JP5717349B2 - Light modulation material and method for producing the same - Google Patents
Light modulation material and method for producing the same Download PDFInfo
- Publication number
- JP5717349B2 JP5717349B2 JP2010039468A JP2010039468A JP5717349B2 JP 5717349 B2 JP5717349 B2 JP 5717349B2 JP 2010039468 A JP2010039468 A JP 2010039468A JP 2010039468 A JP2010039468 A JP 2010039468A JP 5717349 B2 JP5717349 B2 JP 5717349B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- light modulation
- light
- crystal
- modulation material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
- G02F1/0018—Electro-optical materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0054—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/03—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/09—Materials and properties inorganic glass
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
本発明は、情報通信分野における光変調、光スイッチング、アイソレーター等に用いられる光変調材料およびその製造法に関する。詳細には、SrxBa1-xNb2O6結晶とガラスの複合材料からなる透明な光変調材料及びその製造方法に関する。 The present invention relates to an optical modulation material used for optical modulation, optical switching, an isolator and the like in the field of information communication and a method for manufacturing the same. Specifically, the present invention relates to a transparent light modulation material made of a composite material of Sr x Ba 1-x Nb 2 O 6 crystal and glass and a method for producing the same.
近年、光通信分野において透明な酸化物強誘電体を母材とする外部光変調器が実用化されている。これらの母材はニオブ酸リチウムが代表的である。これらの動作原理は反転対称性を持たない結晶の電気光学効果に由来する。母材に変調電気信号を印可することで母材内の屈折率が変化し、透過する光の位相、強度を変化させるものである。 In recent years, an external optical modulator using a transparent oxide ferroelectric as a base material has been put into practical use in the field of optical communication. These base materials are typically lithium niobate. These operating principles stem from the electro-optic effect of crystals that do not have inversion symmetry. By applying a modulated electric signal to the base material, the refractive index in the base material changes, and the phase and intensity of the transmitted light are changed.
従来の外部光変調器の母材となる酸化物強誘電体は透明性を必要とするため、単結晶材料が一般的に用いられている。しかしながら、単結晶材料に良質な導波路構造を付与することは容易ではなく、結果として作用長を長くしないと十分な屈折率変化を設けることができず、素子の低コスト化、小型化に不利である。 A single crystal material is generally used because an oxide ferroelectric that is a base material of a conventional external light modulator requires transparency. However, it is not easy to impart a good-quality waveguide structure to a single crystal material, and as a result, a sufficient refractive index change cannot be provided unless the action length is lengthened, which is disadvantageous for cost reduction and miniaturization of the element. It is.
近年ニオブ酸リチウムの電気光学効果を遥かに超える材料としてタングステンブロンズ型SBN(SrxBa1-xNb2O6)結晶が注目されている(例えば、非特許文献1,2参照)。SBN結晶はSr/Ba比に応じてキュリー点が変化し、x = 0.61で室温付近の誘電率が最大となる。しかしながらSBN結晶は単結晶育成プロセスが高度な技術が要求されること、また大型の結晶育成が困難であることから、安価な製造方法は見出されていない。
In recent years, tungsten bronze-type SBN (Sr x Ba 1-x Nb 2 O 6 ) crystals have attracted attention as a material that far exceeds the electro-optic effect of lithium niobate (see, for example, Non-Patent
単結晶以外で、透明な結晶を得る方法としては固相反応によるセラミックスの合成、およびガラスの結晶化よる合成方法が提案されている。これらの合成手法は単結晶作製に比べて簡便で安価である。SBN結晶を形成した例としては下記の文献の報告がある。(非特許文献3〜5,特許文献1) As methods for obtaining transparent crystals other than single crystals, synthesis of ceramics by solid phase reaction and synthesis method by crystallization of glass have been proposed. These synthesis methods are simpler and less expensive than single crystal fabrication. The following literature is reported as an example of forming SBN crystals. (Non-patent documents 3 to 5, Patent document 1)
しかしながら、得られるSBN結晶が単結晶に匹敵する光透過性を達成し、電気光学効果を発現するためには、(1)結晶構成酸化物の体積分率が大きいこと、(2)結晶のサイズを光の波長よりも小さくすること、(3)結晶とガラス層の屈折率差を小さくすること、が重要となる。すなわち、ガラス組成と結晶化のプロセス管理を制御する必要がある。 However, in order for the obtained SBN crystal to achieve optical transparency comparable to that of a single crystal and to exhibit an electro-optic effect, (1) the volume fraction of the crystal constituent oxide is large, and (2) the size of the crystal Is smaller than the wavelength of light, and (3) it is important to reduce the difference in refractive index between the crystal and the glass layer. That is, it is necessary to control the process management of the glass composition and crystallization.
特許文献1では、モル%表示で12.5SrO−12.5BaO−8Nb2O5−67B2O3において半透明の結晶化ガラスが得られたとの報告がある。また、非特許文献3のTeO2系結晶化ガラスでも透明な結晶化ガラスが得られたとの報告がある。しかしながら、これらの結晶が透明である理由は結晶の体積分率が小さいためであり、これでは十分な電気光学効果を発現することは難しい。また非特許文献5では体積分率は100にほぼ近いSBN焼結体で複屈折を測定している。しかしながら、このようなSBN焼結体において、散乱の原因となる粒界内に存在する空隙を完全に除去し、透明性を改善することは極めて困難である。
In
前記の通り従来技術では光変調器の実用に耐え得るような、透明性が高く、SBN結晶の体積分率の多い材料は見出されていなかった。したがって、本発明は、SrxBa1-xNb2O6(0.25≦x≦0.75)結晶とガラスの複合材料からなる透明な光変調材料およびその製造方法を提供することを目的とする。 As described above, in the prior art, a material having high transparency and a large volume fraction of SBN crystal that can withstand the practical use of an optical modulator has not been found. Therefore, an object of the present invention is to provide a transparent light modulation material comprising a composite material of Sr x Ba 1-x Nb 2 O 6 (0.25 ≦ x ≦ 0.75) crystal and glass, and a method for producing the same.
本発明者等は、SrxBa1-xNb2O6(0.25≦x≦0.75)結晶を析出する母ガラスを原料として用いることにより、透明な光変調材料を得ることができることを見出し、本発明として提案するものである。
すなわち、本発明では次の1.〜6.の構成を採用する。
1.化学組成式がaSrO-bBaO-cNb2O5-dB2O3で、a+b+c+d=100且つ(a+b+c)>60である酸化物から構成されるガラス中に、タングステンブロンズ型SrxBa1-xNb2O6 (0.25≦x≦0.75)結晶がガラス全域にわたり均一に存在しているガラスセラミックスにより構成された光変調材料において、前記ガラスセラミック中の前記タングステンブロンズ型SrxBa1-xNb2O6 (0.25≦x≦0.75)結晶の体積分率が20〜75%で、前記結晶の平均粒径が0.1〜60nmであり、且つ波長1550nmにおける前記ガラスセラミックスの光透過率が50%以上であることを特徴とする光変調材料。
2.前記ガラスセラミックスの光が進行する領域の両側面に電場印加用の電極を設けたことを特徴とする1.に記載の光変調材料。
3.前記電極が金属薄膜により構成されたものであることを特徴とする2.に記載の光変調材料。
4.化学組成式がaSrO-bBaO-cNb 2 O 5 -dB 2 O 3 で、a+b+c+d=100且つ(a+b+c)>60である酸化物から構成されるガラスを、ガラス転移温度−80℃以下の温度以上で結晶化開始温度よりも低い温度にて、波長1550nmにおけるガラスセラミックスの光透過率が50%以上となるまで熱処理することを特徴とする、1.に記載の光変調材料の製造方法。
5.さらに、ガラスセラミックス中の光が進行する領域の両側面に電場印可用の電極を設けることを特徴とする4.に記載の光変調材料の製造方法。
6.ガラスセラミックス中の光が進行する領域の両側面に金属薄膜を形成することによって前記電極を設けることを特徴とする5.に記載の光変調材料の製造方法。
The present inventors have found that a transparent light modulation material can be obtained by using a mother glass that precipitates Sr x Ba 1-x Nb 2 O 6 (0.25 ≦ x ≦ 0.75) crystal as a raw material. It is proposed as an invention.
That is, in the present invention, the following 1. ~ 6. The configuration is adopted.
1. In a glass composed of an oxide having the chemical composition formula aSrO-bBaO-cNb 2 O 5 -dB 2 O 3 and a + b + c + d = 100 and (a + b + c)> 60, Tungsten bronze type Sr x Ba 1-x Nb 2 O 6 (0.25 ≦ x ≦ 0.75) light modulation material composed of glass ceramics that exists uniformly over the entire glass region, the tungsten bronze in the glass ceramic Type Sr x Ba 1-x Nb 2 O 6 (0.25 ≦ x ≦ 0.75) crystal has a volume fraction of 20 to 75%, the crystal has an average particle size of 0.1 to 60 nm, and the wavelength at 1550 nm A light modulation material characterized in that the light transmittance of glass ceramics is 50% or more.
2. 1. Electrodes for applying an electric field are provided on both side surfaces of a region where light of the glass ceramics travels . The light modulation material described in 1.
3. 1. The electrode is formed of a metal thin film. The light modulation material described in 1.
4). A glass composed of an oxide having a chemical composition formula aSrO-bBaO-cNb 2 O 5 -dB 2 O 3 and a + b + c + d = 100 and (a + b + c)> 60, Heat treatment is performed at a temperature not lower than a transition temperature of −80 ° C. and lower than a crystallization start temperature until the light transmittance of the glass ceramic at a wavelength of 1550 nm becomes 50% or higher. The manufacturing method of the light modulation material as described in any one of Claims 1-3.
5. Furthermore, electrodes for applying an electric field are provided on both side surfaces of a region where light travels in glass ceramics. The manufacturing method of the light modulation material as described in any one of Claims 1-3.
6). 4. The electrode is provided by forming a metal thin film on both side surfaces of a region where light travels in glass ceramics . The manufacturing method of the light modulation material as described in any one of Claims 1-3.
本発明によれば、透明性が高く、結晶構成酸化物の体積分率が大きく、しかもガラス層とSBN結晶の屈折率の差が小さい光変調材料を得ることができる。従来のSBN結晶化ガラスは不透明なものが多く、電気光学材料として使用するには不適当であった。本発明の光変調材料は、単結晶に匹敵する光透過性を有し、しかも安価に製造することができることから、光変調、光スイッチング、アイソレーター等の用途に広く用いることができる。 According to the present invention, it is possible to obtain a light modulation material having high transparency, a large volume fraction of a crystal constituent oxide, and a small difference in refractive index between a glass layer and an SBN crystal. Conventional SBN crystallized glass is often opaque and unsuitable for use as an electro-optic material. The light modulation material of the present invention has light transmittance comparable to that of a single crystal and can be manufactured at low cost, and therefore can be widely used for applications such as light modulation, light switching, and isolator.
本発明の光変調材料は、化学組成式がaSrO-bBaO-cNb2O5-dB2O3で、a+b+c+d=100且つ(a+b+c)>60である母ガラスに、熱処理を施すことによって製造することができる。本発明において、「母ガラス」とは熱処理することにより結晶化し目的とする結晶体が析出するガラスのことを意味する。
この母ガラスを熱処理すると、タングステンブロンズ型SrxBa1-xNb2O6 (0.25≦x≦0.75)結晶が、ガラス全域にわたり均一に存在しているガラスセラミックスを得ることができる。
The light modulation material of the present invention has a chemical composition formula aSrO-bBaO-cNb 2 O 5 -dB 2 O 3 , a + b + c + d = 100 and (a + b + c)> 60 Further, it can be manufactured by performing a heat treatment. In the present invention, the “mother glass” means a glass that crystallizes by heat treatment and precipitates a target crystal.
When this mother glass is heat-treated, glass ceramics in which tungsten bronze type Sr x Ba 1-x Nb 2 O 6 (0.25 ≦ x ≦ 0.75) crystals are present uniformly over the entire glass can be obtained.
母ガラスの作製法は一般に実用的なガラス材料の作製法であれば特に限定されるものではない。しかしながら、大量生産、製造コストの点を考慮すると、ガラス融液を急冷却することでガラス体を得る溶融急冷法が特に好ましい。
原料については、ストロンチウム、バリウム、ニオブ、ホウ酸を含有する無機塩(特に酸化物、炭酸塩が好ましい)、有機金属化合物、あるいはSBN結晶粉末等の複合酸化物等が挙げられる。しかしながら、所望の組成になるように調整できる試薬であれば、その種類は特に限定されない。
The method for producing the mother glass is not particularly limited as long as it is a practical method for producing a glass material. However, in view of mass production and manufacturing costs, a melt quench method in which a glass body is obtained by rapidly cooling a glass melt is particularly preferable.
Examples of the raw material include inorganic salts containing strontium, barium, niobium, and boric acid (particularly, oxides and carbonates are preferred), organometallic compounds, and composite oxides such as SBN crystal powder. However, the type of the reagent is not particularly limited as long as the reagent can be adjusted to have a desired composition.
上記の特許文献1は、核形成剤材の添加による結晶化ガラスの作製を開示しているが、一般に周知の核形成剤を添加することにより結晶化を促進できることは容易に想定できる。また、核形成剤として知られるイオンは結晶中に固溶し、結果として結晶本来の電気的特性が発揮しない恐れがある。また、目的結晶を構成する酸化物(SrO, BaO, Nb2O5)以外の酸化物は、ガラス構成酸化物(B2O3)を除いて、結晶化ガラス中に添加することは好ましくない。
Although the
ガラス原料の溶融は、SBN結晶の液相以上の温度であれば特に限定されるものではない。融液の均質化、ホウ酸の揮発を考慮すると、概ね1000〜1450℃が好適な溶融温度である。溶融温度が1450℃よりも高温となるとホウ酸が揮発してしまい、均質なガラスを得ることが難しい。 The melting of the glass raw material is not particularly limited as long as the temperature is equal to or higher than the liquid phase of the SBN crystal. Considering homogenization of the melt and volatilization of boric acid, a suitable melting temperature is generally 1000 to 1450 ° C. When the melting temperature is higher than 1450 ° C., boric acid is volatilized and it is difficult to obtain a homogeneous glass.
ガラス組成は透明性が高く、電気光学効果が十分発現するSBN結晶が析出する組成が好適である。aSrO-bBaO-cNb2O5-dB2O3で、a+b+c+d=100としたときに、60 ≦ (a+b+c) <
80, 20≦d≦40の組成が好ましい(このa,b,c,dの数値は、ガラス組成のモル%表示に対応するものである)。特に、25≦d≦38の組成が好ましい。dが25よりも小さくなると、ガラス化が困難となる。一方、dが38より大きいと、ガラス化は容易でも、SBN結晶の体積分率が小さくなり、光変調器の作用長が長くなってしまうおそれがある。
As the glass composition, a composition in which an SBN crystal exhibiting high transparency and sufficiently exhibiting an electrooptic effect is precipitated is preferable. aSrO-bBaO-cNb 2 O 5 -dB 2 O 3 and when a + b + c + d = 100, 60 ≤ (a + b + c) <
A composition of 80, 20 ≦ d ≦ 40 is preferable (the numerical values of a, b, c, d correspond to the mol% representation of the glass composition). In particular, a composition of 25 ≦ d ≦ 38 is preferable. If d is less than 25, vitrification becomes difficult. On the other hand, if d is larger than 38, vitrification is easy, but the volume fraction of the SBN crystal is small, and the action length of the optical modulator may be long.
母ガラスのSr/Ba比と結晶のSr/Ba比はほぼ等しいのでタングステンブロンズ構造を持ち、電気光学係数が高くなるSrxBa1-xNb2O6 (0.25≦x≦0.75)の組成範囲が好ましい。最も電気光学係数が高くなるx = 0.61近傍組成が特に好ましい。 The composition range of Sr x Ba 1-x Nb 2 O 6 (0.25 ≤ x ≤ 0.75) has a tungsten bronze structure and high electro-optic coefficient because the Sr / Ba ratio of the mother glass and the Sr / Ba ratio of the crystal are almost equal. Is preferred. A composition in the vicinity of x = 0.61 in which the electro-optic coefficient is highest is particularly preferable.
ガラスから透明なSBN結晶を得るには結晶粒が成長しにくい温度領域にて熱処理する必要がある。この理由は、結晶粒のサイズが光の波長よりも小さくないと光透過性が低下するためである。結晶粒のサイズ(平均粒径)は0.05〜100nm程度が好ましく、0.1〜60nm程度が特に好ましい。
また、熱処理後の試料中における結晶粒の体積分率は、20〜75%が好ましく、25〜70%が特に好ましい。体積分率が20%未満においては、電気光学効果による屈折率変化量が著しく小さくなるために、光変調器の作用長が長くなるおそれがある。一方、体積分率が75%を超えると、残存するガラスとの屈折率差が大きくなり光散乱を増大させるおそれがある。
In order to obtain a transparent SBN crystal from glass, it is necessary to perform heat treatment in a temperature region in which crystal grains are difficult to grow. This is because the light transmission is reduced unless the crystal grain size is smaller than the wavelength of light. The crystal grain size (average particle size) is preferably about 0.05 to 100 nm, and particularly preferably about 0.1 to 60 nm.
Further, the volume fraction of crystal grains in the sample after the heat treatment is preferably 20 to 75%, particularly preferably 25 to 70%. When the volume fraction is less than 20%, the amount of change in the refractive index due to the electro-optic effect becomes remarkably small, so that the action length of the optical modulator may be increased. On the other hand, if the volume fraction exceeds 75%, the difference in refractive index from the remaining glass becomes large, which may increase light scattering.
このような結晶化を達成するために、熱処理温度は母ガラスのガラス転移温度−80℃から結晶化開始温度の領域とすることが好ましい。特に好ましくは、結晶化開始温度−60℃から結晶化開始温度までの温度領域である。この温度領域において一定温度で熱処理することが好ましい。熱処理時間は特に限定されるものではないが、十分な体積分率を得るために概ね10〜72時間を要する。以上の工程で透明性の高い結晶化ガラスが得られる。 In order to achieve such crystallization, the heat treatment temperature is preferably in the region from the glass transition temperature −80 ° C. of the mother glass to the crystallization start temperature. Particularly preferred is a temperature range from the crystallization start temperature −60 ° C. to the crystallization start temperature. Heat treatment is preferably performed at a constant temperature in this temperature range. The heat treatment time is not particularly limited, but generally requires 10 to 72 hours to obtain a sufficient volume fraction. Through the above steps, crystallized glass with high transparency can be obtained.
光変調器を作製するには、図6に見られるように、結晶化ガラスで構成した光変調材料1の光が進行する領域(光導波路)の両側面に電極2、2を形成する。そして、この光変調器に所望の変調信号を持つ電圧を印加することで、光変調器の光変調を可能とする。光変調材料1に均質な電極を設けるためには、スパッタリング法、コーティング法、真空蒸着法等により金、白金、銀、銅、ニッケル、クロム等の導電性の金属薄膜を形成することが好ましい。偏光子4を通して直線偏光の光を光変調器に入射し、出射端に偏光方向と直交する検光子7を設けることで位相変調器を作製することが可能となる。電場印加による入射光の位相差が変化することで変調を検出することができる。
In order to fabricate the optical modulator, as shown in FIG. 6, the electrodes 2 and 2 are formed on both side surfaces of the region (optical waveguide) where the light of the
次に、本発明を実施例に基づいて本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。以下の例では、DTA(differential thermal analysis:示差熱分析)はリガク社製の「TG8120」を用いて、定法により測定した。また、X線回折(XRD)は マックサイエンス社製の「M03XHF22」を使用して測定した。
(製造例1:母ガラスの作製)
SrCO3, BaCO3,
Nb2O5, B2O3を原料とし、モル%表示で16SrO-16BaO-32Nb2O5-36B2O3(試料A)となるように秤量し、電気炉中1350℃で30分間溶融した。融液をプレス急冷した後に、全ての組成でガラス状態であることをX線回折(XRD)法により確認した。得られた母ガラスの熱物性をDTA(differential thermal analysis:示差熱分析)によって測定した。図1に作製したガラスAのバルク体のDTAパターンを示す。このガラスAにおけるガラス転移温度Tgは599℃, 結晶化開始温度Txは669℃であった。
EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited to this Example. In the following examples, DTA (differential thermal analysis) was measured by a conventional method using “TG8120” manufactured by Rigaku Corporation. X-ray diffraction (XRD) was measured using “M03XHF22” manufactured by Mac Science.
(Production Example 1: Production of mother glass)
SrCO 3 , BaCO 3,
Nb 2 O 5 and B 2 O 3 are used as raw materials and weighed so as to be 16SrO-16BaO-32Nb 2 O 5 -36B 2 O 3 (Sample A) in mol%, and melted at 1350 ° C for 30 minutes did. After press-cooling the melt, it was confirmed by an X-ray diffraction (XRD) method that all compositions were in a glass state. The thermal properties of the obtained mother glass were measured by DTA (differential thermal analysis). FIG. 1 shows the DTA pattern of the bulk material of glass A produced. In this glass A, the glass transition temperature Tg was 599 ° C., and the crystallization start temperature Tx was 669 ° C.
(製造例2,3)
原料の組成を表1に記載のように変化させた以外は、製造例1と同様にして透明な母ガラスB(製造例2)、及びC(製造例3)を得た。得られた母ガラスの熱物性を表1に、またDTAパターンを図1に示す。
(Production Examples 2 and 3)
Transparent mother glass B (Production Example 2) and C (Production Example 3) were obtained in the same manner as in Production Example 1 except that the composition of the raw materials was changed as shown in Table 1. The thermophysical properties of the obtained mother glass are shown in Table 1, and the DTA pattern is shown in FIG.
上記の製造例1〜3で得られたガラスA〜Cは、いずれもSrxBa1-xNb2O5の結晶化に由来する、示差熱分析で650〜680℃の温度範囲で確認される発熱ピークを有する。(図1参照) Glasses A to C obtained in the above Production Examples 1 to 3 were all confirmed in the temperature range of 650 to 680 ° C. by differential thermal analysis derived from crystallization of Sr x Ba 1-x Nb 2 O 5. It has an exothermic peak. (See Figure 1)
(実施例1:結晶化ガラスの製造)
製造例1で作製したガラスAに研磨を施した。次いで、このガラスAをガラス転移温度近傍から結晶化温度までの、表2に記載の温度で10時間の熱処理を行うことにより結晶化処理を行った。得られた試料D〜Iについての熱物性を表2に、またX線回折パターンを図2に示す。図中の括弧内の数字はSr0.5Ba0.5Nb2O6結晶のミラー指数を示している。
F〜Iの試料で確認される回折ピーク位置は既知のSr0.5Ba0.5Nb2O6結晶(ICSD#240388)と同じであった。結晶の格子定数をシェラー式を用いて見積もったところ、20〜40nmの平均粒径を持つことがわかった。熱処理温度の低いD,Eの試料では、10時間の熱処理では結晶化は不充分であるが、熱処理時間をさらに延長することによってF〜Iの試料と同様に結晶化が進行した。
(Example 1: Production of crystallized glass)
The glass A produced in Production Example 1 was polished. Next, the glass A was subjected to a crystallization treatment by performing a heat treatment for 10 hours at a temperature shown in Table 2 from the vicinity of the glass transition temperature to the crystallization temperature. The thermophysical properties of the obtained samples D to I are shown in Table 2, and the X-ray diffraction pattern is shown in FIG. The numbers in parentheses in the figure indicate the Miller index of Sr 0.5 Ba 0.5 Nb 2 O 6 crystal.
The diffraction peak positions confirmed in the samples F to I were the same as those of the known Sr 0.5 Ba 0.5 Nb 2 O 6 crystal (ICSD # 240388). When the lattice constant of the crystal was estimated using the Scherrer equation, it was found to have an average particle diameter of 20 to 40 nm. In the samples of D and E having a low heat treatment temperature, crystallization was insufficient with the heat treatment for 10 hours, but the crystallization proceeded in the same manner as the samples of F to I by further extending the heat treatment time.
(実施例2)
実施例1において、ガラスAに代えて製造例2で得られたガラスBを使用した。ガラスBをガラス転移温度近傍から結晶化温度までの、表3に記載の温度で10時間の熱処理を行うことにより結晶化処理を行った。得られた試料J〜Oについての熱物性を表3に、またX線回折パターンを図3に示す。図中の括弧内の数字はSr0.61Ba0.39Nb2O6結晶のミラー指数を示している。
L〜Oの試料で確認される回折ピーク位置は既知のSr0.61Ba0.39Nb2O6結晶(ICSD#240389)と同じであった。結晶の格子定数をシェラー式を用いて見積もったところ、20〜40nmの平均粒径を持つことがわかった。熱処理温度の低いJ,Kの試料では、10時間の熱処理では結晶化は不充分であるが、熱処理時間をさらに延長することによってL〜Oの試料と同様に結晶化が進行した。
(Example 2)
In Example 1, the glass B obtained in Production Example 2 was used in place of the glass A. The glass B was subjected to crystallization treatment by performing a heat treatment for 10 hours at a temperature shown in Table 3 from the vicinity of the glass transition temperature to the crystallization temperature. The thermophysical properties of the obtained samples J to O are shown in Table 3, and the X-ray diffraction pattern is shown in FIG. The numbers in parentheses in the figure indicate the Miller index of Sr 0.61 Ba 0.39 Nb 2 O 6 crystal.
The diffraction peak positions confirmed in the samples of L to O were the same as the known Sr 0.61 Ba 0.39 Nb 2 O 6 crystal (ICSD # 240389). When the lattice constant of the crystal was estimated using the Scherrer equation, it was found to have an average particle diameter of 20 to 40 nm. In the samples of J and K having a low heat treatment temperature, crystallization was insufficient with the heat treatment for 10 hours, but the crystallization proceeded in the same manner as the samples L to O by further extending the heat treatment time.
(実施例3)
実施例1において、ガラスAに代えて製造例3で得られたガラスCを使用した。ガラスCをガラス転移温度近傍から結晶化温度までの、表4に記載の温度で10時間の熱処理を行うことにより結晶化処理を行った。得られた試料P〜Uについての熱物性を表4に、またX線回折パターンを図4に示す。図中の括弧内の数字はSr0.75Ba0.25Nb2O6結晶のミラー指数を示している。
R〜Uの試料の回折ピーク位置は一部SrNb2O6由来の回折(図中●印)が確認されたが、それ以外は既知のSr0.75Ba0.25Nb2O6結晶(ICSD#15614)と同じであった。結晶の格子定数をシェラー式を用いて見積もったところ、20〜40nmの平均粒径を持つことがわかった。熱処理温度の低いP,Qの試料では、10時間の熱処理では結晶化は不充分であるが、熱処理時間をさらに延長することによってR〜Uの試料と同様に結晶化が進行した。
(Example 3)
In Example 1, the glass C obtained in Production Example 3 was used in place of the glass A. Glass C was subjected to a crystallization treatment by performing a heat treatment for 10 hours at a temperature shown in Table 4 from the vicinity of the glass transition temperature to the crystallization temperature. The thermophysical properties of the obtained samples P to U are shown in Table 4, and the X-ray diffraction pattern is shown in FIG. The numbers in parentheses in the figure indicate the Miller index of Sr 0.75 Ba 0.25 Nb 2 O 6 crystal.
The diffraction peak positions of the samples R to U were partially confirmed by diffraction derived from SrNb 2 O 6 (marked with ● in the figure), but otherwise known Sr 0.75 Ba 0.25 Nb 2 O 6 crystals (ICSD # 15614) Was the same. When the lattice constant of the crystal was estimated using the Scherrer equation, it was found to have an average particle diameter of 20 to 40 nm. In the samples of P and Q having a low heat treatment temperature, the crystallization was insufficient with the heat treatment for 10 hours, but the crystallization proceeded in the same manner as the RU samples by further extending the heat treatment time.
上記の各実施例によれば、A,B,C各ガラスを、それぞれの結晶化開始温度(Tx)で熱処理した試料I, O, Uでの結晶の平均粒径は60nmを超えており、熱処理温度の上昇により粒径は増大することが判明した。図5は、実施例2で結晶化処理を施した試料N粉末について、日本電子社製の「JEM-2010」を用いて撮影した透過電子顕微鏡写真である。図5より、粒子1個は長手方向に約34 nm, 短軸方向に約16 nmの楕円形のSr0.61Ba0.39Nb2O6結晶単相から構成されていることがわかる。他の試料D〜Uにおいても同様に評価を行い、結晶の平均粒径がシェラー式を用いて得られた粒径と同程度であることを確認した。 According to each of the above examples, the average particle diameter of the crystals in samples I, O, and U obtained by heat-treating each of the glasses A, B, and C at the respective crystallization start temperatures (Tx) exceeds 60 nm. It was found that the particle size increases with increasing heat treatment temperature. FIG. 5 is a transmission electron micrograph taken using “JEM-2010” manufactured by JEOL Ltd. for the sample N powder subjected to the crystallization treatment in Example 2. From FIG. 5, it can be seen that one particle is composed of an elliptical Sr 0.61 Ba 0.39 Nb 2 O 6 crystal single phase of about 34 nm in the longitudinal direction and about 16 nm in the minor axis direction. The other samples D to U were evaluated in the same manner, and it was confirmed that the average grain size of the crystals was approximately the same as that obtained using the Scherrer equation.
(結晶化試料の光物性測定)
実施例1〜3で熱処理により結晶化した各試料の光透過率を、可視・近赤外分光光度計(ニコレー・ジャパン社製の「Impact 400」)にて測定した。試料寸法は10mm×10mm×1mm厚とし、鏡面研磨を施した試料を測定した。試料1mmあたりの波長650nmおよび1550nmにおける光透過率を表2〜4に示す。尚、この値はフレネル反射による表面での損失も含むため、実際の透過率はこれよりも大きいと予測できる。熱処理温度の上昇に伴い結晶粒のサイズが増大することで、光散乱の影響により可視域にて透明性が低下した。しかしながら通信波長帯域である1550nm近傍では60%を超える透明性を示し、光変調材料として必要な特性を有していることが判明した。
(Measurement of optical properties of crystallized samples)
The light transmittance of each sample crystallized by heat treatment in Examples 1 to 3 was measured with a visible / near infrared spectrophotometer ("Impact 400" manufactured by Nicorey Japan). The sample size was 10 mm × 10 mm × 1 mm thickness, and a sample subjected to mirror polishing was measured. Tables 2 to 4 show light transmittances at wavelengths of 650 nm and 1550 nm per 1 mm of the sample. Since this value includes the loss on the surface due to Fresnel reflection, the actual transmittance can be predicted to be larger than this. As the size of the crystal grains increased as the heat treatment temperature increased, the transparency was lowered in the visible region due to the influence of light scattering. However, in the vicinity of 1550 nm which is the communication wavelength band, it showed transparency exceeding 60%, and it was found that it has the necessary characteristics as a light modulation material.
(実施例4:電極の形成と光変調特性の測定)
実施例2で原料とした用いた試料B、および熱処理により結晶化した試料Mを、1mm×1.5mm×10mmに切断した。全ての面を鏡面研磨した後に、1.5mm×10mmの両面に銀ペーストを塗布乾燥して薄膜電極を形成した。
図6は、作製した光変調材料の光変調特性を測定するシステムを示す模式図である。このシステムでは、上記で得られた試料(光変調材料)1の電極2,2を高圧交流電源3に接続した。また、試料1の1mm×10mmの面の一方から偏光子4を通った直線偏光の半導体レーザー5(波長650nm)を導入し、1/4波長板6、検光子7を通してクロスニコルの状態になるように配置した。電界の印可方向と直線偏光の電界ベクトルの振動方向は45°傾けて配置した。検光子6を透過した光量をSiフォトダイオード8で検出し、信号増幅器9で増幅して電界印加による出力光強度変化をオシロスコープ10にて測定した。
(Example 4: Formation of electrodes and measurement of light modulation characteristics)
Sample B used as a raw material in Example 2 and Sample M crystallized by heat treatment were cut into 1 mm × 1.5 mm × 10 mm. After all surfaces were mirror-polished, a silver paste was applied to both sides of 1.5 mm × 10 mm and dried to form thin film electrodes.
FIG. 6 is a schematic diagram showing a system for measuring the light modulation characteristics of the produced light modulation material. In this system, the electrodes 2 and 2 of the sample (light modulation material) 1 obtained above were connected to a high-voltage AC power source 3. In addition, a linearly polarized semiconductor laser 5 (wavelength 650 nm) that passes through the polarizer 4 is introduced from one of the 1 mm × 10 mm surfaces of the
図7に、試料BおよびMの光変調測定の結果を示す。この図は、電極間距離1mmに対して±3kVの正弦波を1kHz印可した際の出力光強度の変化を示している。結晶化を施していない試料Bでは強度に変化は現れなかった。これに対して、結晶化を施した試料Mでは1kHzの2倍である2kHzの波形を示したことから、電気光学効果による位相変調が起きていることが判明した。
同様に,実施例1〜3で得られた各試料について光変調測定を行ったところ、同様に明確なレタデーションの変化を示した。セナルモン法により電界誘起の複屈折を定量したところ、電気光学係数の実効値は約1.5pm/Vであった。
FIG. 7 shows the results of light modulation measurement of samples B and M. This figure shows a change in output light intensity when a ± 3 kV sine wave is applied at 1 kHz with respect to a distance between electrodes of 1 mm. In sample B that had not been crystallized, no change in strength appeared. In contrast, the crystallized sample M showed a 2 kHz waveform that was twice 1 kHz, indicating that phase modulation due to the electro-optic effect occurred.
Similarly, when light modulation measurement was performed on each sample obtained in Examples 1 to 3, a clear change in retardation was similarly shown. When the electric field induced birefringence was quantified by the Senarmon method, the effective value of the electro-optic coefficient was about 1.5 pm / V.
本発明によれば、数十ナノメートルの結晶径を有するタングステンブロンズ型SBN結晶がガラス中に均一に分散したガラスセラミックスを得ることができる。本発明では、SBN多結晶の結晶径を光の波長よりも小さくすることで散乱ロスを低減し、ナノ結晶となった場合でも電気光学係数が実効値で数pm/Vを発現することができた。
従来の単結晶ガラスを用いた光変調材料は、分極軸に直交する光に対しては全く応答しない。これに対して、本発明の光変調材料は従来の光変調材料の持つ偏波依存性を解消できるものである。
According to the present invention, glass ceramics in which tungsten bronze SBN crystals having a crystal diameter of several tens of nanometers are uniformly dispersed in glass can be obtained. In the present invention, the scattering loss is reduced by making the crystal diameter of the SBN polycrystal smaller than the wavelength of light, and even when it becomes a nanocrystal, the electro-optic coefficient can be expressed as an effective value of several pm / V. It was.
A conventional light modulation material using single crystal glass does not respond at all to light orthogonal to the polarization axis. In contrast, the light modulation material of the present invention can eliminate the polarization dependence of the conventional light modulation material.
本発明で得られる光変調材料は光変調器、光スイッチング素子、導波路、アッテネータ、のような光部品等に好適に用いられる。 The light modulation material obtained by the present invention is suitably used for optical components such as an optical modulator, an optical switching element, a waveguide, and an attenuator.
1 試料(光変調材料)
2,2 薄膜電極
3 高圧交流電源
4 偏光子
5 半導体レーザー
6 1/4波長板
7 検光子
8 フォトダイオード
9 信号増幅器
10 オシロスコープ
1 Sample (light modulation material)
2, 2 Thin-film electrode 3 High-voltage AC power supply 4 Polarizer 5
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010039468A JP5717349B2 (en) | 2009-02-27 | 2010-02-25 | Light modulation material and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009047374 | 2009-02-27 | ||
JP2009047374 | 2009-02-27 | ||
JP2010039468A JP5717349B2 (en) | 2009-02-27 | 2010-02-25 | Light modulation material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010222240A JP2010222240A (en) | 2010-10-07 |
JP5717349B2 true JP5717349B2 (en) | 2015-05-13 |
Family
ID=42665437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010039468A Active JP5717349B2 (en) | 2009-02-27 | 2010-02-25 | Light modulation material and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5717349B2 (en) |
WO (1) | WO2010098227A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103636083B (en) | 2011-07-11 | 2019-04-19 | 株式会社V技术 | Pulsed laser oscillator and pulsed laser action control method |
US20170362119A1 (en) * | 2016-06-17 | 2017-12-21 | Corning Incorporated | Transparent, near infrared-shielding glass ceramic |
CN107903072B (en) * | 2017-11-01 | 2020-04-28 | 浙江大学 | Method for preparing strontium barium niobate nano powder by two-step coprecipitation method |
CN111268904B (en) * | 2020-03-09 | 2022-07-12 | 上海大学 | Preparation method of energy-saving glass |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08211343A (en) * | 1995-02-06 | 1996-08-20 | Sony Corp | Electro-optical modulator |
US6268303B1 (en) * | 1998-07-06 | 2001-07-31 | Corning Incorporated | Tantalum containing glasses and glass ceramics |
JP4166032B2 (en) * | 2002-03-15 | 2008-10-15 | 株式会社オハラ | SBN-based crystallized glass |
JP2003270597A (en) * | 2002-03-19 | 2003-09-25 | Kyocera Corp | Optical variable attenuating device |
JP3828478B2 (en) * | 2002-10-18 | 2006-10-04 | 日本電信電話株式会社 | Optical modulation method and apparatus |
US7381671B2 (en) * | 2004-02-06 | 2008-06-03 | Murata Manufacturing Co., Ltd. | Ferroelectric ceramic composition and applied ferroelectric element including same |
JP5006748B2 (en) * | 2007-10-10 | 2012-08-22 | 株式会社リコー | Electro-optic element and light beam deflector |
-
2010
- 2010-02-16 WO PCT/JP2010/052238 patent/WO2010098227A1/en active Application Filing
- 2010-02-25 JP JP2010039468A patent/JP5717349B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010222240A (en) | 2010-10-07 |
WO2010098227A1 (en) | 2010-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI235139B (en) | Tantalum containing glasses and glass ceramics | |
US7591961B2 (en) | Translucent piezoelectric glass ceramic | |
TW567174B (en) | Transparent gallate glass-ceramics | |
Golezardi et al. | Crystallization behavior, microstructure and dielectric properties of lead titanate glass ceramics in the presence of Bi2O3 as a nucleating agent | |
JP5717349B2 (en) | Light modulation material and method for producing the same | |
Yongsiri et al. | Fabrication of transparent lead-free KNN glass ceramics by incorporation method | |
Maruyama et al. | Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass | |
Shi et al. | Multiphase transition toward colorless bismuth–germanate scintillating glass and fiber for radiation detection | |
Kumar et al. | Physical and spectroscopic features of cobalt ions in multi-component CaF2–ZnO–Bi2O3–P2O5 glass ceramics | |
JP4166032B2 (en) | SBN-based crystallized glass | |
Tarafder et al. | Advanced glass-ceramic nanocomposites for structural, photonic, and optoelectronic applications | |
JPWO2002096818A1 (en) | Crystallized glass for optical filter substrate and optical filter | |
Komatsu et al. | Fabrication of transparent tellurite glasses containing potassium niobate crystals by an incorporation method | |
Chakrabarti et al. | Sodium niobate-based glass-ceramics: Dependence of crystallization temperature on phase evolution, refractive index and dielectric properties | |
Duan | Effects of CaO on crystallization properties in BaO–SrO–TiO2–SiO2 glass–ceramics | |
Ballman et al. | Some effects of melt stoichiometry on the optical properties of barium sodium niobate | |
CN114481321B (en) | Electro-optic crystal potassium boroniobate and application thereof | |
Guerra et al. | Investigation of the physical properties of new PZT modified tellurium oxide (TeO2–B2O3–PbO2: TBP) glasses | |
RU2429210C1 (en) | Nanostructured polarised glass and method of its production | |
Masai et al. | Preparation of crystallized glass for application in fiber-type devices | |
Chakrabarti et al. | Glass–ceramics: A Potential Material for Energy Storage and Photonic Applications | |
Yongsiri et al. | Dielectric properties and microstructural studies of Er2O3 doped potassium sodium niobate silicate glass-ceramics | |
Tarafder et al. | Nanostructured LiTaO3 and KNbO3 ferroelectric transparent glass-ceramics for applications in optoelectronics | |
Intawin et al. | Preparation and Characterization of SrFe12O19 on Optical and Dielectric Properties of Na2O-CaO-P2O5 Glasses | |
CN117305982A (en) | Novel gallium-lanthanum silicate crystal and electro-optic coefficient optimization method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140212 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150317 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5717349 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |