JPH03295487A - Detecting method for space floating body - Google Patents

Detecting method for space floating body

Info

Publication number
JPH03295487A
JPH03295487A JP9806490A JP9806490A JPH03295487A JP H03295487 A JPH03295487 A JP H03295487A JP 9806490 A JP9806490 A JP 9806490A JP 9806490 A JP9806490 A JP 9806490A JP H03295487 A JPH03295487 A JP H03295487A
Authority
JP
Japan
Prior art keywords
receiving device
space
distance
floating object
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9806490A
Other languages
Japanese (ja)
Inventor
Kenichi Inamiya
健一 稲宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9806490A priority Critical patent/JPH03295487A/en
Publication of JPH03295487A publication Critical patent/JPH03295487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To improve the detection accuracy while realizing a device whose transmitter and antenna are balanced in size without increasing its size by providing a primary radar which uses CW, separating transmission and reception, and installing the both at different places. CONSTITUTION:A transmission device 1 and a reception device 5 are connected mutually through a broken piece 3 and a transmission line 6. When a pseudo random code (PN code) is modulated in a sent wave 2, the reception device can receive this code as long as the broken piece 3 is irradiated. There are many obstacles between two points P1 and P2, so a signal sent from the point P1 is reflected at the point P2 and received at the point P1 previously and the time of its transmission between them is measured to know the distance of the electric path. Knowing that the difference between the direct distance and this distance is an extra distance as a bias component, the direct distance between the points P1 and P2 through the transmission line 6 can be found substantially.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は宇宙空間に浮遊する宇宙浮遊物(Debri
e)を検出する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to the treatment of space debris (debris) floating in outer space.
e).

〔従来の技術〕[Conventional technology]

今まで色々な宇宙開発が行われ、その結果、宇宙上に多
くの破片が浮遊しているのが現状である。
Various space developments have been carried out so far, and as a result, there are currently many pieces of debris floating in space.

この宇宙空間に浮遊する宇宙浮遊物(Debrie)(
以下破片と称す。〕全検出するには1/−ダが用いられ
たC破片には人工衛星に見られるようなトランスポンダ
を搭載している訳ではないので。
Space floating objects (Debrie) floating in this outer space (
Hereinafter referred to as fragments. ] 1/-da was used to detect all of the debris because the C debris does not carry a transponder like those found in artificial satellites.

次レーダを使用しなければならない。−次レーダの構成
全第4図に示す。
Next you have to use radar. - The entire configuration of the next radar is shown in FIG.

■はレーダ、 31)は送信波、 C32は反射波、(
至)は破片である。レーダ(至)は目標である破片に対
し利得の高いアンテナでビーム?絞った電波全照射する
この電波は破片の有効断面積(Cross  E!ee
tユon)  に比例した反射波を生じ、この散乱波全
書びレーダ(至)で受信する。
■ is radar, 31) is transmitted wave, C32 is reflected wave, (
) is a fragment. Does the radar (to) beam a beam to the target debris using a high-gain antenna? This radio wave, which radiates all the focused radio waves, is the effective cross-sectional area of the debris (Cross E!ee
A reflected wave proportional to tYon) is generated, and this scattered wave is received by the complete radar.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

レーダの特性はレーダ方程式で示される。 Radar characteristics are expressed by the radar equation.

ここでPr散乱され戻ってくるレーダのアンテナにおけ
る電力密度 Pt:送信電力 Gt:送信アンテナ利得 Ar:受信アンテナ有効面積 R:レーダー目標間距離 σ :目標の有効断面積 一次レーダには式(1)が適用される。
Here, Pr is scattered and returned to the radar antenna power density Pt: Transmission power Gt: Transmission antenna gain Ar: Receiving antenna effective area R: Radar target distance σ: Effective cross-sectional area of target For the primary radar, formula (1) is used. applies.

小さな破片から出来る限シ大きな受信畜力金得ようとす
るなら、(11式の右辺の分子全分子を小さくするか9
分母を大きくするか2つの方法しかない。破片の高度は
一定であるので、R上手さくする事は出来ないので、送
信電力を増すか、送・受のアンテナ利得全増大させるか
であるが、それを実現するためにはハードウェア全大型
にする必要がある。
If you want to get as much power as possible from small pieces, you can either reduce all the molecules on the right side of equation 11 or 9
There are only two ways to increase the denominator. Since the altitude of the debris is constant, it is not possible to improve R, so the only option is to increase the transmit power or increase the total transmitting and receiving antenna gain, but in order to achieve this, the hardware must be completely large. It is necessary to

この発明はかかる課題全解決するためになされたもので
あわ、連続波(COntinuOu8  Wave。
This invention was made to solve all of these problems, and is based on continuous wave technology.

以下CWと略す)全使用しハードウェア全大型化するこ
となく、長期間にわたっての受信電力を増大させること
を目的とする。
The purpose is to increase received power over a long period of time without increasing the size of the hardware.

〔課題全解決するための手段〕[Means to solve all problems]

この発明に係る宇宙浮遊物探知装置はCWを用いた一次
レーダを有し、cw波2使用した場合の一次レーダは送
受の分離が難しいため、送信と受信全分離しこの両者を
別の所に設置する構成としたものである。
The space floating object detection device according to the present invention has a primary radar using CW, and since it is difficult to separate the transmission and reception of the primary radar when CW waves 2 are used, the transmission and reception are completely separated and both are placed in separate locations. The configuration is such that it can be installed.

〔作用〕[Effect]

この発明はCW波全全使用る事によりパルスレーダで必
要となる高尖頭1貝のため、装置が大規模になることを
避け、送信機とアンテナの大きさにバランスのとれた@
置が実現出来る。
This invention avoids increasing the scale of the device by making full use of CW waves due to the single high-pointed shell required for pulse radar, and achieves a balance between the size of the transmitter and antenna.
can be realized.

〔実施例〕〔Example〕

第1図にこの発明の構成図ケ示す。+11は高い指向性
を有し、仰角、方位角の方向に広範囲にそのビームを向
けることができるアンテナと送信機ヲ備えた送信装置、
(2)は送信波、(3)は破片、(4)は反射波、(5
)は送信装置(1)と同様なアンテナと受信機を備えた
受信装置、(6)は伝送ライン、(7)は送信角度、(
8)は受信角度である。
FIG. 1 shows a block diagram of the present invention. +11 is a transmitting device equipped with an antenna and a transmitter that has high directivity and can direct its beam over a wide range in elevation and azimuth directions;
(2) is the transmitted wave, (3) is the debris, (4) is the reflected wave, (5
) is a receiving device equipped with the same antenna and receiver as the transmitting device (1), (6) is the transmission line, (7) is the transmission angle, (
8) is the reception angle.

送信装置+11は破片(3)に向って送信波(2)を送
信する。電波を照射された破片(3)からは散乱波が発
生する。その一部が受信装置(5)によって受信される
受信装置(5)のアンテナは破片(31の方に指向して
おり、アンテナのメインローブの方向から受信波(4)
全受信する。
The transmitting device +11 transmits a transmission wave (2) toward the fragment (3). Scattered waves are generated from the fragments (3) irradiated with radio waves. The antenna of the receiving device (5), a part of which is received by the receiving device (5), is oriented towards the fragment (31), and the received wave (4) is directed from the direction of the main lobe of the antenna.
Receive all.

送信装置f(1)と受信装置(5)が送信波(2)と受
信波(4)を介して破片(3)を送受信している間、送
信装置(1)は送信角度+71 ’i 、受信装置(5
)は受信角度(8)を維持する。
While the transmitting device f(1) and the receiving device (5) are transmitting and receiving the debris (3) via the transmitting wave (2) and the receiving wave (4), the transmitting device (1) has a transmitting angle of +71'i, Receiving device (5
) maintains the reception angle (8).

1ず角度情報を用いて破片(3)の位i縦を検出する方
法について述べる。
1. A method for detecting the height of the fragment (3) using angle information will be described.

送信装置(1)と受信装置15)の設置場所は基準三角
点を基にした三角側蓋や、GPS(Global Pa
sitioning  System)f便用し地理上
の位置を算出することが出来る。この点ヲP1とPlと
する送信角度(7)と受信角度(8)はPlとPlの点
より破片(3)ヲ見る角度で各々仰角(エレベーション
)角と方位角(アジマス)角より底る。従って点P1と
Plから破片(3)に向って送信角度(7)と受信角度
(8)で引いた線分の交点に破片(3)の位置を算出す
ることが出来る。
The transmitting device (1) and receiving device 15) are installed on the triangular side lid based on the reference triangular point or on the GPS (Global Pa
locationing system) can be used to calculate the geographical position. The transmitting angle (7) and the receiving angle (8), where these points are P1 and Pl, are the angles at which the debris (3) is viewed from the points P1 and Pl, respectively, and are the bottom of the elevation angle and azimuth angle, respectively. Ru. Therefore, the position of the fragment (3) can be calculated at the intersection of the line segments drawn from the points P1 and Pl toward the fragment (3) at the transmitting angle (7) and the receiving angle (8).

次に観測精度を向上させる為に送受信波の内容を使用し
1位置を検mする方法について述べる。
Next, we will describe a method of detecting one position using the contents of transmitted and received waves in order to improve observation accuracy.

送信装置+11と受信装置(5)は破片(3)と伝送ラ
イン(6)を通じて結ばれている。送信波は周期性があ
り。
The transmitting device +11 and the receiving device (5) are connected through the fragment (3) and the transmission line (6). The transmitted waves are periodic.

かつ2周期のなかの任意の時点を高精度で指定すること
が出来るような情報により変調することが出来る。例え
ば擬似ランダム符号(PsuθdORancLom  
C!od、e 、以下PN符号と称す)が適用できる。
Moreover, it is possible to modulate with information that allows specifying an arbitrary point in two periods with high precision. For example, a pseudorandom code (PsuθdORancLom
C! od, e (hereinafter referred to as PN code) can be applied.

迷信波(21にこの付置が′L調された場合破片(3)
が照射さねている1辰り、受信装置(5)はこつ符号全
受信することが出来る。筐だ受信装置15)に伝送ライ
ン(6)を通じ同じ符号全受侶することが出来る。伝送
ライン(6)は点P1と点p2>直線で結ぶことが望ま
しいが、2地点間には多くの障害物があるのが普通であ
るので、途中をマイクロ回線や光ケーブルで結んだ場合
多くの迂回路ゲ通る。促って電気的な経路の距離と2点
P1とP2ヲ結ぶ直距離は一致しない。そこであらかじ
め2点P1より送信した信号全点P2で反射させ、再び
点P1で受信し、この間の時間全計測することにより、
電気的な経路の距離を知ることが出来る。直距離とこの
距離の差はバイアス成分として余分な距離があることを
知っていれば、伝送ライン(6)を通じ点P1とP2の
直距離全実質的に求めることが出来る。
Superstition wave (if this attachment is changed to 'L' on 21, fragments (3)
The receiving device (5) can receive all the codes in one line that is irradiated. All receivers of the same code can be transmitted through the transmission line (6) to the receiving device 15). It is desirable to connect the transmission line (6) with a straight line between points P1 and P2, but since there are usually many obstacles between the two points, there are many obstacles when connecting the transmission line with a micro line or optical cable. Take the detour. Therefore, the distance of the electrical path and the direct distance connecting the two points P1 and P2 do not match. Therefore, by reflecting the signal transmitted from two points P1 in advance at all points P2, receiving it again at point P1, and measuring the entire time during this time,
You can know the distance of an electrical path. The difference between the direct distance and this distance can essentially be determined as the entire direct distance between points P1 and P2 through the transmission line (6), knowing that there is an extra distance as a bias component.

受信装置(5)がこの2つの信号の比較を行うなら点P
1と22間の直距離と破片(3)全紅白した距離の差金
検出することが出来る。
If the receiving device (5) compares these two signals, point P
It is possible to detect the difference between the direct distance between 1 and 22 and the distance covered by the fragment (3).

第2し1は幾何学的な位置関係を示したものである。α
[け送信装置の位置でPl 、  αBは受信装置の位
置でP2 、 (1’)i4f片ノ位1ft、T P3
 、 (+31!、’i5(’i軸x、(141は座標
軸y、d51は楕円であるっ点P1t11と点P2(1
11間のlF4距恥と点P3α3経由の距離の差が一定
な曲線は点P1αGと点P2 dllを焦点とする楕円
上にある。xmαJとy軸α↓よυ瓜る平面上では楕円
となるが、実際の幾何学旧な関係は三次元で配置さり、
ているので、距離差一定の柔性を満足する面は、X軸α
jを軸中心とした回転楕円体の表面であることが分る。
The second item 1 shows the geometrical positional relationship. α
[Pl at the position of the transmitting device, αB is P2 at the position of the receiving device, (1') i4f one side position 1ft, T P3
, (+31!,'i5('i-axis x, (141 is the coordinate axis y, d51 is an ellipse.
A curve in which the difference between the 1F4 distance between 11 and the distance via point P3α3 is constant is on an ellipse whose focal points are points P1αG and P2dll. It becomes an ellipse on a plane parallel to xmαJ and y-axis α↓, but the actual geometric relationship is that it is arranged in three dimensions,
Therefore, the surface that satisfies the flexibility with a constant distance difference is the X-axis α
It can be seen that it is the surface of a spheroid with axis j as the center.

角度計測によって求められる位置の検出は遠方になるに
従って、絶対的な位置誤差が太き(なるが、距離差の測
点では高精度な時間計測が可能で。
When detecting a position by angle measurement, the absolute position error increases as the distance increases (although it is possible to measure time with high precision at measurement points with distance differences).

楕円αシの持つ誤差は角度計測による場合より精度全高
めることが出来る。
The error of the ellipse α can be completely improved in accuracy compared to angle measurement.

即ち、角度計測と距離差計測を組合すことによ見 より
高精度な位置検出が可nヒになる。
That is, by combining angle measurement and distance difference measurement, it becomes possible to detect a position with higher accuracy.

捜索に使用する電阪は符号変調されたCW金使用する。The Densaka used for the search uses code-modulated CW gold.

符号には擬似ランダム雑音符号を用いる。A pseudorandom noise code is used as the code.

送信装置(1)が送信するPN符号と、受信装置(5)
が受信する2つのPN符号の関係6・」:第3図に示す
The PN code transmitted by the transmitting device (1) and the receiving device (5)
The relationship between the two PN codes received by 6.'' is shown in FIG.

図中■は送信装置り符号、飢は1云送ライン(6)経由
の直接信号、■は受信信号、の、砲、■はP N符号の
1つのブロックである。缶は直接信号2dが持っている
送1g装置(1)からの伝ばん遅、延時間、+271は
直接信号121)と受信信号cabの間の伝ばん遅延時
間である、 ムのPN符号のブロックは1.j、にの様な擬似ランダ
ム符号になっておシ、実際は図中に示す0と1の一連の
組合せよυ成立つ。0と1の長さは、PN符号の種類を
選択する事によって決するiuiであり、  i、  
jt  k・・aのどの文字の符号長も同一で、1つの
ブロックはこの文字を連続させ構成されている。
In the figure, ■ is a code from the transmitting device, ``■'' is a direct signal via one transmission line (6), ``■'' is a received signal, and ``■'' is one block of a PN code. C is the propagation delay or delay time from the sending device (1) that the direct signal 2d has, and +271 is the propagation delay time between the direct signal 121) and the received signal cab. is 1. It becomes a pseudo-random code such as j, , but in reality, the series of combinations of 0 and 1 shown in the figure υ holds true. The lengths of 0 and 1 are iui determined by selecting the type of PN code, i,
The code lengths of all the characters in jt k...a are the same, and one block is made up of consecutive characters.

受信装置(5)はこのPN符号の相関器?備えており、
直接信号at+と受信信号のを受信した後、その位相音
読み取る事が出来る。この2つの位相差全比較すh−ば
、この2つの波の時間遅れ@検出ljjすることが出来
る。
Is the receiving device (5) a correlator for this PN code? We are equipped with
After receiving the direct signal at+ and the received signal, its phase tone can be read. By completely comparing these two phase differences, the time delay of these two waves can be detected.

r几明の効果〕 この発「シjは遵沈仮ケ用いる墨によりパルスレーダに
比較しその送信部の規屓が大型化するの?避け、まえ送
信部と受信部を分路すること全積極的に行うことにより
、その幾何学旧な構成の特徴を生かし、宇宙浮遊物の検
出積度全向上させることが出来る。
Effects of reduction] In this paper, does the size of the transmitting section of the radar become larger compared to a pulse radar due to the ink used in this publication? By actively doing this, it is possible to take advantage of the features of the old geometric configuration and improve the total detection area of space floating objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の構成図、第2図は送信装置。 受信装置お二び破片との幾何学的な位置関係を示す図、
第3図はPN符号の構戚全示す図、第4図は従来の一次
し−ダ全示す図である。 図において(1)は送信装置、(2)は迷信波、(3)
は破片、(4)は反射波、(5)は受信装置、 te+
は伝送ライン。 (7)は送信角度、(8)は受信角度、 QOは送信装
置の位置Pi、(1Bは受信装置の位置P2. (l〕
は破片の位置でP3.(1:iは座標軸X、α沿は座標
軸y、α9け楕円。 ■は送信装置の符号、 anは伝送ライン(6)経由の
直接信号、T22は受信信号、 C!31. +241
と5はPN符号の1つのブロック、@は送信信号と直接
信号の遅延時間、@は直接信号と受信信号の間の遅延時
間である。Ca1lは送信波、■は反射阪、□□□は破
片である。 第 4 図 3
FIG. 1 is a block diagram of the present invention, and FIG. 2 is a transmitting device. A diagram showing the geometrical positional relationship between the receiving device and the fragments,
FIG. 3 is a diagram showing the entire structure of a PN code, and FIG. 4 is a diagram showing the entire structure of a conventional primary code. In the figure, (1) is the transmitter, (2) is the superstition wave, and (3)
is a fragment, (4) is a reflected wave, (5) is a receiving device, te+
is the transmission line. (7) is the transmitting angle, (8) is the receiving angle, QO is the transmitting device position Pi, (1B is the receiving device position P2. (l)
is the position of the fragment P3. (1: i is the coordinate axis
and 5 are one block of the PN code, @ is the delay time between the transmitted signal and the direct signal, and @ is the delay time between the direct signal and the received signal. Ca1l is a transmitted wave, ■ is a reflected wave, and □□□ is a fragment. 4 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)高い指向性を持ち、仰角及び方位角の方向に広範
囲にそのビームを向けることが出来るアンテナと送信機
を備えた送信装置より宇宙空間を浮遊する宇宙浮遊物に
向け、周期性があるが、0と1の発生状況が極めて任意
に近い擬似ランダム符号で変調された連続的な電波を送
信し、前記の宇宙浮遊物より散乱した電波を送信装置と
同様なアンテナと受信機を備えた受信装置で受信し、そ
の時の前記送信装置と前記受信装置が宇宙浮遊物を向い
ている角度と、前記の送信装置と前記の受信装置の地理
上の位置から宇宙浮遊物の位置を探知することを特徴と
する宇宙浮遊物探知方法。
(1) A transmitter equipped with an antenna and a transmitter that has high directivity and can direct its beam over a wide range of elevation and azimuth directions toward space floating objects floating in space, with periodicity. The system transmits continuous radio waves modulated with a pseudo-random code in which the occurrence of 0s and 1s is extremely arbitrary, and is equipped with an antenna and receiver similar to the transmitter to collect the radio waves scattered from the above-mentioned space floating object. Detecting the position of the space floating object by receiving it with a receiving device and based on the angle at which the transmitting device and the receiving device are facing the space floating object and the geographical position of the transmitting device and the receiving device. A space floating object detection method characterized by:
(2)送信装置と受信装置の間を前記の擬似ランダム符
号を伝送出来る伝送ラインを備え、前記の受信装置に於
いて、宇宙空間の前記宇宙浮遊物経由と、前記伝送ライ
ン経由の二つの擬似ランダム符号の位相比較を行う事に
より求めた距離差情報を使用し、前記の送信装置と受信
装置の地球上の位置を焦点とし、宇宙浮遊物の存在する
立体楕円を得られることを特徴とする請求項(1)記載
の宇宙浮遊物探知方法。
(2) A transmission line capable of transmitting the pseudo-random code is provided between the transmitting device and the receiving device, and the receiving device has two pseudo-random codes, one via the floating object in outer space and the other via the transmission line. A three-dimensional ellipse in which a space floating object exists can be obtained by using the distance difference information obtained by comparing the phases of random codes and focusing on the positions of the transmitting device and the receiving device on the earth. A space floating object detection method according to claim (1).
JP9806490A 1990-04-13 1990-04-13 Detecting method for space floating body Pending JPH03295487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9806490A JPH03295487A (en) 1990-04-13 1990-04-13 Detecting method for space floating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9806490A JPH03295487A (en) 1990-04-13 1990-04-13 Detecting method for space floating body

Publications (1)

Publication Number Publication Date
JPH03295487A true JPH03295487A (en) 1991-12-26

Family

ID=14209901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9806490A Pending JPH03295487A (en) 1990-04-13 1990-04-13 Detecting method for space floating body

Country Status (1)

Country Link
JP (1) JPH03295487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347546A (en) * 1993-06-08 1994-12-22 Nec Corp Radar device for weather conditions
JP2002296348A (en) * 2001-03-29 2002-10-09 Clarion Co Ltd Onboard radar apparatus
JP2005517190A (en) * 2002-02-08 2005-06-09 ロッキード・マーティン・コーポレイション System and method for correlating Doppler tracking in debris tracking
JP2006044631A (en) * 2004-07-08 2006-02-16 Atsushi Tanimoto Detection device for unidentified flying object (ufo)
US7474256B2 (en) 2003-08-21 2009-01-06 Sharp Kabushiki Kaisha Position detecting system, and transmitting and receiving apparatuses for the position detecting system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347546A (en) * 1993-06-08 1994-12-22 Nec Corp Radar device for weather conditions
JP2002296348A (en) * 2001-03-29 2002-10-09 Clarion Co Ltd Onboard radar apparatus
JP2005517190A (en) * 2002-02-08 2005-06-09 ロッキード・マーティン・コーポレイション System and method for correlating Doppler tracking in debris tracking
US7474256B2 (en) 2003-08-21 2009-01-06 Sharp Kabushiki Kaisha Position detecting system, and transmitting and receiving apparatuses for the position detecting system
JP2006044631A (en) * 2004-07-08 2006-02-16 Atsushi Tanimoto Detection device for unidentified flying object (ufo)

Similar Documents

Publication Publication Date Title
EP1872149B1 (en) Positioning system with a sparse antenna array
JP2749265B2 (en) Terrestrial surveying and satellite positioning integrated device and method
CA1226057A (en) Imaging doppler interferometer
US20050270228A1 (en) Radar system for local positioning
US6670920B1 (en) System and method for single platform, synthetic aperture geo-location of emitters
US5615175A (en) Passive direction finding device
US4052693A (en) Depth sounder
RU2483326C2 (en) Hydroacoustic synchronous range-finding navigation system for positioning underwater objects in navigation field of randomly arranged hydroacoustic transponder beacons
US7362655B1 (en) Time-synchronous acoustic signal ranging system and method
EP3508869B1 (en) Light-weight radar system
JP2010175471A (en) Radar apparatus
JPH03295487A (en) Detecting method for space floating body
US7106658B1 (en) Navigation system and method using directional sensor
US11953580B2 (en) Over the horizon radar (OTH) system and method
JPH0425507B2 (en)
CN111537946A (en) Underwater beacon directional positioning system and method
JP4266669B2 (en) Bistatic orientation detection system and detection method
Yang et al. Maritime moving object localization and detection using global navigation smart radar system
JPH0429080A (en) Bistatic radar equipment
Baskakov et al. Problem of detecting space debris objects using multi-position radar system
JP3484995B2 (en) Instantaneous passive distance measuring device
US20060083110A1 (en) Ambient bistatic echo ranging system and method
CA3045206A1 (en) Synthetic aperture radar method and synthetic aperture radar system
RU2168738C1 (en) Method for direction finding of radiation source and antenna system for its realization
RU2524923C1 (en) Method for radiolocation detection of targets and facility for its implementation