JPH03296026A - Nonlinear optical material and production thereof - Google Patents

Nonlinear optical material and production thereof

Info

Publication number
JPH03296026A
JPH03296026A JP9970990A JP9970990A JPH03296026A JP H03296026 A JPH03296026 A JP H03296026A JP 9970990 A JP9970990 A JP 9970990A JP 9970990 A JP9970990 A JP 9970990A JP H03296026 A JPH03296026 A JP H03296026A
Authority
JP
Japan
Prior art keywords
glass
sio
nonlinear optical
semiconductor
based glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9970990A
Other languages
Japanese (ja)
Inventor
Ichiro Tanahashi
棚橋 一郎
Ayumi Tsujimura
歩 辻村
Tsuneo Mitsuyu
常男 三露
Atsushi Nishino
敦 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9970990A priority Critical patent/JPH03296026A/en
Publication of JPH03296026A publication Critical patent/JPH03296026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the bistable characteristics excellent in moisture resistance and heat resistance and as well as good nonlinear optical characteristics by forming a coating layer of SiO2 glass on the surface of glass formed by dispersing the fine particles of a semiconductor into low melting lead glass. CONSTITUTION:The coating layer 2 consisting of any of the SiO2 glass, TiO2-SiO2 glass or ZrO2-SiO2 glass is formed on the surface of the glass 1 formed by dispersing the fine particles of the semiconductor into the low melting lead glass essentially consisting of PbO, B2O3 and SiO2. The fine particles of the semiconductor can, therefore, be dispersed uniformly at a high concn. into the low melting lead glass matrix and the elution of the lead from the semiconductor dispersed glass is prevented. The nonlinear optical material which exhibits not only the bistable characteristics excellent in the moisture resistance and heat resistance but the good nonlinear optical characteristics as well is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学効果を利用した光デバイスの基礎を
なす半導体微粒子分散ガラス非線形光学材料およびその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a glass nonlinear optical material in which fine semiconductor particles are dispersed, which forms the basis of an optical device utilizing a nonlinear optical effect, and a method for manufacturing the same.

従来の技術 従来の技術としては例えばジャーナル・オブ・オプティ
カル・ソサエティ・オブ・アメリカ第73巻647頁(
J、Opt、Soc、Am、、Vol、73.1983
)に記載されているように、Cd5XSe+−xをホウ
ケイ酸ガラスに分散したカットオフフィルタガラスを非
線形光学材料に用いるものがある。
Conventional technology Conventional technology includes, for example, Journal of Optical Society of America, Vol. 73, p. 647 (
J,Opt,Soc,Am,, Vol, 73.1983
), a cut-off filter glass in which Cd5XSe+-x is dispersed in borosilicate glass is used as a nonlinear optical material.

このカットオフフィルタガラスはCdSxSeとホウケ
イ酸ガラス材料を白金ルツボに入れ1600°C程度の
高温で溶融し作製している。
This cut-off filter glass is manufactured by placing CdSxSe and borosilicate glass materials in a platinum crucible and melting them at a high temperature of about 1600°C.

また低融点鉛系ガラスを用いたものも作製されている。In addition, those using low melting point lead-based glass have also been manufactured.

この低融点鉛系ガラスは主に電子部品の接着用(ハーメ
チックシール等)に広く用いられている。
This low-melting point lead-based glass is widely used mainly for bonding electronic parts (hermetic seals, etc.).

発明が解決しようとする課題 従来の半導体微粒子分散ガラスおよびその製造方法では
、次のような問題があった。
Problems to be Solved by the Invention Conventional semiconductor fine particle dispersed glass and its manufacturing method have the following problems.

すなわち、Cd5XSe+−xをホウケイ酸ガラスに2
〜4wt%以上均一に分散させることが困難であり、ま
た1600°C以上の高温で溶融しなければ作製できな
いためガラス組成、半導体組成の制御も極めて難しいも
のとなる。
That is, Cd5XSe+-x is added to borosilicate glass by 2
It is difficult to uniformly disperse more than 4 wt %, and it cannot be produced unless melted at a high temperature of 1600° C. or higher, making it extremely difficult to control the glass composition and semiconductor composition.

他方、低融点鉛系ガラスは600°C以下の軟化点を有
し、低温での使用が可能であるが、ホウケイ酸ガラスに
較べると、耐湿性、耐熱性に劣る。特に高温、高温状態
の下では鉛の溶出がみられるという問題がある。
On the other hand, low-melting lead glass has a softening point of 600° C. or lower and can be used at low temperatures, but it is inferior in moisture resistance and heat resistance compared to borosilicate glass. In particular, there is a problem in that lead is leached out under high temperature conditions.

本発明は、半導体微粒子が高濃度に均一に分散し、かつ
耐湿性、耐熱性に優れた双安定特性をはじめとする良好
な非線形光学特性を示す非線形光学材料とその製造方法
を提供することを目的とする。
The present invention aims to provide a nonlinear optical material in which fine semiconductor particles are uniformly dispersed at a high concentration and exhibits good nonlinear optical properties including bistable properties with excellent moisture resistance and heat resistance, and a method for producing the same. purpose.

課題を解決するための手段 本願の第1発明はpbo、B2O3、SiO□を主成分
とする低融点鉛系ガラスに半導体微粒子を分散させたガ
ラスの表面に、SiO□系ガラス、Ti(h−5iOz
系ガラスまたはZr0z −5in2系ガラスのいずれ
かからなる被覆層が形成されていることを特徴とする非
線形光学材料に係るものである。
Means for Solving the Problems The first invention of the present application is a low-melting point lead-based glass containing pbo, B2O3, and SiO□ as main components with semiconductor fine particles dispersed therein. 5iOz
The present invention relates to a nonlinear optical material characterized in that a coating layer made of either Zr0z-based glass or Zr0z-5in2-based glass is formed.

本願の第2発明はpbo、B2O3、S]02を主成分
とする低融点鉛系ガラスに半導体微粒子を分散させたガ
ラスの薄膜がSiO□基板上に形成され、前記薄膜の表
面にSiO□系ガラス、TiO2−5i02系ガラスま
たはZr0z  5iOz系ガラスのいずれかからなる
被覆層が形成されていることを特徴とするものである。
In the second invention of the present application, a glass thin film in which semiconductor fine particles are dispersed in a low melting point lead-based glass mainly composed of pbo, B2O3, S]02 is formed on a SiO□ substrate, and a SiO□-based glass is formed on the surface of the thin film. It is characterized in that a coating layer made of glass, TiO2-5i02 glass, or Zr0z 5iOz glass is formed.

本願の第3発明は第1発明の非線形光学材料を製造する
方法であって、半導体微粒子分散ガラスの表面にSiO
□系ガラス、TiO2SiO□系ガラスまたはZr02
− SiO2系ガラスのいずれかからなる被覆層をスパ
ッタリング法あるいはゾル−ゲル法を用いて形成したこ
とを特徴とするものである。
The third invention of the present application is a method for manufacturing the nonlinear optical material of the first invention, which comprises dispersing SiO on the surface of semiconductor fine particle dispersed glass.
□-based glass, TiO2SiO□-based glass or Zr02
- A coating layer made of either SiO2-based glass is formed using a sputtering method or a sol-gel method.

本願の第4発明は第2発明の非線形光学材料を製造する
方法であって、5i02基板上に半導体微粒子分散ガラ
ス薄膜をスパッタリング法により形成した後、さらにこ
の薄膜の表面に5iOz系ガラス、TiO2−5inz
系ガラスまたはZrO,、−5402系ガラスのいずれ
かからなる被覆層をスパッタリング法あるいはゾル−ゲ
ル法により形成したことを特徴とするものである。
A fourth invention of the present application is a method for manufacturing the nonlinear optical material according to the second invention, in which a semiconductor fine particle dispersed glass thin film is formed on a 5i02 substrate by a sputtering method, and then 5iOz glass, TiO2- 5inz
The coating layer is formed by sputtering or sol-gel method.

作用 本発明の非線形光学材料は、半導体微粒子をPbO、B
2O3、SiOtu3、SiO2を主成分とする低融点
鉛系ガラスマトリックスに高濃度かつ均一に分散させる
ことができる。そしてこの半導体分散ガラスの表面に5
i02系ガラス、TiO□−5iOz系ガラスまたはZ
rO□−3in2系ガラスのいずれかからなる被覆層を
形成することにより、鉛の溶出を防止することができ、
耐湿性、耐熱性に優れた双安定特性をはじめとする良好
な非線形光学特性を示す非線形光学材料を提供すること
ができる。又スパッタリング法あるいはゾル−ゲル法を
用いることにより、上記非線形光学材料を合理的に製造
することができる。
Function The nonlinear optical material of the present invention comprises semiconductor fine particles such as PbO, B
It can be highly concentrated and uniformly dispersed in a low melting point lead-based glass matrix containing 2O3, SiOtu3, and SiO2 as main components. Then, on the surface of this semiconductor dispersion glass, 5
i02 series glass, TiO□-5iOz series glass or Z
By forming a coating layer made of either rO□-3in2 type glass, lead elution can be prevented,
It is possible to provide a nonlinear optical material that exhibits good nonlinear optical properties including bistable properties with excellent moisture resistance and heat resistance. Furthermore, by using a sputtering method or a sol-gel method, the above-mentioned nonlinear optical material can be rationally manufactured.

実施例 本発明のガラスマトリックスには低融点ガラスが好まし
く、特に半導体物質と低融点ガラスとの複合ガラスを形
成するにはPb0−BzO+−SiO2を主成分とする
鉛系ガラスを用いると半導体物質の分散性が良好となり
好ましい。
Example The glass matrix of the present invention is preferably a low-melting point glass. Particularly, to form a composite glass of a semiconductor material and a low-melting point glass, a lead-based glass containing Pb0-BzO+-SiO2 as a main component is used, since the semiconductor material is It is preferable because it has good dispersibility.

ガラスマトリックスに分散させる半導体微粒子には、C
uCl等のI−■族化合物半導体、CdS、CdSe、
 CdO,CdTe5ZnSe、 ZnO,ZnTe、
 HgTe等の■−■族化合物半導体、Cd5Se、 
HgCdTe等の混晶1l−Vl族化合物半導体、Ga
As、 GaN、 GaP、 GaSb、 InAs、
 Ink、 InSb、 GaAlAs、 InAlA
s等のm−v族化合物半導体、あるいはSi、 Ge等
の■族生導体が好ましい。
The semiconductor fine particles dispersed in the glass matrix contain C.
I-■ group compound semiconductors such as uCl, CdS, CdSe,
CdO, CdTe5ZnSe, ZnO, ZnTe,
■-■ group compound semiconductors such as HgTe, Cd5Se,
Mixed crystal 1l-Vl group compound semiconductors such as HgCdTe, Ga
As, GaN, GaP, GaSb, InAs,
Ink, InSb, GaAlAs, InAlA
Preferred are m-v group compound semiconductors such as S, or group II raw conductors such as Si and Ge.

以下本発明の具体的実施例について説明する。Specific examples of the present invention will be described below.

実施例1 第1表に示す組成を有するPb O−BzOs−SiO
2系ガラス原材料とCuC1,あるいはPb O−Bg
O:+−5iOz系ガラス原材料とcdsxse+−x
(X=0.1)とを白金ルツボに入れ900℃で熔融し
た後、300°Cに加熱した鉄板上に流し厚みll1l
ffiの板状ガラスとした。さらに−度室温まで冷却し
たガラスを再び300°Cの電気炉中で1時間加熱し、
CuC1またはCdSxSe I −>1の結晶を成長
させた。このガラス中のCuC1の分散量は10wt%
であり粒子径は30−60人であった。またCd5)I
Se+−xの分散量は12−1%であり粒子径は60−
100人であった。第1図に示したように、上記半導体
分散ガラス1の両面にSiO□ガラスをターゲットとし
、スパッタリング法を用いて1ミクロンの厚みを有する
SiO□被覆層2を形成した。第1表に示した組成の鉛
系ガラス板は、煮沸試験で若干の鉛が溶出したが、本実
施例のように鉛系ガラス表面上にSiO□被覆層を形成
した場合、鉛の溶出はまったく見られず安定しているこ
とがわかった。さらに上記2種の5iOz被覆層を形成
した半導体分散ガラスの吸収スペクトルから得られたバ
ンドギャップはそれぞれバルクの半導体に比べ0.9e
ν、0.7eVブルーシフトしていることから半導体が
量子ドツトとなっていることがわかった。また第1表中
ガラスA、Dが特に均一な半導体分散ガラスを得ること
ができた。Pb O4z03−SiO2系ガラスでは上
記半導体以外にCdS、 CdSe、 Cd02CdT
e、Zn5e、 ZnO,ZnTe、 HgTe、 H
gCdTeも分散させることができた。
Example 1 PbO-BzOs-SiO having the composition shown in Table 1
2-based glass raw materials and CuC1 or Pb O-Bg
O:+-5iOz-based glass raw materials and cdsxse+-x
(X=0.1) was placed in a platinum crucible and melted at 900°C, then poured onto an iron plate heated to 300°C to a thickness of ll1l.
It was made of ffi sheet glass. The glass that had been further cooled to room temperature was heated again in an electric furnace at 300°C for 1 hour.
Crystals of CuC1 or CdSxSe I ->1 were grown. The amount of CuC1 dispersed in this glass is 10wt%
The particle size was 30-60. Also Cd5)I
The dispersion amount of Se+-x is 12-1% and the particle size is 60-
There were 100 people. As shown in FIG. 1, a SiO□ coating layer 2 having a thickness of 1 micron was formed on both sides of the semiconductor dispersion glass 1 by sputtering using SiO□ glass as a target. In the lead-based glass plate having the composition shown in Table 1, some lead was eluted in the boiling test, but when a SiO□ coating layer is formed on the surface of the lead-based glass as in this example, lead elution is prevented. It was found to be stable and not visible at all. Furthermore, the band gaps obtained from the absorption spectra of the semiconductor-dispersed glass on which the two types of 5iOz coating layers were formed are 0.9e compared to the bulk semiconductor.
ν, 0.7 eV blue shift, indicating that the semiconductor was a quantum dot. Furthermore, glasses A and D in Table 1 were able to obtain particularly uniform semiconductor-dispersed glasses. In addition to the above semiconductors, PbO4z03-SiO2 glass also uses CdS, CdSe, and Cd02CdT.
e, Zn5e, ZnO, ZnTe, HgTe, H
gCdTe could also be dispersed.

第1表 実施例2 第1表に示す組成を有するPb O−BgO3−5iO
z系ガラス原材料とCuCLあるいはPbO−B20s
−5iOz系ガラス原材料とCdSxSe+−x(X=
0.1)とを白金ルツボに入れ900°Cで溶融した後
、300°Cに加熱した鉄板上に流し厚み1IIIIl
の板状ガラスとした。さらに−度室温まで冷却したガラ
スを再び300℃の電気炉中で1時間加熱し、CuC1
またはCdS、Se 、 、−、の結晶を成長させた。
Table 1 Example 2 Pb O-BgO3-5iO having the composition shown in Table 1
Z-based glass raw materials and CuCL or PbO-B20s
-5iOz glass raw material and CdSxSe+-x (X=
0.1) was placed in a platinum crucible and melted at 900°C, then poured onto an iron plate heated to 300°C to a thickness of 1IIIl.
It was made into a sheet glass. The glass, which had been further cooled to room temperature, was heated again in an electric furnace at 300°C for 1 hour, and CuC1
Alternatively, crystals of CdS, Se, , -, were grown.

このガラス中のCuC1の分散量は10evt%であり
粒子径は30−60人であった。またCd5)ISe+
−xの分散量は12wt%であり粒子径は60−100
人であった。上記ガラスの両面にゾル−ゲル法により5
iOz被覆層を形成した。SiO2被覆層の形成は、第
2表に示した原料から構成されるゾルを半導体分散ガラ
ス表面にスピンコードし、乾燥後、350°Cで焼成す
る工程を3回繰り返すことにより行なった。得られたS
iO2被覆層の厚みは、1.3ミクロンであった。本実
施例の鉛系ガラス表面上にSiO□被覆層を形成したガ
ラスは、煮沸試験において鉛の溶出がまったく見られず
安定していることがわかった。さらに上記2種のSiO
□被覆層を形成した半導体分散ガラスの吸収スペクトル
から得られたバンドギャップはそれぞれバルクの半導体
に比べ0.9eV、0.7eVブルーシフトしているこ
とから半導体が量子ドツトとなっていることがわかった
。また第1表中ガラスA、Dが特に均一な半導体分散ガ
ラスを得ることができた。さらに、第2表のゾル溶液に
Ti(OCJs)aあるいはzr(OczosLを10
w tX添加した原料を用いて上記方法により、TiO
2−510z系あるいはZr(h−5i02系ガラスを
半導体分散ガラス表面に被覆したところSiO□被覆層
と同等な効果を得ることができた。Pb 0−BzOz
−5iOz系ガラスでは上記半導体以外にCdS、 C
dSe、 Cd01CdTe、 Zn5e、 ZnO1
ZnTe、 HgTe、 HgCdTeも分散させるこ
とができた。
The amount of CuC1 dispersed in this glass was 10evt%, and the particle size was 30-60%. Also Cd5) ISe+
-The dispersion amount of x is 12wt% and the particle size is 60-100
It was a person. 5 by the sol-gel method on both sides of the above glass.
An iOz coating layer was formed. The SiO2 coating layer was formed by repeating three times the steps of spin-coding a sol composed of the raw materials shown in Table 2 onto the surface of the semiconductor-dispersed glass, drying it, and then firing it at 350°C. Obtained S
The thickness of the iO2 coating layer was 1.3 microns. The glass in which the SiO□ coating layer was formed on the surface of the lead-based glass of this example was found to be stable with no lead elution observed in the boiling test. Furthermore, the above two types of SiO
□The band gap obtained from the absorption spectrum of the semiconductor-dispersed glass on which the coating layer was formed was blue-shifted by 0.9 eV and 0.7 eV compared to the bulk semiconductor, respectively, indicating that the semiconductor was a quantum dot. Ta. Furthermore, glasses A and D in Table 1 were able to obtain particularly uniform semiconductor-dispersed glasses. Furthermore, 10% of Ti(OCJs)a or zr(OczosL) was added to the sol solution in Table 2.
TiO
When the surface of the semiconductor-dispersed glass was coated with 2-510z series or Zr(h-5i02 series glass), it was possible to obtain the same effect as the SiO□ coating layer.Pb 0-BzOz
-5iOz glass contains CdS, C in addition to the above semiconductors.
dSe, Cd01CdTe, Zn5e, ZnO1
ZnTe, HgTe, and HgCdTe could also be dispersed.

第2表 実施例3 第1表りに示す組成を有するPb0−Bz[1x−5i
Oz系ガラスを合成し粉砕後、このガラスに対して40
−t%のCuC1を混合した後、白金ルツボ中500°
Cで焼結しPb 0−BzO:+−5iOz、CuCl
複合ガラス(直径80mm1.厚み5mm)を合成した
。同様なガラスにCdSxSe I −x (χ=o、
 1)を40wt%含大した複合ガラスを作製した。こ
のようにして作製したガラス板をターゲントムこ使用し
高周波マグネトロンスパンタリング装置によりこのガラ
スの薄膜化を行なった。スパッタリングはアルゴンガス
雰囲気下で行なった。第2図に示したように膜厚200
ミクロンの半導体分散、薄膜ガラス1をシリカガラス基
板(0,3mm) 3に形成した後、300°Cの電気
炉中で1時間加熱しCuClまたはCdS。
Table 2 Example 3 Pb0-Bz[1x-5i having the composition shown in Table 1
After synthesizing and pulverizing Oz-based glass, 40
-500° in a platinum crucible after mixing t% of CuC1
Pb 0-BzO: +-5iOz, CuCl
A composite glass (diameter: 80 mm, thickness: 5 mm) was synthesized. CdSxSe I −x (χ=o,
A composite glass containing 40 wt% of 1) was produced. The glass plate thus produced was made into a thin film using a high-frequency magnetron sputtering device using a targen membrane. Sputtering was performed under an argon gas atmosphere. As shown in Figure 2, the film thickness is 200 mm.
After forming a micron semiconductor dispersion and thin film glass 1 on a silica glass substrate (0.3 mm) 3, it was heated in an electric furnace at 300°C for 1 hour to form CuCl or CdS.

Se+−8の結晶を成長させた。このガラス中のCuC
1の分散量は31wt%であり粒子径は40−60人で
あった。またCdSxSe+−xの分散量は28−t%
であり粒子径は50−90人であった。さらに、上記ガ
ラスの表面にSiO□ガラスをターゲットとし、スパッ
タリング法を用いて1ミクUンの厚みを有するSiO□
被覆層2を第2図に示すように形成した。
A crystal of Se+-8 was grown. CuC in this glass
The dispersion amount of No. 1 was 31 wt%, and the particle size was 40-60%. In addition, the dispersion amount of CdSxSe+-x is 28-t%
The particle size was 50-90. Furthermore, using SiO□ glass as a target on the surface of the above-mentioned glass, a SiO□ glass having a thickness of 1 μU was prepared using a sputtering method.
Covering layer 2 was formed as shown in FIG.

被覆層の無いガラス薄膜は、煮沸試験において若干の鉛
の溶出がみられたか、本実施例の5iOz被覆層を形成
したガラス薄膜の場合、鉛の溶出はまったく見られず安
定していることがわかった。上記2種の半導体を分散さ
せたガラスの吸収スペクトルから得られたハンドギャッ
プはそれぞれバルクの半導体に比べ1.1eν、0.9
eシブルーシフトしていることから半導体が量子ドツト
となっていることがわかった。
In the case of the glass thin film without a coating layer, some lead elution was observed in the boiling test, or in the case of the glass thin film with the 5iOz coating layer of this example, no lead elution was observed and it was stable. Understood. The hand gaps obtained from the absorption spectra of the glass in which the above two types of semiconductors are dispersed are 1.1 eν and 0.9 eν, respectively, compared to the bulk semiconductor.
It was found that the semiconductor was a quantum dot because of the e-si blue shift.

実施例4 第1表りに示す組成を有するPb0−BzO:+−3i
02系ガラスを合成し粉砕後、このガラスに対して40
−t%のCuClを混合した後、白金ルツボ中500°
Cで焼結しPb 0−BzO3−5iOz、CuC1複
合ガラス(直径80+am、厚み5 mm)を合成した
。同様なガラスにCdSxSe+−x(X=0.1)を
40−t%含大した複合ガラスを作製した。このように
して作製したガラス板をターゲットに使用し高周波マグ
ネトロンスパッタリング装置によりこのガラスの薄膜化
を行なった。スパッタリングはアルゴンガス雰囲気下で
行なった。膜厚200 ミクロンの薄膜ガラスをシリカ
ガラス基vi(0,3+n+n)に形成した後、300
°Cの電気炉中1時間加熱しCuC1またはCdSxS
e+−xの結晶を成長させた。このガラス中のCuCl
の分散量は31−t%であり粒子径は40−60人であ
った。またCd5ySe+−xの分散量は28w t%
であり粒子径は50−90人であった。さらに、上記ガ
ラスの両面にゾル−ゲル法により5i02被覆層を実施
例2と同様な方法により1.4ミクUンの厚みを有する
5in2被覆層を形成した。本実施例の鉛系ガラス表面
上にSiO□被覆層を形成したガラスは、煮沸試験にお
いて鉛の溶出がまったく見られず安定していることがわ
かった。また、上記2種のSiO□被覆層を形成したガ
ラスの吸収スペクトルから得られたハンドギャップはそ
れぞれバルクの半導体に比べ0.9 eL 0.7 e
Vブルーシフトしていることから半導体が量子ドツトと
なっていることがわかった。
Example 4 Pb0-BzO having the composition shown in Table 1: +-3i
After synthesizing and crushing 02 series glass, 40
-500° in a platinum crucible after mixing t% of CuCl.
A Pb 0-BzO3-5iOz, CuC1 composite glass (diameter 80+am, thickness 5 mm) was synthesized by sintering with C. A composite glass was prepared by adding 40-t% of CdSxSe+-x (X=0.1) to a similar glass. Using the glass plate thus produced as a target, the glass was made into a thin film using a high frequency magnetron sputtering device. Sputtering was performed under an argon gas atmosphere. After forming a thin film glass with a film thickness of 200 microns on a silica glass base vi (0,3+n+n),
CuC1 or CdSxS was heated for 1 h in an electric furnace at °C.
A crystal of e+-x was grown. CuCl in this glass
The dispersion amount was 31-t% and the particle size was 40-60%. In addition, the dispersion amount of Cd5ySe+-x is 28wt%
The particle size was 50-90. Further, a 5i02 coating layer having a thickness of 1.4 μm was formed on both sides of the glass by a sol-gel method in the same manner as in Example 2. The glass in which the SiO□ coating layer was formed on the surface of the lead-based glass of this example was found to be stable with no lead elution observed in the boiling test. Furthermore, the hand gaps obtained from the absorption spectra of the glasses on which the two types of SiO□ coating layers were formed are 0.9 eL and 0.7 e compared to the bulk semiconductor, respectively.
The V blue shift indicates that the semiconductor is a quantum dot.

また、第2表のゾル溶液にTi(OCz)Is)4ある
いはZr (OCJ5)、を10wtX添加した原料を
用いて上記方法により、TiO□−5iOz系あるいは
Zr07SiOz系ガラスを半導体分散ガラス表面に被
覆したところSiO□被覆層と同等な効果を得ることが
できた。
Furthermore, using the raw material obtained by adding 10 wtX of Ti(OCz)Is)4 or Zr (OCJ5) to the sol solution shown in Table 2, the surface of the semiconductor-dispersed glass was coated with TiO□-5iOz-based or Zr07SiOz-based glass by the above method. As a result, it was possible to obtain an effect equivalent to that of the SiO□ coating layer.

実施例5 実施例1に示した方法により作製したCdS、5e1−
×(×・0.1)分散ガラス板の薄膜を用い、光双安定
業子を作製した。
Example 5 CdS, 5e1-, produced by the method shown in Example 1
An optical bistable laser was fabricated using a thin film of ×(×·0.1) dispersion glass plate.

この素子の石英ガラス基板側から波長530nmのレー
ザ光(N2光励起色素レーザ光)をスポット径5μmで
入射した。
Laser light (N2 light-excited dye laser light) with a wavelength of 530 nm was applied to the device from the quartz glass substrate side with a spot diameter of 5 μm.

次に入射光の強度と出射光の強度の関係を室温(25°
C)にて測定したところ、実施例1のガラスでは、第3
図に示したような双安定特性を示した。
Next, we will calculate the relationship between the intensity of the incident light and the intensity of the emitted light at room temperature (25°
When measured in C), the glass of Example 1 had the third
It exhibited bistable characteristics as shown in the figure.

発明の効果 本発明によれば、半導体微粒子を高濃度かつ均一に分散
させることができると共に、高温、高温下においても鉛
の溶出を防止することができ、耐湿性、耐熱性に優れた
双安定特性をはじめとする良好な非線形光学特性を示す
非線形光学材料を提供することができる。又本発明の方
法によれば、上記のような非線形光学材料を合理的に製
造することができる。
Effects of the Invention According to the present invention, it is possible to disperse semiconductor fine particles uniformly at a high concentration, and also to prevent the elution of lead even at high temperatures. It is possible to provide a nonlinear optical material that exhibits good nonlinear optical properties such as the above characteristics. Furthermore, according to the method of the present invention, the above-mentioned nonlinear optical material can be rationally manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例であるSiO□系ガラメガ
ラス被覆層した半導体分散ガラスの構成断面図、第2図
は本発明の他の実施例である5iO7系ガラメガラス被
覆成した半導体分散ガラスの構成断面図、第3図は前記
半導体分散ガラスを用いた双安定素子の光双安定特性を
示す図である。
FIG. 1 is a cross-sectional view of a semiconductor dispersion glass coated with a SiO□-based glass glass, which is an embodiment of the present invention, and FIG. 2 is a semiconductor dispersion glass coated with a 5iO7-based glass glass, which is another embodiment of the present invention. FIG. 3 is a diagram showing the optical bistable characteristics of a bistable element using the semiconductor dispersion glass.

Claims (4)

【特許請求の範囲】[Claims] (1)PbO、B_2O_3、SiO_2を主成分とす
る低融点鉛系ガラスに半導体微粒子を分散させたガ ラスの表面に、SiO_2系ガラス、TiO_2−Si
O_2系ガラスまたはZrO_2−SiO_2系ガラス
のいずれかからなる被覆層が形成されていること を特徴とする非線形光学材料。
(1) SiO_2-based glass, TiO_2-Si
A nonlinear optical material characterized in that a coating layer made of either O_2-based glass or ZrO_2-SiO_2-based glass is formed.
(2)PbO、B_2O_3、SiO_2を主成分とす
る低融点鉛系ガラスに半導体微粒子を分散させたガ ラスの薄膜がSiO_2基板上に形成され、前記薄膜の
表面にSiO_2系ガラス、TiO_2−SiO_2系
ガラスまたはZrO_2−SiO_2系ガラスのいずれ
かからなる被覆層が形成されていることを 特徴とする非線形光学材料。
(2) A thin film of glass in which semiconductor fine particles are dispersed in low melting point lead-based glass mainly composed of PbO, B_2O_3, and SiO_2 is formed on the SiO_2 substrate, and the surface of the thin film is coated with SiO_2-based glass and TiO_2-SiO_2-based glass. or ZrO_2-SiO_2 glass.
(3)請求項1記載の非線形光学材料を製造する方法で
あって、半導体微粒子分散ガラス の表面にSiO_2系ガラス、TiO_2−SiO_2
系ガラスまたはZrO_2−SiO_2系ガラスのいず
れかからなる被覆層をスパッタリング法あるいは ゾル−ゲル法を用いて形成したことを特徴 とする非線形光学材料の製造方法。
(3) A method for manufacturing the nonlinear optical material according to claim 1, wherein SiO_2-based glass, TiO_2-SiO_2
A method for manufacturing a nonlinear optical material, characterized in that a coating layer made of either ZrO_2-SiO_2-based glass or ZrO_2-SiO_2-based glass is formed using a sputtering method or a sol-gel method.
(4)請求項2記載の非線形光学材料を製造する方法で
あって、SiO_2基板上に半導体微粒子分散ガラス薄
膜をスパッタリング法によ り形成した後、さらにこの薄膜の表面にSiO_2系ガ
ラス、TiO_2−SiO_2系ガラスまたはZrO_
2−SiO_2系ガラスのいずれかからなる被覆層をス
パッタリング法あるいはゾル−ゲル 法により形成したことを特徴とする非線形 光学材料の製造方法。
(4) A method for manufacturing the nonlinear optical material according to claim 2, wherein after forming a semiconductor fine particle-dispersed glass thin film on a SiO_2 substrate by sputtering, the surface of this thin film is further coated with SiO_2-based glass, TiO_2-SiO_2-based glass, etc. Glass or ZrO_
A method for producing a nonlinear optical material, characterized in that a coating layer made of either 2-SiO_2-based glass is formed by a sputtering method or a sol-gel method.
JP9970990A 1990-04-16 1990-04-16 Nonlinear optical material and production thereof Pending JPH03296026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9970990A JPH03296026A (en) 1990-04-16 1990-04-16 Nonlinear optical material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9970990A JPH03296026A (en) 1990-04-16 1990-04-16 Nonlinear optical material and production thereof

Publications (1)

Publication Number Publication Date
JPH03296026A true JPH03296026A (en) 1991-12-26

Family

ID=14254603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9970990A Pending JPH03296026A (en) 1990-04-16 1990-04-16 Nonlinear optical material and production thereof

Country Status (1)

Country Link
JP (1) JPH03296026A (en)

Similar Documents

Publication Publication Date Title
US8697242B2 (en) Glass member provided with sealing material layer, electronic device using it and process for producing the electronic device
US11884574B2 (en) Ultra low melting glass frit and fibers
US3669693A (en) Germania-silica glasses and method of coating
US20130287989A1 (en) Glass member provided with sealing material layer electronic device using it and process for producing the electronic device
KR900012854A (en) Method of manufacturing infrared polarizing glass
JP2006323119A (en) Solid polarizing element and its manufacturing method, and liquid crystal display device, liquid crystal display panel, and optical isolator using solid polarizing element
Xia et al. Effect of Al2O3 on the formation of color centers and CdSe/Cd1− xZ nxSe quantum dots in SiO2–Na2O–ZnO glasses
JP5717349B2 (en) Light modulation material and method for producing the same
JPH03296026A (en) Nonlinear optical material and production thereof
JP5545589B2 (en) Manufacturing method of sealing material
US5134095A (en) Matrix glass composition for glass doped with dispersed microcrystallites
JPH03164724A (en) Nonlinear optical material and production thereof
JPH042632A (en) Production of nonlinear optical material
JP2751077B2 (en) Processing method of glass spacer for flat panel display
JP2881961B2 (en) Nonlinear optical material and manufacturing method thereof
Shyu et al. Preparation of transparent Bi2O3‐ZnO‐B2O3 glass by conventional sintering at low temperatures
JPH07239489A (en) Nonlinear optical material
JPH02203305A (en) Production of nonlinear light guide
JPH01219804A (en) Production of thin glass film having functionability
TWI743229B (en) Bismuth-based glass, manufacturing method of bismuth-based glass and sealing material
US7291572B2 (en) Synergistic composition for preparing high concentration fullerene (C60) glass and a method for preparing the glass in bulk monolith
JPH04113335A (en) Production of nonlinear optical material
JPH04328725A (en) Nonlinear optical material and production thereof
JPH08146477A (en) Nonlinear optical thin film and its production
JPH0476337B2 (en)