JPH03295448A - 濃度測定装置 - Google Patents

濃度測定装置

Info

Publication number
JPH03295448A
JPH03295448A JP9789190A JP9789190A JPH03295448A JP H03295448 A JPH03295448 A JP H03295448A JP 9789190 A JP9789190 A JP 9789190A JP 9789190 A JP9789190 A JP 9789190A JP H03295448 A JPH03295448 A JP H03295448A
Authority
JP
Japan
Prior art keywords
tubular body
medium
light
concentration
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9789190A
Other languages
English (en)
Other versions
JP2691374B2 (ja
Inventor
Migiwa Ando
安藤 汀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP9789190A priority Critical patent/JP2691374B2/ja
Publication of JPH03295448A publication Critical patent/JPH03295448A/ja
Application granted granted Critical
Publication of JP2691374B2 publication Critical patent/JP2691374B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検液中の被測定物質(分析対象成分)の濃
度を測定する装置に関する。本発明は、例えば、食品、
医薬品、化学品、農業、畜産業、水産業の工程管理、医
療用の各種計測、環境計測等に、また、グルコース、エ
タノール等の濃度を測定するバイオセンザ等に利用され
る。
〔従来の技術〕
従来の被測定物質の濃度測定方法止しでは、電流測定法
及び電位測定法の電気的手法による方法、又は発色若し
くは発光する物質を用い、光電子倍増管、フォトダイオ
ード等により、吸収スペクトル等の強度から所定物質の
濃度を求める吸光度測定法の光学的手法が知られている
〔発明が解決しようとする課題〕
前記電気的手法による装置は、電気的ノイズの影響を受
けやすく、かつ精密な計測装置が必要である。また、前
記光学的手法による装置は、特別な発色剤が必要になり
かつ高価な計測器が必要でありまた適用範囲が限定され
ている。更に、両方とも連続計測に適さない。
本発明は、前記観点に鑑みてなされたものであり、被検
液中の被測定物質が多孔質体を通過して管状体内部の媒
体に溶解することにより、管状体の半径方向に屈折率分
布が生じ、そのためここを通過する射出光の収束点の位
置、所定位置での受光量等がその濃度により異なること
を見出して完成されたものである。
本発明は、連続測定に好適で、電気的、磁気的ノイズを
受けに<<、精密測定に好適で簡便で安価で、多くの反
応系を適用でき、更に必要に応じて工程の遠隔管理がで
きる濃度測定装置を提供することを目的とする。
〔課題を解決するための手段〕
本第1発明に係わる濃度測定装置は、被検液中の被測定
物質を通過させることができる多孔質製管状体と、該管
状体の一端側に取り付けられ該管状体の内部に媒体を導
入する導入手段と、該管状体の他端側に取り付けられ該
管状体から前記媒体を導出する導出手段と、前記管状体
の外周側に配置され被検液を導入するだめの導入口及び
導出するための導出口を備える外枠体と、前記管状体の
一端側に、直接に又は送光用光ファイバを介して、配置
される発光素子と、前記被沖1定物質を溶解する前記媒
体を通過して外部へ取り出された射出光を検出して前記
被検液中の被測定物質の濃度を測定するための検出手段
と、を具備することを特徴とする。
本第2発明に係わる濃度測定装置は、多孔質製管状体の
両端側に各々配置された光透過窓とを備え媒体を封入す
る媒体封入体を具備するものである。
前記「多孔質製管状体」は、管状体外部の被検液中の被
測定物質がその内部に通過することができるものであれ
ばよく、その材質、孔径、気孔率等は特に問わない。例
えば、その材質としては、アルミナ等のセラミックスに
限定されることはなく、高分子、金属、ガラス等であっ
てもよい。また、孔径については、数10μmから数人
のものまで広く含まれる。更に、多孔質体の構造、機能
面についても、選択透過性を有するもの、親水化、疎水
化処理したもの等を用いてもよい。
前記使用「媒体」は、被測定物質を溶解させるものであ
り、第1発明では管状体内を流し、第2発明では流さず
密封している。尚、これは通常液体であるが気体であっ
てもよい。
〔作用〕
先ず、外枠体内に導入された被検液B中の被測定物質S
は、第3図及び第4図に示すように、管状体1を構成す
る多孔質体内を通過する。次いでこの被測定物質Sは、
管状体lの内壁面側に到達し、更に管状体内の媒体A中
に溶解、拡散していく。
この場合、管状体1の中心方向に向かって、第5図に示
すように、媒体に溶解する被測定物質8の濃度に差が生
じる。それに起因して、第6図(イ)又は(ロ)に示す
ように、同方向に屈折率の分布が生じることきなる。
そして、管状体の一端より媒体へ入射した光は、前記第
6図(イ)の場合(外側寄りが低屈折率のとなっている
場合)には、第7図に示すように、管状体の中心軸に絞
られるように進み、第6図(ロ)の場合(外側寄りが高
屈折率のとなっている場合)には管状体の中心軸から外
側へ広がるように進むこととなる。
この結果、光の入射側の他端側である受光部において、
射出光のビーム径、エネルギー密度又は収束点の変化が
観察されることとなる。即ち、この変化の程度が被測定
物質の濃度により異なる。
以上より、その変化量と被測定物の濃度は一定の関係を
示すこととなるので、この変化量を検出することにより
その濃度を測定できる。
〔実施例〕
以下、実施例により本発明を具体的に説明する。
実施例1 本実施例は、第1発明に係わる濃度測定装置を用いエタ
ノールの濃度を測定するものである。
(1)装置の構成及び製作方法 本装置は、第1図及び第2図に示すように、多孔質製管
状体く内側管状体)■と媒体導入手段2と媒体導出手段
3と外枠体(外側管状体)4とHe−Neレーザ5と検
出手段6とを具備する。
この内側管状体1は内径が3關φ、外径4 m+nφ、
長さ90ffifflの両端開口の多孔質アルミナ管(
気孔率;40%、平均気孔径;1.2μm)である。こ
の管状体1の両端部には、内側に配置される鍔部21.
31と端部に配置される石英ガラス窓(光透過窓)23
.33とその間に配置される筒部22.32とこの筒部
22.32の側部に取りつけられる媒体導入口24又は
媒体導出口34とからなる媒体導入手段3又は媒体導出
手段4が、取外しができるように取付けられている。媒
体Aは、ポンプ71.72を介して、この導入口24に
入り、導出口34から出る構成となっている。
尚、媒体の導入、導出は上記と逆にしてもよい。
外枠体4は、アクリル樹脂管からなり、その−端に導入
口41、その他端に導出口42を有する。その内部には
管状体1が配置されている。更に、この外枠体4の内側
及び外側には、多孔質ポリエチレン製等の断熱材81.
81が配設されている。
以上の管状体1、媒体導入手段2、媒体導出手段3、外
枠体4及びと断熱材8を組合せて、第1図図示のような
モジュールMを作成した。尚、このモジュールMは22
℃に保持されている。
更に、これに、第2図図示の如くレーザ装置5、光ビー
ムの検出手段6、ポンプ7、媒体と被検液の温度差を解
消するために配置される胴ブロック10等を組み合わせ
て本実施例の装置を作成した。以上より、媒体A若しく
は被検液Bの導入、導出、更には光の導入、取り出しを
行えるようにした。
レーザ装置5は、波長543 nm、ビーム径0゜7m
mのHe−Neレーザを出力し、この出力されたレーザ
ビームは光透過窓23に導かれる。
検出手段6は、他方の光透過窓33から放射されるレー
ザビームを分析する装置(レーザビームアナライザ)で
ある。この分析手段としては、光透過窓33から所定距
離の位置でのレーザビームのビーム径の検出、エネルギ
ー密度の検出又はレザビームの焦点位置の検出の各手段
を採ることができるが、本実施例では、ビーム径の検出
手段とした。
(2)測定方法 本装置を用いて、以下のようにエタノールの濃度測定を
実施した。
前記装置において内部液として毎分0.5−のオクチル
アルコール(試薬特級)を媒体Aとして媒体導入口24
より連続的に供給し管状体内部に液を流すとともに、種
々の濃度のエチルアルコール水溶液を被検液Bとして1
.5−7分の流量にて被検液導入口41より送入し、各
濃度毎のビーム径を測定した。
(3)実施例の効果 以上のような操作により、第9図に示す各種エタノール
濃度の被検液に対するビーム径を測定し、その結果を同
図に示した。この図に示すようにエタノール濃度とビー
ム径が良好な直線関係を示した。従って、この検量線を
利用して、未知の濃度の混合溶液のビーム径を同条件下
にて測定した値と比較すれば、容易に未知のエタノール
濃度を測定できる。
一以上より、本装置を用いて濃度測定をすれば、広い濃
度範囲においてエタノール濃度を簡単に、かつ感度よく
、更に電気的、磁気的ノイズを受けずに、高速度で連続
測定をすることもできる。
実施例2 本実施例の装置は、第10図に示すように、媒体へを流
すことなく媒体を封入する媒体封入体9を備えるもので
ある。
この媒体封入体9は、両端開放の管状体94とその両端
側に配置された光透過窓93a、93bを有する。そし
て、この光透過窓93は、鍔部91a、91b及び中間
円筒体92a、92bを介してこの管状体91の各端部
側に配置されており、この両名により管状体94の両端
を密封している。他の構成要素は、実質上実施例1と同
じである。
本実施例においても、多孔質製管状体を用いるので、実
施例1と同様の作用、効果を示す。
尚、本発明においては、前記具体的実施例に示すものに
限られず、目的、用途に応じて本発明の範囲内で種々変
更した実施例とすることができる。即ち、前記モジュー
ルの大きさ、長さ、全体形状等、更には管状体の大きさ
、長さ、断面形状、材質等は、目的、用途により種々の
ものを選択することができる。例えば、その全体形状も
直管状でなく曲管状であってもよいし、その横断面形状
も通常は真円であるが四角、六角、楕円等とすることも
でき、更にはハニカム状又は蓮根状のように複数の流路
孔を有してもよい。
尚、第11図に示すように、光透過窓23a133a及
び媒体導入手段としての導入口24a、媒体導出手段と
しての導出口34aは、内側管状体1aに直接、取りつ
けた構造とすることもできる。
また、光フアイバーケーブルを活用すればモジュール、
光源部、及び電気装@部を離隔することも容易になり遠
隔計測、遠隔制御等への適応性も高い。この場合 光フ
ァイバをその両方又はその一方に配置してもよく、更に
、この光ファイバを直接に管状体に取りつけた構成とし
てもよいし、更には素子を直接取りつけた構成としても
よい。
光ファイバの長さ、太さ、材質、形態、取付は位置等も
種々選択でき、例えば材質は樹脂に限らずガラスでもよ
い。
発光素子としては発光ダイオードを用いることもできる
。発光素子による光の照射方法は、管状体端面全体をほ
ぼ均等に照射してもよいし、はぼ中心に照射してもよい
し、管壁に近い所、中心に近い所等に照射することもで
きる。この管壁に近い所の場合には、感度を向上させる
効果がある。
また光束径も目的等により種々選択する。
前記検出手段としても種々の公知の手段を用いることが
できる。例えば、射出光の検出方法(装置it)として
は、ビーム径の測定方法のみならず、例えば、第8図に
示すように、光ファイバの受光面を前後させること等に
より、最も受光エネルギーの高い位置を射出光の収束点
位置Poとする方法、又は、所定位置に光ファイバを配
置してこの先端に受光する受光量を光パワーメータにて
検出する方法等とすることもできる。
また、これらの検出は、前記実施例のような手動操作で
はなくて、自動操作、機械操作とすることができる。例
えば、受光面の移動、受光量の測定及び記憶、並びに収
束点若しくはビーム径の決定、濃度への換算等の操作を
自動化することもでき、所定のデルタテーブルをメモリ
に記憶させておき、測定データを与えることにより、自
動的に濃度データを演算させて表示させることもできる
また前記実施例1においては、管内流体を一定の流速量
で流したが、これに限定するものではなく、例えば管内
流体を停止させた状態にて被測定液を一定量パルス状に
して打ち込みビーム径の変化をみることもできる。また
、被測定物質は、電解質か非電解質かイオンがを問わな
い。
更に、本装置は、濃度測定のみならず、被検液の温度に
より媒体の半径方向の屈折率分布が異なるので、温度セ
ンサとして用いることもできる。
〔発明の効果〕
本装置を用いれば、前記作用に示すように、測定用物質
の広い濃度範囲までその濃度さと一ム径等の変化とに良
好な一定の関係、特に直線忰を示すので、その測定に極
めて好都合である。また、光学的方式と異なり連続測定
ができ、pHに影響されず、電気的方法と比べて磁気的
、電気的ノイズを受けにくいので電界や磁界の強い場所
でも全く問題なく安定して測定することができ、しかも
簡便かつ安価な装置であり、その適用範囲が大変広い。
更に、光ファイバを用いる場合には、この光ファイバを
延長することにより工程の遠隔管理ができ、大変有用で
ある。
【図面の簡単な説明】
第1図は実施例1で用いたモジュールの説明断面図、第
2図は実施例1の濃度測定装置の概略図、第3図は被測
定物質が管状体内の媒体中に溶解、拡散していく様子を
示す説明縦断面図、第4図は被測定物質が管状体内の媒
体中に溶解、拡散していく様子を示す説明横断面図、第
5図は実施例1において管状体の半径方向に濃度分布が
生じることを示す説明図、第6図は管状体の半径方向に
屈折率の分布が生じることを示す説明図で、(イ)は凸
型分布、(ロ)は凹型分布を示す。 第7図は屈折率分布と管状体を通過するレーザビームの
屈折状態との関係を示す説明図、第8図は管状体を通過
する光が収束する状態を示す説明図、第9図は実施例1
においてエタノール濃度とレーザビーム径との関係を示
すグラフ、第10図は実施例2で用いたモジュールの説
明図、第11図は媒体導入手段等を直接管状体に取り付
けた構造を示す説明断面図である。 1.94;管状体、2;媒体導入手段、3;媒体導出手
段、23.33.93;光透過窓、4;外枠体(外側管
状体)、5;レーザ装置、6;ビーム径検出装置、9;
媒体封入体、A;媒体、B;被検液、S;被測定物質。

Claims (2)

    【特許請求の範囲】
  1. (1)被検液中の被測定物質を通過させることができる
    多孔質製管状体と、 該管状体の一端側に取り付けられ該管状体の内部に媒体
    を導入する導入手段と、 該管状体の他端側に取り付けられ該管状体から前記媒体
    を導出する導出手段と、 前記管状体の外周側に配置され被検液を導入するための
    導入口及び導出するための導出口を備える外枠体と、 前記管状体の一端側に、直接に又は送光用光ファイバを
    介して、配置される発光素子と、 前記被測定物質を溶解する前記媒体を通過して外部へ取
    り出された射出光を検出して前記被検液中の被測定物質
    の濃度を測定するための検出手段と、を具備することを
    特徴とする濃度測定装置。
  2. (2)被検液中の被測定物質を通過させることができる
    多孔質製管状体と該管状体の両端側に各々配置された光
    透過窓とを備え媒体を封入する媒体封入体と、 前記管状体の外周側に配置され被検液を導入するための
    導入口及び被検液を導出するための導出口を備える外枠
    体と、 前記一方の光透過窓側に、直接に又は送光用光ファイバ
    を介して、配置される発光素子と、前記被測定物質を溶
    解する前記媒体を通過して前記他方の光透過窓から外部
    へ取り出された射出光を検出して前記被検液中の被測定
    物質の濃度を測定するための検出手段と、を具備するこ
    とを特徴とする濃度測定装置。
JP9789190A 1990-04-13 1990-04-13 濃度測定装置 Expired - Fee Related JP2691374B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9789190A JP2691374B2 (ja) 1990-04-13 1990-04-13 濃度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9789190A JP2691374B2 (ja) 1990-04-13 1990-04-13 濃度測定装置

Publications (2)

Publication Number Publication Date
JPH03295448A true JPH03295448A (ja) 1991-12-26
JP2691374B2 JP2691374B2 (ja) 1997-12-17

Family

ID=14204381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9789190A Expired - Fee Related JP2691374B2 (ja) 1990-04-13 1990-04-13 濃度測定装置

Country Status (1)

Country Link
JP (1) JP2691374B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799277B2 (en) 2003-12-08 2010-09-21 Canon Kabushiki Kaisha Detection device and detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799277B2 (en) 2003-12-08 2010-09-21 Canon Kabushiki Kaisha Detection device and detection method

Also Published As

Publication number Publication date
JP2691374B2 (ja) 1997-12-17

Similar Documents

Publication Publication Date Title
EP0909946B1 (en) Chemical sensing method and apparatus employing liquid-core optical fibers
JP2622430B2 (ja) 分析方法
US5440927A (en) Fiber optic moisture sensor
US4088407A (en) High pressure fluorescence flow-through cuvette
JPS6329620A (ja) 流体中の気体成分の濃度を吸収によって測定するためのセンサ−
US4477186A (en) Photometric cuvette
GB2343248A (en) Optical analysis of micro volume samples
US6011882A (en) Chemical sensing techniques employing liquid-core optical fibers
US7058243B2 (en) Optical fiber sensor having a sol-gel fiber core and a method of making
EP1229322B1 (en) Cell for analyzing fluid and analyzing apparatus using the same
CN108896539A (zh) 测定海水中磷含量的光流控检测器
JP2691366B2 (ja) 濃度測定方法及び濃度測定装置
CN207992054U (zh) 一种结合微结构光纤与微流控的酸度计
CN106255869B (zh) 一次性测量尖端及其使用方法
JP2691374B2 (ja) 濃度測定装置
AU732530B2 (en) Device for measuring the partial pressure of gases dissolved in liquids
JPS60231137A (ja) 光学的ガス濃度計
Costa-Fernández et al. Portable fibre optic oxygen sensor based on room-temperature phosphor escence lifetime
Weigl et al. Optical sensors based on inhomogeneous waveguiding in the walls of capillaries (‘capillary waveguide optrodes’)
CN112666144B (zh) 一种基于拉锥式多模光纤的荧光化合物微流检测器
JP2739524B2 (ja) 濃度測定方法
CN210514087U (zh) 一种基于拉锥式单模光纤的荧光化合物微流检测器
Tao 14 Active Core Optical Fiber Chemical Sensors and Applications
Kieslinger et al. Capillary waveguide optrodes for medical applications
Tao 14 Active Core Optical

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees