission signal is generated. By turning Q on and off, the output voltage of the inverting amplifier A is set to a predetermined reference voltage Vref, and the error voltage ΔV is set to the comparator circuit 2.
1 is not entered. Therefore, among the outputs of the light receiving amplifier 20, a weak output signal V caused by light scattered by smoke
Only s can be detected accurately.

[実施例] 第1図は本発明の一実施例の回路図である。本実施例に
おいて、上述の従来例と対応する部分には同一の符号を
付して重複する説明は省略する。
[Embodiment] FIG. 1 is a circuit diagram of an embodiment of the present invention. In this embodiment, parts corresponding to those in the conventional example described above are given the same reference numerals and redundant explanations will be omitted.

第1図に示す回路では、受光アンプ20と比較回路21
の間に、反転増幅器A3を備えている。この反転増幅器
A,は一般的なオペアンプよりなる。
In the circuit shown in FIG.
In between, an inverting amplifier A3 is provided. This inverting amplifier A consists of a general operational amplifier.

受光アンプ20の出力と反転増幅器A,の反転入力との
間には、コンデンサC2が接続されている。
A capacitor C2 is connected between the output of the light receiving amplifier 20 and the inverting input of the inverting amplifier A.

また、反転増幅器A3の反転入力と出力との間には、ス
イッチ回路QとコンデンサC,が並列接続されている.
スイッチ回路Qはアナログスイッチような双方向性のス
イッチ素子よりなり、ゲート信号φにより開閉制御され
る。このゲート信号は上述の発振回路10から発光素子
1に与えられる発光信号よりも先行して発生する。
Further, a switch circuit Q and a capacitor C are connected in parallel between the inverting input and output of the inverting amplifier A3.
The switch circuit Q is composed of a bidirectional switching element such as an analog switch, and is controlled to open and close by a gate signal φ. This gate signal is generated prior to the light emission signal applied to the light emitting element 1 from the oscillation circuit 10 described above.

第2図は本実施例の動作波形図である。ゲー1・信号φ
が“”High”レベルになると、スイッチ回路Qがオ
ンとなり、反転増幅器A,の出力電圧は基準電圧Vre
fに設定される。ゲート信号φは暫時”High”レベ
ルに保持されて、その後、”LOW”レベルとなる。本
実施例では、比較回路21として、入力段のトランジス
タがJFET又はMOSトランジスタよりなる高入力イ
ンピーダンスのタイプを用いており、その入力バイアス
電流は数r+A〜100pA程度と極めて小さい.した
がって、例えば、コンデンサC 2 , C 3の容量
が10pF程度の小さな容量であっても、反転増幅器A
3の出力端子の電圧は、スイッチ回路Qをオフした後、
数1+1Seeの間はほとんど基準電圧Vrefに保持
される。ゲート信号φが立ち下がってから、発振回路1
0の発光信号により発光素子1が発光すると、受光アン
プ20は出力信号Vsを発生する。このとき、スイッチ
回路Qがオフされているので、反転増幅器A,はゲイン
が(−C2/C3)の反転増幅器として作用する。例え
ば、C2=C.であれば、受光アンプ20の出力信号V
sを同じ振幅で反転した信号が反転増幅器A,から出力
される。このとき、受光アンプ20の出力信号に直流的
にΔVの誤差電圧が生じていたとしても、反転増幅器A
3の出力においては、この誤差電圧Δ■が除去されて、
受光アンプ20の出力信号Vsを反転した信号だけが出
力される.この入力電圧の変化が所定値以上であれば、
比較回路21により煙感知信号が得られる。
FIG. 2 is an operational waveform diagram of this embodiment. Game 1/Signal φ
When becomes “High” level, the switch circuit Q is turned on and the output voltage of the inverting amplifier A becomes the reference voltage Vre.
f. The gate signal φ is held at the "High" level for a while, and then becomes the "LOW" level. In this embodiment, the comparison circuit 21 uses a high input impedance type in which the input stage transistor is a JFET or MOS transistor, and its input bias current is extremely small, on the order of several r+A to 100 pA. Therefore, for example, even if the capacitors C 2 and C 3 have a small capacitance of about 10 pF, the inverting amplifier A
After turning off the switch circuit Q, the voltage at the output terminal of No. 3 is
The reference voltage Vref is maintained for most of the period of 1+1See. After the gate signal φ falls, the oscillation circuit 1
When the light emitting element 1 emits light in response to a light emission signal of 0, the light receiving amplifier 20 generates an output signal Vs. At this time, since the switch circuit Q is turned off, the inverting amplifier A acts as an inverting amplifier with a gain of (-C2/C3). For example, C2=C. If so, the output signal V of the light receiving amplifier 20
A signal obtained by inverting s with the same amplitude is output from the inverting amplifier A. At this time, even if an error voltage of ΔV occurs in the output signal of the light receiving amplifier 20, the inverting amplifier A
At the output of No. 3, this error voltage Δ■ is removed, and
Only a signal obtained by inverting the output signal Vs of the light receiving amplifier 20 is output. If this change in input voltage is greater than a predetermined value,
A comparison circuit 21 provides a smoke detection signal.

なお、反転増幅器A,の非反転入力に与える基準電圧は
、受光アンブ20に与える基準電圧Vrerとは異なる
電圧であっても構わない。
Note that the reference voltage applied to the non-inverting input of the inverting amplifier A may be a voltage different from the reference voltage Vrer applied to the light receiving amplifier 20.

[発明の効果] 本発明にあっては、上述のように、発振回路の出力によ
り発光素子から間欠的に光信号を発生し、感知器内部に
侵入した煙による散乱光を受光する受光素子の受光出力
を受光アンプにより増幅し、比較回路により煙濃度が所
定値以上か否かを判定するようにした光電式煙感知器に
おいて、受光アンプと比較回路の間に反転増幅器を備え
、受光アンプの出力と反転増幅器の反転入力との間に第
1のコンデンサを接続し、反転増幅器の反転入力と出力
との間に前記発光信号の発生前にオン・オフされるスイ
ッチ回路と第2のコンデンサを並列接続したから、受光
アンプのオフセットや受光素子の温度依存或分等による
ドリフトの影響を受けることなく、煙濃度を判定できる
という効果があり、また、スイッチ回路にて反転増幅器
の出力電圧を設定するようにしたので、大容量のコンデ
ンサや高抵抗を設ける必要がなく、半導体集積回路化し
たときに外付け部品が不要になるので、低コスト化、小
型軽量化の効果が十分に発揮されるものである。
[Effects of the Invention] As described above, the present invention includes a light-receiving element that intermittently generates an optical signal from a light-emitting element using the output of an oscillation circuit, and receives scattered light from smoke that has entered the sensor. In a photoelectric smoke detector in which the light receiving output is amplified by a light receiving amplifier and a comparing circuit determines whether the smoke concentration is above a predetermined value, an inverting amplifier is provided between the light receiving amplifier and the comparing circuit, and the light receiving amplifier is amplified. A first capacitor is connected between the output and the inverting input of the inverting amplifier, and a switch circuit that is turned on and off before the emission signal is generated and a second capacitor are connected between the inverting input and the output of the inverting amplifier. Because they are connected in parallel, the smoke density can be determined without being affected by drift due to the offset of the light receiving amplifier or the temperature dependence of the light receiving element, and the output voltage of the inverting amplifier can be set using the switch circuit. This eliminates the need for large-capacity capacitors and high resistance, and eliminates the need for external components when integrated into a semiconductor circuit, which fully realizes the effects of lower costs, smaller size, and lighter weight. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の回路図、第2図は同上の動
作波形図、第3図は従来の光電式煙感知器のブロック図
、第4図は同上の要部回路図である。 1は発光素子、2は受光素子、10は発振回路、20は
受光アンプ、2lは比較回路、A,は反転増幅器、C 
2 . C 3はコンデンサ、Qはスイッチ回路である
Figure 1 is a circuit diagram of an embodiment of the present invention, Figure 2 is an operational waveform diagram of the same as above, Figure 3 is a block diagram of a conventional photoelectric smoke detector, and Figure 4 is a circuit diagram of the main parts of the same as above. be. 1 is a light emitting element, 2 is a light receiving element, 10 is an oscillation circuit, 20 is a light receiving amplifier, 2l is a comparison circuit, A is an inverting amplifier, C
2. C3 is a capacitor, and Q is a switch circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)間欠的に発光信号を発生する発振回路と、発振回
路から出力される発光信号に応じて間欠的に光信号を発
生する発光素子と、発光素子から放射された光信号が感
知器内部に侵入した煙により散乱された光を受光する受
光素子と、受光素子の受光出力を増幅する受光アンプと
、受光アンプの出力信号から煙濃度が所定値以上か否か
を判定する比較回路とを備える光電式煙感知器において
、受光アンプと比較回路の間に反転増幅器を備え、受光
アンプの出力と反転増幅器の反転入力との間に第1のコ
ンデンサを接続し、反転増幅器の反転入力と出力との間
に前記発光信号の発生前にオン・オフされるスイッチ回
路と第2のコンデンサを並列接続したことを特徴とする
光電式煙感知器。
(1) An oscillation circuit that intermittently generates a light emission signal, a light emitting element that intermittently generates a light signal in response to the light emission signal output from the oscillation circuit, and a light signal emitted from the light emitting element inside the sensor. a light-receiving element that receives light scattered by smoke that has entered the room, a light-receiving amplifier that amplifies the light-receiving output of the light-receiving element, and a comparison circuit that determines whether the smoke concentration is equal to or higher than a predetermined value from the output signal of the light-receiving amplifier. In the photoelectric smoke detector, an inverting amplifier is provided between the light receiving amplifier and the comparison circuit, a first capacitor is connected between the output of the light receiving amplifier and the inverting input of the inverting amplifier, and the first capacitor is connected between the inverting input and the output of the inverting amplifier. A photoelectric smoke detector characterized in that a switch circuit that is turned on and off before the generation of the light emission signal and a second capacitor are connected in parallel between the light emission signal and the light emission signal.
JP16632689A 1989-06-27 1989-06-27 Photoelectric smoke sensor Pending JPH0330097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16632689A JPH0330097A (en) 1989-06-27 1989-06-27 Photoelectric smoke sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16632689A JPH0330097A (en) 1989-06-27 1989-06-27 Photoelectric smoke sensor

Publications (1)

Publication Number Publication Date
JPH0330097A true JPH0330097A (en) 1991-02-08

Family

ID=15829286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16632689A Pending JPH0330097A (en) 1989-06-27 1989-06-27 Photoelectric smoke sensor

Country Status (1)

Country Link
JP (1) JPH0330097A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269610A (en) * 2004-03-17 2005-09-29 Microsoft Corp System and method for encoding features distributed disorderedly inside object
JP2009244106A (en) * 2008-03-31 2009-10-22 Tokyo Gas Co Ltd Stable isotope-labeled resin
WO2009131119A1 (en) * 2008-04-24 2009-10-29 パナソニック電工株式会社 Smoke sensor
JP2009282955A (en) * 2008-04-24 2009-12-03 Panasonic Electric Works Co Ltd Smoke sensor
JP2010122995A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Smoke sensor
JP2010146402A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Smoke sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005269610A (en) * 2004-03-17 2005-09-29 Microsoft Corp System and method for encoding features distributed disorderedly inside object
JP2009244106A (en) * 2008-03-31 2009-10-22 Tokyo Gas Co Ltd Stable isotope-labeled resin
WO2009131119A1 (en) * 2008-04-24 2009-10-29 パナソニック電工株式会社 Smoke sensor
JP2009282955A (en) * 2008-04-24 2009-12-03 Panasonic Electric Works Co Ltd Smoke sensor
AU2009239074B2 (en) * 2008-04-24 2013-03-21 Panasonic Corporation Smoke sensor
US8552355B2 (en) 2008-04-24 2013-10-08 Panasonic Corporation Smoke sensor including a current to voltage circuit having a low frequency correction means to produce a correction current
JP2010122995A (en) * 2008-11-20 2010-06-03 Panasonic Electric Works Co Ltd Smoke sensor
JP2010146402A (en) * 2008-12-19 2010-07-01 Panasonic Electric Works Co Ltd Smoke sensor

Similar Documents

Publication Publication Date Title
US7352107B2 (en) Transconductance circuit for piezoelectric transducer
US7129487B2 (en) Infrared detecting circuit and an infrared detector
JPH10511453A (en) Ultra low noise optical receiver
DE69631142D1 (en) Condition monitoring of a gas detector
US6952005B2 (en) Optical receiver circuit
JPH0330097A (en) Photoelectric smoke sensor
JP3203363B2 (en) Peak detector
KR950003136B1 (en) Power amplifier
US5929759A (en) Proximity detector with rapid reception amplification
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
US6188278B1 (en) Amplification circuits
JP2562830B2 (en) Received light signal detection circuit of photoelectric smoke detector
JP2688895B2 (en) Photoelectric analog smoke detector
JP4060597B2 (en) Pulse width detection circuit and reception circuit
JPH01226205A (en) Amplifier with output swing limit
JP3267184B2 (en) Photoelectric smoke detector
JPH05340807A (en) Infrared detector
JPH0514096A (en) Light receiving amplifier circuit for photoelectric sensor
JPH03179816A (en) Electronic switch
JPH10154285A (en) Photoelectric smoke sensor
JPH0267933A (en) Detecting circuit for pyroelectric infrared-ray sensor
JPH0628322B2 (en) Current / voltage conversion circuit
KR0120585B1 (en) Sp/lp mode detection circuit
JPS636480A (en) Pulse photocurrent amplifier circuit with tracking hold circuit
JPH04259105A (en) Amplifier circuit