JPH0329584Y2 - - Google Patents

Info

Publication number
JPH0329584Y2
JPH0329584Y2 JP1986161465U JP16146586U JPH0329584Y2 JP H0329584 Y2 JPH0329584 Y2 JP H0329584Y2 JP 1986161465 U JP1986161465 U JP 1986161465U JP 16146586 U JP16146586 U JP 16146586U JP H0329584 Y2 JPH0329584 Y2 JP H0329584Y2
Authority
JP
Japan
Prior art keywords
water
piston
float
water intake
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986161465U
Other languages
Japanese (ja)
Other versions
JPS6365865U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986161465U priority Critical patent/JPH0329584Y2/ja
Publication of JPS6365865U publication Critical patent/JPS6365865U/ja
Application granted granted Critical
Publication of JPH0329584Y2 publication Critical patent/JPH0329584Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、海洋エネルギーのうち波力を利用す
る波力ポンプに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a wave pump that utilizes wave power among marine energy.

〔従来の技術とその問題点〕[Conventional technology and its problems]

海洋エネルギーの利用の一つとして波力による
発電システムが研究されている。この波力発電は
一例として、波の上下運動により生ずる空気室の
体積変化をノズルからの空気流に変換し、これに
より空気タービンを回し、発電するものである。
Wave power generation systems are being researched as one way to utilize ocean energy. One example of wave power generation is to convert the change in volume of an air chamber caused by the vertical movement of waves into an air flow from a nozzle, which rotates an air turbine and generates electricity.

しかし、波力による空気の圧力変動は非常に小
さい(1気圧以下)ため、この空気流によるエネ
ルギーを利用するには、空気タービン径を大きく
する必要があるなど、装置全体が大がかりで機構
も複雑となり単位出力当たりの建造コトが大きい
ものとなつてしまう。
However, since the pressure fluctuation of air due to wave force is very small (less than 1 atmosphere), in order to utilize the energy from this air flow, the diameter of the air turbine needs to be increased, making the entire device large-scale and complicated. Therefore, the construction cost per unit output becomes large.

このように波力発電はその多くが空気室等を用
いたもので、機構が複雑で建造コストが大きいも
のとなるため実用化は十分には進んでいない。
As described above, most wave power generation uses air chambers, etc., and the mechanism is complicated and the construction cost is high, so practical application has not progressed sufficiently.

一方、海洋は比較的厳しい自然環境にあり、こ
こに設置する設備の立地環境を考えると、簡易構
造で自然のエネルギーをうまく利用するものが望
まれるが、従来これに関し確立された技術は存在
していなかつた。
On the other hand, the ocean has a relatively harsh natural environment, and considering the location environment of the equipment installed here, it is desirable to have a simple structure that makes good use of natural energy, but there is no established technology for this. I wasn't there.

かかる事情を考慮して、海中に設置したケーソ
ン内にフロートを収め、波浪によるケーソン内へ
の海水の出入れでフロートが上下動することを利
用して波エネルギーを位置エネルギーに変換して
海水を揚水できるようにした波力ポンプを、出願
人は先に実願昭61−137223号(実開昭63−42874
号公報)として提案した。
Taking these circumstances into consideration, a float is housed in a caisson installed underwater, and the float moves up and down as seawater moves in and out of the caisson due to waves, converting wave energy into potential energy and converting seawater into potential energy. The applicant had previously applied for a wave pump capable of pumping water using Utility Model Application No. 137223/1983 (42874/1983).
(No. Publication).

この実願昭61−137223号のものは、フロートに
取水孔を形成するとともに、該フロートにピスト
ンを一体的に垂設し、前記取水孔と、前記ピスト
ンが挿入され取水管に連通しているシリンダーと
をそれぞれ別個に送水管に連通したもので、波浪
によるフロートの上下動を利用して波の上昇時に
はフロートの働きで取水孔内に取入れた海水を、
また波の下降時にはピストンの働きで取水管に取
入れた海水をそれぞれ送水するようにして、波の
上昇、下降時のいずれにも取水と送水とを同時に
行い、常時途切れることなく送水できるようにし
てある。
In this patent application No. 61-137223, a water intake hole is formed in the float, and a piston is integrally hung on the float, and the water intake hole and the piston are inserted and communicate with the water intake pipe. The cylinders are connected to water pipes separately, and when the waves rise, seawater is taken into the water intake hole by the action of the float, using the vertical movement of the float due to waves.
Also, when the waves are going down, the pistons work to send the seawater taken into the water intake pipes, and both when the waves are going up and down, water intake and water delivery are done at the same time, so that water can be sent without interruption at all times. be.

しかし、かかる構成のものは波の上昇時の取水
管と波の下降時の取水管とをそれぞれ別個に設け
ているため、構造が複雑になるばかりでなく、摺
動部分が多くなつて波浪の上下がフロートにスム
ーズに伝わらないおそれもある。
However, with this configuration, the water intake pipe for rising waves and the water intake pipe for falling waves are provided separately, which not only complicates the structure but also increases the number of sliding parts. There is also a risk that the up and down movement will not be transmitted smoothly to the float.

しかも、ポンプ作用をなし摩耗しやすい可動部
分であるピストンとシリンダーとが海中に位置す
るため、メンテナンス等が行いにくく、安全面で
望ましくない。
Moreover, the piston and cylinder, which are movable parts that perform a pumping action and are subject to wear, are located underwater, making maintenance difficult and undesirable from a safety standpoint.

本考案の目的は前記従来例の不都合を解消し、
波の上昇時にも下降時にも送水できポンプ機能を
充分に活用でき、しかもそのための構造は簡単な
もので足り、ポンプ機構部を海面上に設けメンテ
ナンスも行いやすくし、安全性を充分に確保でき
る波力ポンプを提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example,
Water can be delivered both when the waves are rising and when the waves are falling, and the pump function can be fully utilized.Moreover, a simple structure is sufficient for this purpose, and the pump mechanism is located above the sea surface, making maintenance easier and ensuring sufficient safety. Our goal is to provide wave pumps.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は前記目的を達成するため、波浪による
水の出入用開口を側面に形成したケーソン内に、
上部にピストンを一体的に突設したフロートを収
め、該ピストンが挿入するシリンダーのピストン
が摺動する範囲よりも上方と下方とに位置させて
取水口と排水口とをそれぞれ1対ずつ形成し、こ
れら合計4個の取水口と排水口とに取水管と送水
管とを接続し、該接続部に逆流防止弁を設けたこ
とを要旨とするものである。
In order to achieve the above object, the present invention has a caisson with openings formed on the side for water to enter and exit due to waves.
A float having an integrally protruding piston is housed in the upper part, and a pair of water intake ports and a drain port are formed above and below the sliding range of the piston of the cylinder into which the piston is inserted. The gist of this system is that a water intake pipe and a water supply pipe are connected to the total of four water intake ports and a water discharge port, and a backflow prevention valve is provided at the connection portion.

〔作 用〕[Effect]

本考案によれば、波浪によるケーソン内への海
の出入りで、フロート及びこれと一体のピストン
が上下動し、ピストンの上方と下方とにそれぞれ
形成されるシリンダー内の容積が変化する。その
結果、波の上昇時にはピストンの上方の空間に取
入れられた海水が、また波の下降時にはピストン
の下方の空間に取入れられた海水がそれぞれ送水
管へと圧送される。
According to the present invention, as the sea moves in and out of the caisson due to waves, the float and the piston integrated therewith move up and down, and the volumes in the cylinders formed above and below the piston change. As a result, seawater taken into the space above the piston when waves are rising, and seawater taken into the space below the piston when waves are falling, are pumped into the water pipe.

〔実施例〕〔Example〕

以下、図面について本考案の実施例を詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本考案の波力ポンプの実施例を示す縦
断正面図で、図中1はコンクリート製もしくは鋼
製の柱状ケーソンを示し、その側面下方には波浪
による水の出入用開口2を形成してある。
Fig. 1 is a vertical front view showing an embodiment of the wave pump of the present invention. In the figure, 1 indicates a columnar caisson made of concrete or steel, and an opening 2 is formed at the lower side of the side for inlet and outlet of water caused by waves. It has been done.

図中3は前記ケーソン1内に収納する、ケーソ
ン1とほぼ同径のフロートを示し、これは上部に
ピストン4を一体的に突設したものである。
In the figure, numeral 3 indicates a float having approximately the same diameter as the caisson 1, which is housed in the caisson 1, and has a piston 4 integrally protruding from its upper part.

そして、ケーソン1の上部にシリンダー5を設
け、ここに形成したピストンロツド4aの貫通孔
6を介して該シリンダー5内に前記ピストン4の
端を挿入し、ピストン4のストローク範囲よりも
上方と下方とに位置させてシリンダー5の壁にそ
れぞれ取水口7a、排水口8aと、取水口7b、
排水口8bとを形成した。図中9a,9b,10
a,10bは前記取水口7a,7b、排水口8
a,8bに設けられそれぞれ下流方向にのみ開く
逆流防止弁を示す。
Then, a cylinder 5 is provided in the upper part of the caisson 1, and the end of the piston 4 is inserted into the cylinder 5 through the through hole 6 of the piston rod 4a formed therein, and the end of the piston 4 is inserted into the cylinder 5 above and below the stroke range of the piston 4. A water intake port 7a, a drain port 8a, a water intake port 7b, and a water intake port 7b are located on the wall of the cylinder 5, respectively.
A drain port 8b was formed. 9a, 9b, 10 in the figure
a and 10b are the water intake ports 7a and 7b and the drain port 8
8A and 8B, respectively, showing check valves that open only in the downstream direction.

他方、ケーソン1の側面下方に海水の取入口1
1を設け、該取入口11に連通する取水管12の
分岐管12a,12bを前記取水口7a,7bと
にそれぞれ連結し、また、上方の貯水地13等に
開口する給水管14の分岐管14a,14bを前
記排水口8a,8bとにそれぞれ連結する。
On the other hand, there is a seawater intake port 1 at the lower side of the caisson 1.
1, connecting branch pipes 12a and 12b of the water intake pipe 12 communicating with the intake port 11 to the water intake ports 7a and 7b, respectively, and branch pipes of the water supply pipe 14 opening to the upper water storage area 13, etc. 14a and 14b are connected to the drain ports 8a and 8b, respectively.

次に使用法及び動作について説明すると、波の
上昇時には第2図に示すようにフロート3が水面
の上昇に伴い上昇し、これと一体のピストン4も
上昇する。しかし、シリンダー5はケーソン1に
固定されていて動かないから、ピストン4がシリ
ンダー5内を上方に移動することにより、シリン
ダー5内でピストン4よりも上方の空間A内の水
が押し上げられ、逆流防止弁10aを押し開いて
排水口8a、分岐管14aを介して給水管14側
へと圧送され、貯水池13等へ給水される。
Next, the method of use and operation will be explained. When waves rise, the float 3 rises as the water surface rises, as shown in FIG. 2, and the piston 4 integrated therewith also rises. However, since the cylinder 5 is fixed to the caisson 1 and does not move, as the piston 4 moves upward within the cylinder 5, the water in the space A above the piston 4 is pushed up within the cylinder 5, causing a backflow. The prevention valve 10a is pushed open, and the water is forced to the water supply pipe 14 side via the drain port 8a and the branch pipe 14a, and is supplied to the reservoir 13 and the like.

この時、ピストン4よりも下方の空間B内はピ
ストン4の上昇により減圧されるので、逆流防止
弁9bが開いて取入口11を介して取水管12内
に取入れられた海水がピストン4の下方空間B内
に流入する。
At this time, the pressure in the space B below the piston 4 is reduced due to the rise of the piston 4, so the check valve 9b opens and the seawater taken into the water intake pipe 12 through the intake port 11 flows below the piston 4. Flows into space B.

次に、波の下降時には第3図に示すように、今
度は水面の下降に伴いフロート3を下降しピスト
ン4がシリンダー5内を下降する。その結果、前
記した波の上昇時にシリンダー5内空間Bに取入
れられた海水がピストン4で加圧され、逆流防止
弁10bを押し開いて排水口8b、分岐管14b
を通つて給水管14へと圧送される。
Next, when the wave descends, as the water surface descends, the float 3 is lowered and the piston 4 descends within the cylinder 5, as shown in FIG. As a result, the seawater taken into the space B inside the cylinder 5 when the waves rise is pressurized by the piston 4, pushing open the check valve 10b and opening the drain port 8b and the branch pipe 14b.
The water is fed under pressure to the water supply pipe 14 through.

この時、ピストン4よりも上方のシリンダー5
内空間Aは、ピストン4の下降により減圧される
ので、逆流防止弁9aが開いて取水管12内の海
水が取水口7aから空間A内に取入れられる。
At this time, the cylinder 5 above the piston 4
Since the inner space A is depressurized by the lowering of the piston 4, the check valve 9a opens and the seawater in the water intake pipe 12 is taken into the space A from the water intake port 7a.

このようにしてフロートの上昇、下降いずれの
過程でも、取水と送水とを1つのシリンダー5で
同時に行い、波浪がある限り本考案の波力ポンプ
は揚水を続けることが可能であり、かかるポンプ
の揚水力と揚水量等はフロート3の規模、シリン
ダー5の長さ等で設底される。
In this way, in both the raising and lowering processes of the float, water intake and water supply are performed simultaneously by one cylinder 5, and the wave pump of the present invention can continue pumping water as long as there are waves. The pumping power, pumping amount, etc. are determined by the scale of the float 3, the length of the cylinder 5, etc.

なお、前記実施例ではピストンロツド4aは比
較的太径のものを一本使用したが、他の実施例と
して第4図に示すようにピストンロツド41aを
細径のもとし、これを複数本使用することもでき
る。そして、この場合はピストン41が挿入する
シリンダー51に形成する貫通孔61も小径のも
のとできるので、この部分からの漏水を軽減で
き、またフロート3の動きが複数のピストンロツ
ド41aで分割されてピストン41に伝わるから
ピストン41の動きを滑めらかにすることがで
き、ポンプ作用が向上する。
In the above embodiment, one piston rod 4a with a relatively large diameter was used, but in another embodiment, as shown in FIG. 4, a plurality of piston rods 41a with a small diameter may be used. You can also do it. In this case, the through hole 61 formed in the cylinder 51 into which the piston 41 is inserted can also be made of a small diameter, so water leakage from this part can be reduced, and the movement of the float 3 is divided by the plurality of piston rods 41a, so that the piston 41, the movement of the piston 41 can be made smooth, and the pumping action can be improved.

さらに第3実施例として第5図〜第8図に示す
ようにフロート3に複数個(図示の例では9個)
のピストン4a,4b,4c…4nを連結するこ
とも考えられ、この場合も海の取入口に連通する
取水管の分岐管及び給水管の分岐管を各シリンダ
ー5a,5b,5c…5nに連結するがこの第3
実施例では取水管15a,15b…及び給水管1
6a,16b…を複数本配設し、隣接するシリン
ダー例えば5b,5c,5e,5f,5h,5i
間で取管15bを共用し、またシリンダ5a,5
b,5d,5e,5g,5h間で給水管16aを
共用し、これら取管15bの分岐管17a,17
b、給水管16aの分岐管18a,18bをそれ
ぞれシリンダー5c,5b,5aに連結する。残
りの他の取管15a、給水管16bについて隣接
するシリンダー間でこれを共用する。
Furthermore, as a third embodiment, as shown in FIGS. 5 to 8, a plurality of floats (9 in the illustrated example)
It is also possible to connect the pistons 4a, 4b, 4c...4n, and in this case, the branch pipe of the intake pipe and the branch pipe of the water supply pipe that communicate with the sea intake are connected to each cylinder 5a, 5b, 5c...5n. But this third
In the embodiment, water intake pipes 15a, 15b... and water supply pipe 1
A plurality of cylinders 6a, 16b... are arranged, and adjacent cylinders, for example, 5b, 5c, 5e, 5f, 5h, 5i
The take-up pipe 15b is shared between the cylinders 5a and 5.
b, 5d, 5e, 5g, and 5h share the water supply pipe 16a, and branch pipes 17a and 17 of these intake pipes 15b.
b. Connect the branch pipes 18a and 18b of the water supply pipe 16a to the cylinders 5c, 5b and 5a, respectively. The remaining intake pipes 15a and water supply pipes 16b are shared between adjacent cylinders.

なお、各分岐管17a,17b,18a,18
bのがシリンダー5a,5b,5c…5nに接談
する部分である取水口7a,7b、排水口8a,
8bに逆流防止弁9a,9b,10a,10cを
設けることは前記他の実施例と同様である。
In addition, each branch pipe 17a, 17b, 18a, 18
B is the part that contacts the cylinders 5a, 5b, 5c...5n, which are water intake ports 7a, 7b, drain ports 8a,
The provision of check valves 9a, 9b, 10a, and 10c in 8b is similar to the other embodiments described above.

このようにしてピストン4a,4b,4c…4
n及びシリンダー5a,5b,5c…5nの数を
適宜増設して揚水力、揚水量を増すこともできる
が、この場合、取水管15a,15b…や給水管
16a,16b…はシリンダー5a,5b,5c
…5n間で共用することで配管を少なくし簡単な
構造にできる。
In this way, the pistons 4a, 4b, 4c...4
It is also possible to increase the pumping power and amount of water by appropriately increasing the number of cylinders 5a, 5b, 5c...5n, but in this case, the intake pipes 15a, 15b... and the water supply pipes 16a, 16b... ,5c
...By sharing it between 5n, the number of piping can be reduced and the structure can be simplified.

なお、本考案の波力ポンプは海洋開発産業関係
の分野で、波力揚水発電、養魚場への給水、海洋
土木工事等への利用やエアコンプレツサーとして
の利用が考えられ、例えば、上方に貯水池を作る
ことにより、この貯水池に海水を注ぎ込み、ここ
からの落下で通常の水力発電機によつて配電を行
うことが可能となる。
The wave pump of this invention can be used in fields related to ocean development industry, such as wave pumped storage power generation, water supply to fish farms, marine civil engineering work, etc., and as an air compressor. By creating a reservoir in the area, it becomes possible to pour seawater into the reservoir and use the water that falls there to generate electricity using a regular hydroelectric generator.

〔考案の効果〕[Effect of idea]

以上述べたように、本考案の波力ポンプは、フ
ロートの上昇時、下降時いずれの工程においても
取水と送水を同時に行え、取水、送水が途切れる
ことなく常時行なえるのでポンプ機能を充分に活
用できる。しかも取水を送水とは1つのシリンダ
ーで行なえるから、配管も少なくてすみ構造簡単
で故障も少ない。
As mentioned above, the wave pump of the present invention can take in water and send water at the same time, both when the float is rising and when it is falling, and water intake and water feeding can be performed at all times without interruption, making full use of the pump function. can. Moreover, since water intake and water supply can be done in one cylinder, there is less piping, the structure is simple, and there are fewer breakdowns.

さらに、ポンプ機能をなす摺動部を海面より上
に位置させることができるから、メンテナンス等
の作業を海中で行わずにすみ、作業しやすく充分
に管理の行き届いた安全なものとすることができ
る。
Furthermore, since the sliding part that performs the pump function can be located above the sea level, maintenance work does not need to be done underwater, making it easy to work, well-managed, and safe. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の波力ポンプの実施例を示す縦
断正面図、第2図は同上フロートの上昇時を示す
縦断正面図、第3図は同上フロートの下降時を示
す縦断正面図、第4図は第2実施例を示す縦断正
面図、第5図は第3実施例を示すフロート上昇時
の要部の縦断正面図、第6図は同上横断平面図、
第7図は同上フロート下降時の要部の縦断正面
図、第8図は同上横断平面図である。 1……ケーソン、2……水の出入用開口、3…
…フロート、4,41,4a,4b,4c…4n
……ピストン、4a,41a……ピストンロツ
ド、5,51,5a,5b,5c…5n……シリ
ンダー、6,61……貫通孔、7a,7b……取
水口、8a,8b……排水口、9a,9b,10
a,10b……逆流防止弁、11……取入口、1
2,15a,15b……取水管、12a,12b
……分岐管、13……貯水池、14,16a,1
6b……給水管、14a,14b……分岐管、1
7a,17b……分岐管、18a,18b……分
岐管。
Fig. 1 is a longitudinal sectional front view showing an embodiment of the wave pump of the present invention, Fig. 2 is a longitudinal sectional front view showing the same float when it is raised, Fig. 3 is a longitudinal sectional front view showing the same float when it is lowered; 4 is a longitudinal sectional front view showing the second embodiment, FIG. 5 is a longitudinal sectional front view of the main part of the third embodiment when the float is raised, and FIG. 6 is a transverse plan view of the same.
FIG. 7 is a vertical sectional front view of the main parts when the float is lowered, and FIG. 8 is a cross-sectional plan view of the same. 1...Caisson, 2...Water inlet/outlet opening, 3...
...Float, 4, 41, 4a, 4b, 4c...4n
... Piston, 4a, 41a ... Piston rod, 5, 51, 5a, 5b, 5c ... 5n ... Cylinder, 6, 61 ... Through hole, 7a, 7b ... Water intake port, 8a, 8b ... Drain port, 9a, 9b, 10
a, 10b...Return prevention valve, 11...Intake port, 1
2, 15a, 15b... Water intake pipe, 12a, 12b
... Branch pipe, 13 ... Reservoir, 14, 16a, 1
6b... Water supply pipe, 14a, 14b... Branch pipe, 1
7a, 17b...branch pipe, 18a, 18b...branch pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 波浪による水の出入用開口を側面に形成したケ
ーソン内に、上部にピストンを一体内に突設した
フロートを収め、該ピストンが挿入するシリンダ
ーのピストンが摺動する範囲よりも上方と下方と
に位置させて取水口と排水口とをそれぞれ1対ず
つ形成し、これら合計4個の取水口と排水口とに
取水管と送水管を各々接続し、該接続部に逆流防
止弁を設けたことを特徴とする波力ポンプ。
A float with a piston integrally protruding from the upper part is housed in a caisson with openings formed on the side for the entry and exit of water caused by waves, and the float is placed above and below the sliding range of the piston of the cylinder into which the piston is inserted. A water intake pipe and a water transmission pipe are connected to each of the four water intake ports and the water supply pipe, and a backflow prevention valve is provided at the connection portion. A wave pump featuring:
JP1986161465U 1986-10-20 1986-10-20 Expired JPH0329584Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986161465U JPH0329584Y2 (en) 1986-10-20 1986-10-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986161465U JPH0329584Y2 (en) 1986-10-20 1986-10-20

Publications (2)

Publication Number Publication Date
JPS6365865U JPS6365865U (en) 1988-04-30
JPH0329584Y2 true JPH0329584Y2 (en) 1991-06-24

Family

ID=31087803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986161465U Expired JPH0329584Y2 (en) 1986-10-20 1986-10-20

Country Status (1)

Country Link
JP (1) JPH0329584Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110094155A (en) * 2002-10-10 2011-08-19 인디펜던트 내추럴 리소시즈, 인코포레이티드 Buoyancy pump power system
TW201410968A (en) * 2012-09-14 2014-03-16 Yun-Chang Yu Waves water drawing device
TWI618853B (en) * 2015-10-26 2018-03-21 Lin Ming Hong Wind drum type wave power double energy extraction device and system thereof
DE102019104306A1 (en) * 2019-02-20 2020-08-20 Udo Gärtner Pumped storage power plant, method for operating a pumped storage power plant and pumped storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163165A (en) * 1981-03-30 1982-10-07 Michio Mizutani Method of converting wave energy into potential energy of water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861229U (en) * 1971-11-12 1973-08-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163165A (en) * 1981-03-30 1982-10-07 Michio Mizutani Method of converting wave energy into potential energy of water

Also Published As

Publication number Publication date
JPS6365865U (en) 1988-04-30

Similar Documents

Publication Publication Date Title
EP0421010B1 (en) Wave powered pumping apparatus and method
US4742241A (en) Wave energy engine
US3487228A (en) Power generating system
FI79892B (en) HYDROPNEUMATISK VATTENKRAFTMASKIN.
FI113685B (en) Production equipment
US4398095A (en) Wave activated power generation system
US20110027107A1 (en) Power plant, method for producing power, and application of said power plant
PT1756419E (en) Modular system for the electric energy production from wave motion
US8899036B2 (en) Advanced high energy wave power module
US8424300B1 (en) Sea electricity energy production unit
US4110980A (en) Apparatus for producing mechanical kinetic energy from falling water
ITRM960708A1 (en) MARINE ELECTRIC GENERATOR WITH OSCILLATING GATE AND PISTON PUMP
JPH0329584Y2 (en)
US20130009401A1 (en) Offshore hydro power station
GB2039330A (en) Energy conversion devices
CN101786696B (en) Reverse osmosis seawater desalting method and device by utilizing ocean energy
JPH0429088Y2 (en)
JP3629266B1 (en) Drive device and pressure liquid supply system to the drive device
JPH0322556Y2 (en)
GB2388873A (en) Tidal power generator with hydraulic cylinders
JPH01167468A (en) High pressure air producing machine
RU2198317C2 (en) Marine power plant
US4426197A (en) Apparatus for the conversion of power strokes of a random sequence and of random lengths of strokes into potential energy
CN214047179U (en) Wave energy seabed oxygen supply device
JPH0398696A (en) Aeration purification apparatus using wave pump