JPH03297062A - Electrochemical element - Google Patents

Electrochemical element

Info

Publication number
JPH03297062A
JPH03297062A JP2101300A JP10130090A JPH03297062A JP H03297062 A JPH03297062 A JP H03297062A JP 2101300 A JP2101300 A JP 2101300A JP 10130090 A JP10130090 A JP 10130090A JP H03297062 A JPH03297062 A JP H03297062A
Authority
JP
Japan
Prior art keywords
solid electrolyte
materials
electrode
steps
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2101300A
Other languages
Japanese (ja)
Inventor
Koichi Tachibana
立花 弘一
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2101300A priority Critical patent/JPH03297062A/en
Publication of JPH03297062A publication Critical patent/JPH03297062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To accomplish an electrochemical element having stable bond with solid electrolyte by forming electrode from a plurality of materials, which are laminated one over another while the mix proportion is varied in steps. CONSTITUTION:A plurality of materials are used mixedly and laminated one over another to form an electrode 2, wherein the mix proportion is varied in steps. That is, the laminative constitution of electrode shall be such that a materials, which is non-reactive with solid electrolyte 1 and having equal thermo-expansion characteristics to the solid electrolyte 1, is used to the innermost part 4 in contact with the solid electrolyte 1, and that the content of a material or materials not having the matching property with solid electrolyte 1 about thermo-expansion etc., but having excellent electroconductivity increases outward in steps. This enables stabilization of the bond of the interface between electrode 2 and electrolyte 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζ友 固体電解質型燃料電池 固体電解質型酸素
センサ、酸素ポンプな どの電気化学素子に関すも 従来 術 従来のこの種の電気化学素子においてCよ 固体電解質
としてYSZ(イツト リア安定化ジルコニア)が多用
されていも そして例えば高温固体電解質型撚 料電池
において(よ カソードとしてはLat−xSrxCo
Os−δ等のベロブス力 イト型酸化物方丈 またアノ
ードとしてはN i / Y S Zサーメットが電気
的詩法  熱的特性 化学的特性に優れる等の理由で有
望であるとして検討されてきた、 電気化学素子においてGL  電極と電解質の界面の接
合が一つの重要な要素となも 接合が不適切であったり
、素子の使用環境において接合状態に経時的な変化が生
じるようであると、出力の異常あるいは変動をきたし 
信頼性に欠けるものとなム 従来41  電極として導
電性に優れた材料であってL 固体電解 質との熱膨張
の整合がとれないためへ より導電率が低くても熱膨張
の整合がとれる材料を使わざるを得ないことが往々にし
てあっ九 例えば高温固体電解質型燃料電池においては
 出力向上の観点より電極抵抗を下げることが重要な課
題となっており、この点で、カソード材料としては導電
率の高いLa+−8rxCooトδ系ペロブスカイト型
酸化物が最も望ましいと考えられも 発明が解決しようとする課題 しかL  L a l−X5 r XCO○トδ系ペロ
ブスカイト型酸化物ζ友 熱膨張係数がYS  Zの約
2倍という大きな値を有することに加えて、YSZとの
反応性を有する ため用いることができなかつム 課題を解決するための手段 本発明において(よ 複数の材料を混合使用しかつそれ
らの混合比率を段階 的に変化させて順次積層した電極
を形成するものであ4 例えば固体電解質に接するもっ
とも内側の部分には固体電解質と非反応性で、かつ熱膨
張特性が固体電解質と同等な材料を使用し 外側になる
にしたがって、固体電解質とは熱膨張等の整合性には欠
けるが導電性の優れた材料の混合比率が段階的により大
となるように順次積層した電極構成にするものであa 作用 上記構成により、複数の材料をそれらの混合比率を段階
的に変化させながら順次積層した電極を形成することに
より、導電特性に優れ しかも固体電解質との接合状態
が熱的にも化学的にも安定である電気化学素子の実現を
可能とすム実施例 第1図(よ 本発明になるカソードを形成した高温固体
電解質型燃料電池の単セルの一部断面を示す模式図であ
ム 1は0. 5mm厚のイツトリア安定化ジルコニア
(YSZ)からなる固体電解質焼結基体 2はL a@
、ss rs、tc o OトδとLas、@S r 
s、aMn Os−δからなる厚さ1.20μmのカソ
ード、3はNi1、・Y’ S Zザーメットからなる
厚さXOOIJmのアノードであ4 さらに詳細に述べ
るとカソードは以下のような構成になっていム 4はL
aa、tSrs、*  MnOs、δからなる凰5はL
 a #、&S r a、eM v Os−δ/ L 
a s、* S r m、trCods−δ=8/2 
(重量比 以下M n / Coで表す)の胤 6はM
n/Co=6  /4となる凰7はM n / Co 
= 4 / 6となる[8はM n / Co = 2
 / 8となる凰 9はLas、5Srs、aCoO3
−δからなる層であa 各層の厚さは20μmであ也 
な耘 比較のため&ミ 厚さ120μmのしa儒、sS
 r 12c OQs−δのみからなるカソードを形成
したセル、および同じく厚さ120μmのLa偉、・S
 r s、pM n Os−δのみからなるカソードを
形成したセルを作製しtも このようにしで作製したセルを以下のようにして評価し
j−これらのセルを 空気中にて、RTへ□  1QO
O℃(300℃/hの昇降温)のヒートサイクル試 験
(連続5C・回)に供し 試験後セルの断面を観察ブー
るーとをJよC5固体電解 質と電極の剥離の有無など
を「べた その結果 Laa、* S r s、2c 
o O*−δとり、 a*、sS r s、sM n 
Os−δの混合物からなるカソードを形成したセルの場
合、固体電解質と電極の接合界面には何等の異常も認め
られず、初期の接合状態が良好に保たれていることがわ
かった またLag、きSr@、*MnO3−δのみか
ら なるカソードを形成したセルも同様に異常はなかっ
L  しかL  L a@、ss rs、ec00トδ
のみからなるカソードを形成したセルにおいて+t  
カソードの一部に剥離が生じたりマイクロクラックが発
生したりし、 7’。
[Detailed Description of the Invention] Industrial Application Fields of the Invention Solid electrolyte fuel cells, solid electrolyte oxygen sensors, oxygen pumps, and other electrochemical devices. Although YSZ (Ittria-stabilized zirconia) is often used as the solid electrolyte, for example, in high-temperature solid electrolyte stranded batteries (for example, Lat-xSrxCo is used as the cathode).
Belobus force such as Os-δ, etc. Ni/YSZ cermet has been considered as a promising anode due to its excellent electrical properties, thermal properties, and chemical properties. The bonding between the GL electrode and the electrolyte interface is an important element in chemical devices.If the bonding is inappropriate or if the bonding state changes over time in the environment in which the device is used, abnormal output may occur. Or change
Conventional 41: A material with excellent conductivity for electrodes, but whose thermal expansion cannot be matched with the solid electrolyte.A material whose thermal expansion can be matched even if its conductivity is lower. For example, in high-temperature solid electrolyte fuel cells, reducing electrode resistance is an important issue from the perspective of improving output, and in this respect, conductive materials are used as cathode materials. Although it is thought that a perovskite oxide based on δ with a high coefficient of thermal expansion is the most desirable, the only problem to be solved by the invention is the perovskite type oxide with a high coefficient of thermal expansion. In addition to having a large value of about twice that of YSZ, it also has a reactivity with YSZ, so it cannot be used. The mixing ratio of these materials is changed in stages to form electrodes that are laminated in sequence.4 For example, the innermost part in contact with the solid electrolyte is non-reactive with the solid electrolyte and has thermal expansion characteristics equivalent to that of the solid electrolyte. The electrode structure is made by laminating the electrodes in such a way that the mixture ratio of materials that lack thermal expansion consistency with the solid electrolyte but have excellent conductivity gradually increases toward the outside. A Function: With the above configuration, an electrode is formed in which multiple materials are sequentially laminated while changing their mixing ratio in stages, resulting in excellent electrical conductivity and a thermally stable bonding state with the solid electrolyte. FIG. 1 is a schematic diagram showing a partial cross section of a single cell of a high temperature solid oxide fuel cell in which a cathode according to the present invention is formed. 1 is a solid electrolyte sintered base made of yttria-stabilized zirconia (YSZ) with a thickness of 0.5 mm; 2 is a solid electrolyte sintered substrate;
, ss rs, tc o O to δ and Las, @S r
3 is a cathode with a thickness of 1.20 μm made of s, aMn Os-δ, and 3 is an anode with a thickness of XOOIJm made of Ni1, ・Y' S Z cermet. 4 is L
凰5 consisting of aa, tSrs, *MnOs, δ is L
a #, &S r a, eM v Os-δ/L
a s, * S r m, trCods-δ=8/2
Seed 6 is M
凰7 where n/Co=6/4 is M n / Co
= 4 / 6 [8 is M n / Co = 2
/ 8 becomes 凰 9 is Las, 5Srs, aCoO3
The thickness of each layer is 20 μm.
For comparison, 120μm thick sheet, sS
r 12c A cell with a cathode made only of OQs-δ, and a cell with a thickness of 120 μm, Lawei, S
A cell with a cathode consisting only of r s, pM n Os-δ was prepared, and the cells prepared in this manner were evaluated as follows: j-These cells were sent to RT in air. 1QO
The cell was subjected to a heat cycle test (continuous 5 C/times) at 0°C (temperature rise and fall at a rate of 300°C/h), and after the test, the cross section of the cell was observed and checked for any peeling between the solid electrolyte and the electrodes. Beta Result Laa, * S r s, 2c
o Take O*-δ, a*, sS r s, sM n
In the case of a cell with a cathode made of a mixture of Os-δ, no abnormality was observed at the bonding interface between the solid electrolyte and the electrode, indicating that the initial bonding state was maintained well. Similarly, there was no abnormality in the cell with a cathode made only of Sr@, *MnO3-δ.
+t in a cell formed with a cathode consisting of only
Peeling or microcracks occur in a part of the cathode, 7'.

次に電極−電解質の界面導電率を測定した それぞれの
カソードを形成した各々5個のセルを1000℃で50
0時間放置し 交流インピーダンス測定により、放置前
後に・おける1000℃の界面導電率を測定して比較し
た その結果を第1表に示した この結果 La目、嚇
S r@、ec o Oa−δとLaa、會Sr@、*
  Mn0s−δの混合物からなるカソードを形成した
セ)Q  およびLas、*Sr・、2MnCL+−δ
のみがC7よるカッ−ドを形成したセルの場合には界面
導電率の変化はほとんどなく、電極−電解質界面の接合
も(態が良好に保たれている力<、  T、、、 a 
a、’s S r o、tC,o Oa、δのみからな
るカッ−ドを形成したセルの場合には接合状態に変化が
生じていることが明らかに認められた また初期の界面
導電 率から判断して、より導電性のよいLag、・S
r・、aCo Os−δの混合により電極反応速度の向
上 および出力の向上が得られるものと判断されも 表  界面導電率の平均値 (S−cm−”)次く こ
のセルを酸素濃淡電池とし 空気を基準ガスとしたとき
の1000℃における起電力を測定しへ その結果 第
2図に示すようにLas。
Next, the electrode-electrolyte interfacial conductivity was measured. Five cells each formed with each cathode were heated at 1000°C for 50 minutes.
After being left for 0 hours, the interfacial conductivity at 1000°C before and after being left was measured and compared using AC impedance measurement.The results are shown in Table 1.The results and Laa, KaiSr@, *
C)Q formed a cathode consisting of a mixture of Mn0s-δ and Las, *Sr・, 2MnCL+-δ
In the case of a cell with a quad made of C7, there is almost no change in the interfacial conductivity, and the electrode-electrolyte interface bond is maintained well (force<, T, , a).
In the case of a cell that formed a quad consisting only of a, 's S r o, tC, o Oa, and δ, it was clearly observed that the junction state changed. Judging, Lag, S with better conductivity
Although it is judged that the electrode reaction rate and output can be improved by mixing r., aCoOs-δ, The electromotive force at 1000°C was measured using air as a reference gas.The results were as shown in Figure 2.

as r *、aCo Os−δとL a s、as 
r *、*M n Ot−δの混合物からなるカソード
を形成したセルの起電力はほぼ理論値を示しな このよう+Q  Las、5Srs、aCoOs−δと
り、 a・、sSr・、2Mn0*−δの混合 物から
なるカソードを形成することにより電極と固体電解質の
接合状層*が著しく良化し 電極反応の改善と安定化に
寄与することが明らかとなっ九 以上の実施例では酸化物としてLas、@Sr・、2C
oOs−δとL a s、sS r I’、2M n 
Os−δの組成になるものを用いた場合について述べた
力<X値を変えた他の組成においても同様の結果が得ら
れし電極材料はペロブスカイト型酸化物に限らず、同様
の機能を持つものであればこれに限定するものではな(
〜 また 混合比率や積層数も実施例に限定するもので
はなく、さらには2成分に限らす3成分以上の材料を用
いることも可能であも またカソードのみでなく、アノ
ードも同様の設計かL]能であム 固体電解質もYSZ
に限定するものではなく、同様の機能を発揮するもので
あればよ(℃セル作製には公知の各種の方法を用いるこ
とができも 発明の効果 複数の材料の混合物からなり、混合比率を段階的に変化
させて積層した電極を用いることにより、電極−電解質
界面の接合の安定化が図れ 熱的にも電気的にも安定な
信頼度の高い電気化学素子を得ることができも
as r *, aCo Os-δ and L a s, as
The electromotive force of a cell with a cathode made of a mixture of r *, *M n Ot-δ shows almost the theoretical value. It has been revealed that forming a cathode consisting of a mixture of Las, Las, and Las as oxides significantly improves the bonding layer* between the electrode and the solid electrolyte, contributing to improvement and stabilization of the electrode reaction. @Sr・, 2C
oOs-δ and L a s, sS r I', 2M n
Similar results were obtained with other compositions in which the force < If it is, it is not limited to this (
~ Also, the mixing ratio and the number of laminated layers are not limited to those in the example, and it is also possible to use materials with three or more components instead of just two. ] Solid electrolyte is also YSZ
It is not limited to the above, but any method that exhibits the same function may be used (°C). Various known methods can be used to produce the cell. By using laminated electrodes with different conditions, it is possible to stabilize the bond between the electrode and electrolyte interface, and it is possible to obtain a highly reliable electrochemical device that is both thermally and electrically stable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電気化学素子の断面医 第
2図は酸素濃淡電池の起電力を示す図であム ト・固体電解質、 2・・カソード、 3・・アノード
FIG. 1 is a cross-sectional diagram of an electrochemical device according to an embodiment of the present invention. FIG. 2 is a diagram showing the electromotive force of an oxygen concentration battery.

Claims (2)

【特許請求の範囲】[Claims] (1)固体電解質基体上に、複数の材料の混合物からな
り、かつそれらの混合比率を段階的に変化させて順次積
層した電極を設けたことを特徴とする電気化学素子。
(1) An electrochemical device characterized in that an electrode made of a mixture of a plurality of materials is provided on a solid electrolyte substrate, and the electrodes are sequentially laminated while changing the mixing ratio of the materials in stages.
(2)固体電解質がイットリア安定化ジルコニア(YS
Z)、複数の電極材料がLa_1_−_xSr_xCo
O_3_−δ(0≦x≦1、δ:酸素欠損量)系ペロブ
スカイト型酸化物とLa_1_−_xSr_xMnO_
3_−δ(0≦x≦1、δ:酸素欠損量)系ペロブスカ
イト型酸化物であることを特徴とする請求項1記載の電
気化学素子。
(2) The solid electrolyte is yttria-stabilized zirconia (YS)
Z), the plurality of electrode materials are La_1_-_xSr_xCo
O_3_-δ (0≦x≦1, δ: oxygen vacancy amount) based perovskite oxide and La_1_-_xSr_xMnO_
2. The electrochemical device according to claim 1, wherein the electrochemical device is a perovskite-type oxide based on 3_-δ (0≦x≦1, δ: oxygen vacancy amount).
JP2101300A 1990-04-17 1990-04-17 Electrochemical element Pending JPH03297062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2101300A JPH03297062A (en) 1990-04-17 1990-04-17 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2101300A JPH03297062A (en) 1990-04-17 1990-04-17 Electrochemical element

Publications (1)

Publication Number Publication Date
JPH03297062A true JPH03297062A (en) 1991-12-27

Family

ID=14296968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2101300A Pending JPH03297062A (en) 1990-04-17 1990-04-17 Electrochemical element

Country Status (1)

Country Link
JP (1) JPH03297062A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135889A (en) * 2003-10-31 2005-05-26 Kyocera Corp Fuel battery cell and fuel battery
JP2010267631A (en) * 2010-07-28 2010-11-25 Kyocera Corp Fuel cell unit, and fuel cell
EP1528615A3 (en) * 2003-10-31 2011-09-28 Kyocera Corporation Fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391958A (en) * 1986-10-03 1988-04-22 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPS6410576A (en) * 1987-07-01 1989-01-13 Mitsubishi Heavy Ind Ltd Oxygen electrode fuel battery with solid electrolyte
JPH0395859A (en) * 1989-09-08 1991-04-22 Fujikura Ltd Solid electrolyte fuel cell
JPH03194860A (en) * 1989-12-25 1991-08-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391958A (en) * 1986-10-03 1988-04-22 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPS6410576A (en) * 1987-07-01 1989-01-13 Mitsubishi Heavy Ind Ltd Oxygen electrode fuel battery with solid electrolyte
JPH0395859A (en) * 1989-09-08 1991-04-22 Fujikura Ltd Solid electrolyte fuel cell
JPH03194860A (en) * 1989-12-25 1991-08-26 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135889A (en) * 2003-10-31 2005-05-26 Kyocera Corp Fuel battery cell and fuel battery
EP1528615A3 (en) * 2003-10-31 2011-09-28 Kyocera Corporation Fuel cell
JP2010267631A (en) * 2010-07-28 2010-11-25 Kyocera Corp Fuel cell unit, and fuel cell

Similar Documents

Publication Publication Date Title
Wang et al. High-performance lanthanum-ferrite-based cathode for SOFC
JP4178610B2 (en) Oxide ion conductors and their applications
Reich et al. Niobia based rutile materials as SOFC anodes
JP3453283B2 (en) Solid oxide fuel cell
JPS61171064A (en) Pneumatic electrode material for high temperature electrochemical battery
Kaiser et al. Tetragonal tungsten bronze type phases (Sr1− xBax) 0.6 Ti0. 2Nb0. 8O3− δ: material characterisation and performance as SOFC anodes
Mehta et al. Two-layer fuel cell electrolyte structure by sol-gel processing
EP1284519B1 (en) Solid electrolyte fuel cell and related manufacturing method
Tomita et al. Comparative Performance of Anode-Supported SOFCs Using a Thin Ce0. 9Gd0. 1O1. 95 Electrolyte with an Incorporated BaCe0. 8Y0. 2O3− α Layer in Hydrogen and Methane
JP2001332122A (en) Oxide ion conducting material, its manufacturing method, and fuel cell using it
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
Zhang et al. Sr doped amorphous LLTO as solid electrolyte material
Hsu et al. Solid oxide fuel cell fabricated using all-perovskite materials
JP2511095B2 (en) Electrode material
JPH03297062A (en) Electrochemical element
JPH076622A (en) Crystal phase stabilized solid electrolyte material
JPH07166301A (en) Separator for solid electrolyte fuel cell
JPH11335165A (en) Oxide ionic mixed conductor and use thereof
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
Kim et al. Electrochemical properties of Ln (Sr, Ca) 3 (Fe, Co) 3O10+ Gd0. 2Ce0. 8O1. 9 composite cathodes for solid oxide fuel cells
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JP2002053374A (en) Multiple oxide for air pole of solid electrolytic fuel cell and for electric collector raw material, its manufacturing method and solid electrolytic fuel cell
JP2870126B2 (en) Solid oxide fuel cell
JPH0945348A (en) Solid electrolyte fuel cell