JPH03295894A - Method for liquid phase epitaxy - Google Patents

Method for liquid phase epitaxy

Info

Publication number
JPH03295894A
JPH03295894A JP9758990A JP9758990A JPH03295894A JP H03295894 A JPH03295894 A JP H03295894A JP 9758990 A JP9758990 A JP 9758990A JP 9758990 A JP9758990 A JP 9758990A JP H03295894 A JPH03295894 A JP H03295894A
Authority
JP
Japan
Prior art keywords
substrate
melt
temp
crucible
good reproducibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9758990A
Other languages
Japanese (ja)
Inventor
Yuichiro Fujiwara
雄一郎 藤原
Masatoshi Kanetani
正敏 金谷
Akihiro Moriya
明弘 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9758990A priority Critical patent/JPH03295894A/en
Publication of JPH03295894A publication Critical patent/JPH03295894A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow a film having a desired thickness with good reproducibility by setting a continuity detector between a melt and a substrate holder in the dipping method to detect the time when a substrate is brought into contact with the melt and dipping the substrate to a specified depth. CONSTITUTION:A temp. gradient (temp. difference) is firstly provided in the melt 3 contg. the element constituting the crystal to be grown, the solute is supersaturated in the melt 3 at its low-temp. part, and then the substrate 5 is dipped in the melt 3. In this case, the continuity between the tip of the substrate holder 4 or the substrate 5 and the melt 3 is monitored by a continuity detector 7 to obtain the contact position between the substrate 5 and melt 3. The substrate 5 is precisely lowered with the contact position as the reference point, and the substrate 5 is always set at the desired position from the melt surface with good reproducibility. Accordingly, a film is grown in desired thickness with good reproducibility as long as the crystal growth conditions such as temp., temp. gradient and melt amt. are fixed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体材料をデイツプ法により成長させる方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for growing semiconductor materials by a dip method.

(従来の技術) 液相エピタキシャル成長法の一種であるデイツプ法は、
成長させようとする結晶の成分元素を含んだ融液(メル
ト)中に基板を浸漬して前記基板上に結晶を成長させる
方法である。例えば、6H型炭化珪素(以下、6H−8
iC)を用いた青色発光ダイオード製造工程で、6H−
8iC基板上に6H−8iC単結晶薄膜を成長させる時
に用いられる。
(Prior art) The dip method, which is a type of liquid phase epitaxial growth method,
This is a method of growing a crystal on the substrate by immersing the substrate in a melt containing the constituent elements of the crystal to be grown. For example, 6H type silicon carbide (hereinafter referred to as 6H-8
In the blue light emitting diode manufacturing process using iC), 6H-
It is used when growing a 6H-8iC single crystal thin film on an 8iC substrate.

第2図に、従来のデイツプ法による6H−8iC単結晶
薄膜のエピタキシャル成長装置の一例を示す。この装置
を用いての6H−8iC単結晶薄膜の成長は、黒鉛製坩
堝8に珪素を装入し、中央に開口部を有する黒鉛製蓋体
9を前記坩堝8の上端開口に装着した後、不活性ガス雰
囲気中で高周波誘導加熱法などにより坩堝8を1500
℃以上に加熱して珪素を融解して珪素融液10とし、高
温を維持し、かつ温度勾配を設けて坩堝8の高温部の内
壁から珪素融液10中に炭素を溶出させて炭素飽和させ
た後、基板ホルダー11に保持された6H−8iC基板
12を珪素融液10の低温部中に浸すことによって、6
H−8iC基板12上に6H−8iC単結晶薄膜を成長
させるものである。
FIG. 2 shows an example of an apparatus for epitaxial growth of a 6H-8iC single crystal thin film using the conventional dip method. To grow a 6H-8iC single crystal thin film using this device, silicon is charged into a graphite crucible 8, and a graphite lid 9 having an opening in the center is attached to the upper opening of the crucible 8. The crucible 8 was heated to 1500 ml by high-frequency induction heating in an inert gas atmosphere.
℃ or higher to melt silicon to form a silicon melt 10, maintain the high temperature, and provide a temperature gradient to elute carbon from the inner wall of the high temperature part of the crucible 8 into the silicon melt 10 to achieve carbon saturation. After that, the 6H-8iC substrate 12 held by the substrate holder 11 is immersed in the low temperature part of the silicon melt 10.
A 6H-8iC single crystal thin film is grown on an H-8iC substrate 12.

6H−8iC青色発光ダイオードは、n型6H−8iC
単結晶薄膜およびn型6H−3iC単結晶薄膜を連続し
て成長させることによって得られるpn接合を利用した
ものであり、それらの膜厚が青色発光ダイオードの発光
輝度に影響する。従って、再現性よく高輝度青色発光ダ
イオードを製造するには、デイツプ法によってn型6H
−8iC単結晶lW膜およびp!!!6H−3iC単結
晶薄膜を成長させる際に、目標の膜厚のn型膜およびp
型膜を再現性よく得ることが必要不可欠である。
6H-8iC blue light emitting diode is n-type 6H-8iC
It utilizes a pn junction obtained by successively growing a single crystal thin film and an n-type 6H-3iC single crystal thin film, and the thickness of these films affects the luminance of the blue light emitting diode. Therefore, in order to manufacture high-brightness blue light-emitting diodes with good reproducibility, it is necessary to use n-type 6H light emitting diodes using the dip method.
-8iC single crystal lW film and p! ! ! When growing a 6H-3iC single crystal thin film, an n-type film and a p-type film of the target thickness are grown.
It is essential to obtain a mold film with good reproducibility.

このようなデイツプ法による6H−3iC基板上への6
H−8iC単結晶薄膜の成長の例には、ジャーナル オ
ブ アプライド フィジックス(Journal of
 Applied Physics)  第50巻、第
8215頁(1979年)、特開昭60−260498
号などかある。その際、珪素融液の温度勾配中では、基
板位置によって成長速度が異なる。例えば、ジ丁−ナル
 オブ アプライド フィンックス(Journal 
of Applied Physics)  第50巻
、第8215頁(1979年)の場合、成長を行う基板
位置(高さ)とメルトバック(高温部で基板が融液中で
エツチングされる現象)を行う基板位置(高さ)の差が
わずか3mmであり、その間では基板の上下位置が変化
すると成長膜厚も著しく変化する。従って、目標の膜厚
の成長膜を得るには、基板位置を精密・正確に制御する
ことが必要不可欠である。
6 onto a 6H-3iC substrate by such a dip method.
Examples of growing H-8iC single crystal thin films include the Journal of Applied Physics.
Applied Physics) Volume 50, Page 8215 (1979), JP-A-60-260498
There is a number etc. At this time, the growth rate differs depending on the position of the substrate in the temperature gradient of the silicon melt. For example, Journal of Applied Finix
of Applied Physics) Volume 50, Page 8215 (1979), the substrate position (height) for growth and the substrate position (height) for meltback (a phenomenon in which the substrate is etched in a melt in a high temperature area) The difference in height (height) is only 3 mm, and if the vertical position of the substrate changes between these two, the thickness of the grown film will change significantly. Therefore, in order to obtain a grown film with a target thickness, it is essential to precisely and accurately control the substrate position.

(発明が解決しようとする課題) 本発明は、デイツプ法において融液(メルト)内の基板
浸漬位置を精密・正確に制御することによって目標の膜
厚の成長膜を再現性よく得る結晶成長方法を提供するこ
とを目的とするものである。
(Problems to be Solved by the Invention) The present invention provides a crystal growth method in which a grown film of a target thickness can be obtained with good reproducibility by precisely and accurately controlling the immersion position of a substrate in a melt in the dip method. The purpose is to provide the following.

(課題を解決するための手段) 本発明は、基板ホルダーの先端に設置し7た基板を坩堝
中の融液(メルト)に浸漬して前記基板上に薄膜を液相
エピキシャル成長させる方法において、前記融液と前記
基板ホルタ−の間に導通検知器を設置し、前記基板ホル
ダーを前記融液の」一部から降下させ、前記基板か融液
に接した時点を前記導通検知器により検知し、検知した
1ケ置から前記基板を所定の深さに浸漬することによっ
て目標の膜厚の成長膜を再現性よく得ることを特徴とす
る。
(Means for Solving the Problems) The present invention provides a method for liquid phase epitaxial growth of a thin film on a substrate by immersing a substrate placed at the tip of a substrate holder in a melt in a crucible. A continuity detector is installed between the melt and the substrate holder, the substrate holder is lowered from a portion of the melt, and the continuity detector detects when the substrate comes into contact with the melt. A grown film having a target thickness can be obtained with good reproducibility by immersing the substrate to a predetermined depth from one detected position.

(作用) 以下、本発明を図面を用いて詳細に説明する。(effect) Hereinafter, the present invention will be explained in detail using the drawings.

第1図(a)は、本発明の液相エピタキシャル成長り法
において用いられる装置構成の一例をIス式的に示す図
であり、坩堝1の上端開口には、中央に開口部を釘する
蓋体2か装着されており、また坩堝1の内部には成長さ
せようとする結晶の成分元素を含んだ融液(メルト)3
か収納されている。そして、坩堝1の上方からは、蓋体
2の中央開口部を挿通して、基板ホルタ−4に保持され
た基板5を融液3中へと降下させるか、この基板5を精
密・正確に上下させるために、基板ホルダー4の上端部
側には、例えばネジ機構などによる基板上下機構6か設
けられている。しかして、この装置においては、電気的
導通を検知する導通検知器7がさらに備えられており、
この導通検知器7より延長された導電線の一方は、基板
ホルダー4の先端部ないしは基板5に接続されており、
また他方の導電線は融液3内へと浸漬されている。
FIG. 1(a) is a diagram showing an example of an apparatus configuration used in the liquid phase epitaxial growth method of the present invention in an I-style manner. The body 2 is attached to the crucible 1, and inside the crucible 1 is a melt 3 containing the constituent elements of the crystal to be grown.
or stored. Then, from above the crucible 1, the substrate 5 held by the substrate holter 4 is lowered into the melt 3 by passing through the center opening of the lid 2, or the substrate 5 is precisely and accurately inserted into the melt 3. In order to move the substrate up and down, a substrate up and down mechanism 6, such as a screw mechanism, is provided on the upper end side of the substrate holder 4. Therefore, this device further includes a continuity detector 7 that detects electrical continuity,
One of the conductive wires extending from the continuity detector 7 is connected to the tip of the substrate holder 4 or the substrate 5,
The other conductive wire is immersed into the melt 3.

結晶成長は、以下のように行われる。ます、成長させよ
うとする結晶の成分元素を含んだ融液3内に温度勾配(
温度差)を設け、その低温部にて融液3中の溶質を過飽
和状態にしまた後に、基板5を融lll 3にデイツプ
する。その際、基板ホルダー4の先端あるいは基板5と
融液3との間の導通を導通検知器7によりモニターして
おくと、基板5か融液3に接した位置を知ることかでき
、そこを基準点として基板5を精密・正確に降下させれ
は、基板5を常に融液3の液面から目標の(I′L置に
再現性よく設置でき、従って、温度・温度勾配・融液の
量なとの他の結晶成長条件を一定にしておく限り再現性
よく目標の膜厚の成長膜が得られる。
Crystal growth is performed as follows. First, a temperature gradient (
A temperature difference) is provided, and the solute in the melt 3 is brought to a supersaturated state in the low temperature part, and then the substrate 5 is dipped into the melt 3. At that time, if the continuity between the tip of the substrate holder 4 or the substrate 5 and the melt 3 is monitored by the continuity detector 7, the position where the substrate 5 is in contact with the melt 3 can be known, and the position can be detected. If the substrate 5 is lowered precisely and accurately as a reference point, the substrate 5 can always be placed at the target (I'L) position from the surface of the melt 3 with good reproducibility, and therefore the temperature, temperature gradient, As long as other crystal growth conditions such as the amount are kept constant, a grown film with the target thickness can be obtained with good reproducibility.

第1図(a)の場合、基板ボルダ−4の先端と融液3の
間の導通をモニターしているので結晶成長温度で融液3
か導体であることが必要条件てある。もし、坩堝1およ
び基板ホルダー4も導体であるような場合には、第1図
(b)に示すように坩堝1と基板ホルダー4の間の導通
をモニターしてもよい。
In the case of Fig. 1(a), since the conduction between the tip of the substrate boulder 4 and the melt 3 is monitored, the melt 3 is kept at the crystal growth temperature.
There is a requirement that it be a conductor. If crucible 1 and substrate holder 4 are also conductors, continuity between crucible 1 and substrate holder 4 may be monitored as shown in FIG. 1(b).

本発明は、炭素飽和した珪素融液からの炭化珪素(S 
i C)成長(黒鉛製坩堝使用)、砒素を含んだガリウ
ム融液からの砒化カリウム成長(黒鉛製坩堝、窒素ボロ
ン製坩堝など使用)、水銀−カドミウム−テルル系融液
からのテルル化水銀カドミウム成長(黒鉛製坩堝、石英
製坩堝など使用)などに適用可能である。
The present invention produces silicon carbide (S) from a carbon-saturated silicon melt.
i C) Growth (using graphite crucible), potassium arsenide growth from gallium melt containing arsenic (using graphite crucible, nitrogen boron crucible, etc.), mercury cadmium telluride from mercury-cadmium-tellurium melt It can be applied to growth (using graphite crucibles, quartz crucibles, etc.).

特に、黒鉛のような導体製の坩堝および基板ホルダーを
用いた場合、第1図(b)のような実施態様か可能とな
る。
In particular, when a crucible and a substrate holder made of a conductor such as graphite are used, an embodiment as shown in FIG. 1(b) is possible.

(実施例) 実施例を第1図(b)を用いて説明する。坩堝1、蓋体
2、基板ホルダー4は黒鉛製で基板5は6H型炭化珪素
(以下、6H−3iC)である。
(Example) An example will be described using FIG. 1(b). The crucible 1, the lid 2, and the substrate holder 4 are made of graphite, and the substrate 5 is made of 6H type silicon carbide (hereinafter referred to as 6H-3iC).

室温にて、坩堝1に高純度珪素を装入した後、蓋体2を
のせ、アルゴン雰囲気中で高周波誘導加熱により坩堝1
を1700〜1750℃に加熱した。珪素は約1400
℃で融解するので、第1図(b)のような状態が実現で
きた。基板位置は基板上下機構6により、上下方向に0
.1mmの精度で制御可能である。放射温度計で坩堝1
の外壁の温度を測定したところ、第3図にような温度勾
配となっていた。この測定結果と後で示す第4図から、
この外壁の温度勾配同様、珪素融液3内に上部が低温、
下部(底部)が高温という温度勾配ができていることが
わかった。
After charging high-purity silicon into the crucible 1 at room temperature, the lid 2 is placed on the crucible 1 and the crucible 1 is heated by high-frequency induction heating in an argon atmosphere.
was heated to 1700-1750°C. Silicon is about 1400
Since it melts at ℃, the state shown in Figure 1(b) was achieved. The board position is set to 0 in the vertical direction by the board up/down mechanism 6.
.. It can be controlled with an accuracy of 1 mm. Crucible 1 with radiation thermometer
When we measured the temperature of the outer wall of the building, we found a temperature gradient as shown in Figure 3. From this measurement result and Figure 4 shown later,
Similar to this temperature gradient on the outer wall, inside the silicon melt 3 there is a low temperature at the top.
It was found that there was a temperature gradient where the lower part (bottom) was hotter.

第3図のような状態を保持することにより、珪素融液3
中の高温部で、黒鉛坩堝1内壁から珪素融液3中に炭素
が溶出し、温度勾配と拡散によってそれが低温部に輸送
されて過飽和状態となる。
By maintaining the state as shown in Fig. 3, the silicon melt 3
Carbon is eluted from the inner wall of the graphite crucible 1 into the silicon melt 3 in the high-temperature section, and is transported to the low-temperature section by the temperature gradient and diffusion, resulting in a supersaturated state.

この状態で6H−3iC基板を液面から7mm以内にデ
イツプすることにより、6H−8iCの単結晶薄膜を成
長させることができた。
By dipping the 6H-3iC substrate in this state to within 7 mm from the liquid surface, a 6H-8iC single crystal thin film could be grown.

液面位置をモニターせずに、液面の下5mmの位置と思
われる位置に基板5を設置すると、成長速度は11±3
μm/hourであった。ところが、0.1mmの精度
で上下位置を制御しながら基板5を、基板5と融液3が
導通した位置の下5.0m+nに設置したところ成長速
度の誤差は±1μm/hour以下に低減した。
If the substrate 5 is placed at a position that is thought to be 5 mm below the liquid level without monitoring the liquid level position, the growth rate will be 11±3.
It was μm/hour. However, when the substrate 5 was placed 5.0 m+n below the point where the substrate 5 and the melt 3 were electrically connected while controlling the vertical position with an accuracy of 0.1 mm, the error in the growth rate was reduced to less than ±1 μm/hour. .

上記の液面位置をモニターする成長方法によって、液面
と基板との距離と、成長速度の関係を調べたのが第4図
である。これによると、液面下4゜8mm、 5.  
On+m、 5. 2mmでの成長速度がそれぞれ約1
4μm/hour、約11μm/hour。
FIG. 4 shows an investigation of the relationship between the distance between the liquid level and the substrate and the growth rate using the above growth method of monitoring the liquid level position. According to this, 4°8mm below the liquid level, 5.
On+m, 5. The growth rate at 2 mm is approximately 1
4 μm/hour, approximately 11 μm/hour.

約8μm/hourであった。以上の結果から液面モニ
ターしない場合に、11±3μm/hourという成長
速度のばらつきか生したのは、基板位置か5.0mmの
上下0.2mm内でばらついていたためと考えられる。
It was about 8 μm/hour. From the above results, it is considered that the reason for the variation in growth rate of 11±3 μm/hour when the liquid level was not monitored was due to variation within 0.2 mm above and below the 5.0 mm substrate position.

(発明の効果) 以りに述べたように、デイツプ法において融液と基板ホ
ルダーの間に導通検知器を設置し、基板が融液に接した
時点を前記導通検知器により検知し、検知した位置から
基板を所定の深さに浸漬することにより、目標の膜厚の
成長膜を再現性よく得ることができた。
(Effect of the invention) As described above, in the dip method, a continuity detector is installed between the melt and the substrate holder, and the continuity detector detects the point at which the substrate comes into contact with the melt. By dipping the substrate to a predetermined depth from a certain position, a grown film with a target thickness could be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、本発明の実施態様の一例を示す断面図
、第1図(b)は、特に、坩堝および基板ホルダーが導
体である場合に可能となる別の実施態様の例の断面図で
ある。 第2図はデイツプ法による炭化珪素単結晶薄膜成長装置
の従来例を示す断面図である。 第3図は、実施例における坩堝外壁の温度勾配を示し、
第4図は実施例における基板の融液中での位置と成長速
度の関係を示す図である。 1・・・坩堝、2・・・蓋体、3・・融液(メルト)、
4・・・基板ホルタ−5・・・基板、6・・基板上下機
構、7・・・導通検知器、8・・黒鉛製坩堝、9・・・
黒鉛製蓋体、10・・・珪素融液、11・・・黒鉛製基
板ホルダー 12・・・炭化珪素基板。
FIG. 1(a) is a cross-sectional view showing an example of an embodiment of the present invention, and FIG. 1(b) is an example of another embodiment that is possible, particularly when the crucible and substrate holder are conductors. FIG. FIG. 2 is a sectional view showing a conventional example of a silicon carbide single crystal thin film growth apparatus using the dip method. FIG. 3 shows the temperature gradient of the outer wall of the crucible in the example,
FIG. 4 is a diagram showing the relationship between the position of the substrate in the melt and the growth rate in Examples. 1... Crucible, 2... Lid, 3... Melt,
4... Substrate holter 5... Substrate, 6... Substrate up/down mechanism, 7... Continuity detector, 8... Graphite crucible, 9...
Graphite lid, 10... Silicon melt, 11... Graphite substrate holder, 12... Silicon carbide substrate.

Claims (1)

【特許請求の範囲】[Claims]  基板ホルダーの先端に設置した基板を坩堝中の融液に
浸漬して前記基板上に薄膜を液相エピキシャル成長させ
る方法において、前記融液と前記基板ホルダーの間に導
通検知器を設置し、前記基板ホルダーを前記融液の上部
から降下させ、前記基板が融液に接した時点を前記導通
検知器により検知し、検知した位置から前記基板を所定
の深さに浸漬することによって目標の膜厚の成長膜を再
現性よく得ることを特徴とする液相エピタキシャル成長
方法。
In a method for liquid phase epitaxial growth of a thin film on a substrate by immersing a substrate placed at the tip of a substrate holder in a melt in a crucible, a conduction detector is installed between the melt and the substrate holder, The substrate holder is lowered from above the melt, the continuity detector detects the point at which the substrate comes into contact with the melt, and the substrate is immersed to a predetermined depth from the detected position to obtain the target film thickness. A liquid phase epitaxial growth method characterized by obtaining a grown film with good reproducibility.
JP9758990A 1990-04-16 1990-04-16 Method for liquid phase epitaxy Pending JPH03295894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9758990A JPH03295894A (en) 1990-04-16 1990-04-16 Method for liquid phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9758990A JPH03295894A (en) 1990-04-16 1990-04-16 Method for liquid phase epitaxy

Publications (1)

Publication Number Publication Date
JPH03295894A true JPH03295894A (en) 1991-12-26

Family

ID=14196428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9758990A Pending JPH03295894A (en) 1990-04-16 1990-04-16 Method for liquid phase epitaxy

Country Status (1)

Country Link
JP (1) JPH03295894A (en)

Similar Documents

Publication Publication Date Title
US3000768A (en) Semiconductor device with controlled zone thickness
CA1124409A (en) Semiconductor plasma oxidation
US3093517A (en) Intermetallic semiconductor body formation
US3647578A (en) Selective uniform liquid phase epitaxial growth
EP0064514B1 (en) Process and apparatus for growing mercury cadmium telluride layer by liquid phase epitaxy from mercury-rich melt
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US2895858A (en) Method of producing semiconductor crystal bodies
US5030580A (en) Method for producing a silicon carbide semiconductor device
US3142596A (en) Epitaxial deposition onto semiconductor wafers through an interaction between the wafers and the support material
Gildart et al. Some semiconducting properties of bismuth trisulfide
US3663722A (en) Method of making silicon carbide junction diodes
JPH07172998A (en) Production of single crystal of silicon carbide
US3715245A (en) Selective liquid phase epitaxial growth process
US2809165A (en) Semi-conductor materials
Kasai et al. PbTe and Pb0. 8Sn0. 2Te epitaxial films on cleaved BaF2 substrates prepared by a modified hot‐wall technique
Laugier et al. Ternary phase diagram and liquid phase epitaxy of Pb-Sn-Se and Pb-Sn-Te
US4026735A (en) Method for growing thin semiconducting epitaxial layers
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JPS5863183A (en) 2-6 group compound semiconductor device
US3770518A (en) Method of making gallium arsenide semiconductive devices
US3549401A (en) Method of making electroluminescent gallium phosphide diodes
JPH03295894A (en) Method for liquid phase epitaxy
JPH0788274B2 (en) Method for growing SiC single crystal
Hoss et al. The Close‐Spaced Growth of Degenerate P‐Type GaAs, GaP, and Ga (As x, P 1− x) by ZnCl2 Transport for Tunnel Diodes
Sudlow et al. Doping gradients in layers of gallium phosphide grown by liquid epitaxy