JPH03295208A - Manufacture of oxide superconducting coil wire material - Google Patents

Manufacture of oxide superconducting coil wire material

Info

Publication number
JPH03295208A
JPH03295208A JP2096415A JP9641590A JPH03295208A JP H03295208 A JPH03295208 A JP H03295208A JP 2096415 A JP2096415 A JP 2096415A JP 9641590 A JP9641590 A JP 9641590A JP H03295208 A JPH03295208 A JP H03295208A
Authority
JP
Japan
Prior art keywords
oxide superconducting
coil
superconducting coil
coil wire
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2096415A
Other languages
Japanese (ja)
Inventor
Heikichi Tanei
平吉 種井
Takayoshi Sowa
曽和 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2096415A priority Critical patent/JPH03295208A/en
Publication of JPH03295208A publication Critical patent/JPH03295208A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to manufacture an oxide superconducting coil wire material having 1000A/cm<2> or more in the magnetic field having the critical current density of 1T at liquid nitrogen temperature by a method wherein an oxide superconducting crystal is formed in coil-wire form in one direction from the liquid solution of an oxide superconducting crystal. CONSTITUTION:The powder, having the composition in which the desired oxide superconducting crystal is deposited from a liquid solution, is filled in a palladium alloy pipe 1, the pipe 1 is wound around an alumina tube 2, and a coil is formed. A local heat treatment is conducted on this coil-molded material. By the abovementioned local heat treatment, which is performed in such a manner that the coil is placed in a treatment furnace 5 having a temperature gradient, it is moved in its longitudinal direction while it is being rotated in the direction opposite to the winding direction of the coil, and the oxide superconducting crystal is formed in one direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一方向凝固法による酸化物超伝導コイル線材
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an oxide superconducting coil wire by a unidirectional solidification method.

〔従来の技術〕[Conventional technology]

従来、酸化物超伝導線材の製造方法については、ジャパ
ニーズ・ジャーナル囃オブ嘩アプライド・フィシツク2
27巻・2号(1988)第5185頁から第5187
頁(Japanese  Journal  ofAp
plied  Physics、 27.2. (19
88)pp、L185−L187)において論じられて
いるように、酸化物超伝導体の粉末を金属管内に充填後
、線引き加工や圧延加工等忙よって長尺の線材を製造す
るものである。
Conventionally, methods for producing oxide superconducting wires have been described in Japanese Journal of Applied Physics 2.
Volume 27, No. 2 (1988), pages 5185 to 5187
Page (Japanese Journal of Ap
plied Physics, 27.2. (19
88) pp., L185-L187), after filling a metal tube with oxide superconductor powder, a long wire is manufactured by drawing, rolling, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のコイル線材及び製造方法は、超伝導線材
に必要な臨界電流密度値が小さい、と)わけ磁界中にお
いて/jSさいという問題があった。
The above-mentioned prior art coil wire and manufacturing method have a problem in that the critical current density required for the superconducting wire is small, especially in a magnetic field.

酸化物超伝導コイル線材を応用するためには、この臨界
電流密度値Jcを液体窒素温度(77K)において、少
なくとも1テスラ(T)の磁界中で1000A/am2
以上に高める必要がある。
In order to apply the oxide superconducting coil wire, this critical current density value Jc must be set to 1000 A/am2 at liquid nitrogen temperature (77 K) in a magnetic field of at least 1 Tesla (T).
It is necessary to raise this level even higher.

本発明の目的は、液体窒素温度における臨界電流密度値
JcがITO磁界中において、1000A / cm’
以上である酸化物超伝導コイル線材及びその製造方法を
提供することにある。
The purpose of the present invention is to achieve a critical current density value Jc of 1000 A/cm' in an ITO magnetic field at liquid nitrogen temperature.
The object of the present invention is to provide an oxide superconducting coil wire material and a method for manufacturing the same.

〔課題を解決する丸めの手段〕[Rounding method to solve the problem]

上記目的を達成するため、酸化物超伝導結晶体の製造方
法において、その融液から一方向に酸化物超伝導結晶体
をコイル魂状に凝固させるようにしたものである。
In order to achieve the above object, in a method for producing an oxide superconducting crystal, the oxide superconducting crystal is solidified from the melt into a coil shape in one direction.

すなわち、融液から所望の酸化物超伝導結晶が析出する
組成の粉末を金属管に充填し、コイル状に成形した後、
特定の温度勾配をもった熱処理炉中に入れコイルの巻き
方向と逆方向にコイルを回転させながらコイルの長手方
向に移動さることによυ、酸化物超伝導結晶体を一方向
に凝固させる方法である。融液から一方向凝固法 イル失地に所望の種子結晶を設置することで、酸化物超
伝導結晶の配向性多結晶体が得られるものである。
That is, after filling a metal tube with powder having a composition that allows the desired oxide superconducting crystal to precipitate from the melt and forming it into a coil shape,
A method of solidifying an oxide superconducting crystal in one direction by placing it in a heat treatment furnace with a specific temperature gradient and moving it in the longitudinal direction of the coil while rotating it in the opposite direction to the winding direction of the coil. It is. An oriented polycrystalline body of oxide superconducting crystals can be obtained by placing desired seed crystals in the unidirectional solidification area of the melt.

〔作用〕[Effect]

所望の酸化物超伝導コイルの形状は、凝固前に行う、原
料粉末を充填した金属管の成形加工で達成される。コイ
ルを回転させながらコイルを長手方向に移動させるのは
、コイルの先端付近から順次、酸化物超伝導結晶体を凝
固させるためである。
The desired shape of the oxide superconducting coil is achieved by forming a metal tube filled with raw material powder before solidification. The reason why the coil is moved in the longitudinal direction while being rotated is to solidify the oxide superconducting crystal sequentially from the vicinity of the tip of the coil.

コイル先端に種子結晶を設置するのは、酸化物超伝導結
晶の配向性多結晶体を得やすくするためである。
The reason why a seed crystal is placed at the tip of the coil is to make it easier to obtain an oriented polycrystalline oxide superconducting crystal.

融液の一方向凝固法で製造される結晶体は、焼結法で製
造される結晶体より本、気孔が少なく、結晶体の方位が
そろっている。気孔や結晶体の方位がそろっていないこ
とは、臨界電流値を低くする要因と考えられ、これらの
要因が少々い融液の一方向凝固法で製造される結晶体は
より大きな臨界電流値が得られる。
Crystal bodies produced by the unidirectional melt solidification method have fewer pores and pores than crystal bodies produced by the sintering method, and the orientation of the crystal bodies is uniform. The fact that the orientation of pores and crystals are not aligned is thought to be a factor that lowers the critical current value, and crystals manufactured by the unidirectional solidification method of melt with a small amount of these factors have a larger critical current value. can get.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する〇 純度99.9 %の酸化イツトIJウムY20..炭酸
バリウムBaCO3、酸化銅Cu aの各粉末を、YB
a2CIU 07−X (組成A)、””2 Cu30
y−X : Cu O=1:3(モル比)(組成C)と
なる2種類の組成に秤量し、メノウ乳鉢とメノウ乳棒を
用いたらいかい機で混合し、混合物をそれぞれアルミナ
坩堝に入れて、900℃で空気中において8時間加熱し
た後、それらを上記らいかい機で粉砕し、仮焼粉末を得
た。
Hereinafter, one embodiment of the present invention will be described.〇 IJium oxide IJium Y20. with a purity of 99.9%. .. Each powder of barium carbonate BaCO3 and copper oxide Cu a was
a2CIU 07-X (composition A), ""2 Cu30
y-X: Cu O = 1:3 (mole ratio) (composition C) was weighed into two compositions, mixed in a sieve machine using an agate mortar and an agate pestle, and each mixture was placed in an alumina crucible. After heating in air at 900° C. for 8 hours, they were crushed in the above-mentioned sieve machine to obtain calcined powder.

これらの原料粉末を外径6 mm 、内径5mm。These raw material powders have an outer diameter of 6 mm and an inner diameter of 5 mm.

長さ400mmの銀パラジウム合金パイプ1に次の順序
で充填した。最初に組成Aの仮焼粉末をパイプ長さ10
 mmに相当する1を、次に組成Cの仮焼粉末を15m
mに相当する量を充填し、さらにその後、組成^の仮焼
粉末を入れれるだけ入れたO このようにして原料粉末を充填した釧ハラジウムパイプ
を外径2C1nmのアルミナ管2に巻きつけてコイルを
成形した0このコイル成形物を以下の方法で局所加熱処
理を行った。
A silver-palladium alloy pipe 1 having a length of 400 mm was filled in the following order. First, the calcined powder of composition A was heated to a pipe length of 10
1 corresponding to mm, then 15 m of calcined powder of composition C
After that, as much calcined powder of composition ^ was added as possible. O The Haradium pipe filled with the raw material powder in this way was wound around the alumina tube 2 with an outer diameter of 2C1 nm. This coil molded product was subjected to local heat treatment in the following manner.

局所加熱は、局所線状集光方式の赤外線イメージ熱処理
炉5を用い、局部加熱ヒータ8のスポット径を5mm 
として行った。なお、熱処理温度を熱電対でモニタしな
がら熱処理を行った。コイル線材はアルミナ管に巻き付
けたまま、モータ3の駆動により、動力伝達部4を介し
て回転と水平移動が可能な構成とした。
For local heating, an infrared image heat treatment furnace 5 with a local linear condensing method is used, and the spot diameter of the local heater 8 is set to 5 mm.
I went as. Note that the heat treatment was performed while monitoring the heat treatment temperature with a thermocouple. The coil wire was configured to be able to rotate and horizontally move via the power transmission section 4 by driving the motor 3 while being wound around the alumina tube.

初めに、局所加熱の位置に、コイル先端から10mm離
れたコイル線材部分が設置されるようにモータの駆動に
よシ、回転と水平移動を行った。次に、局所加熱温度を
1040°Cに設置し、その温度まで、10℃/ !1
1inの昇温速度で昇温した。この状態で1h保持した
。その後、コイル巻線と逆方向に、1jL5hで1回転
する速度で回転させるとともに、同時間でコイル1巻分
の水平移動を行った。コイルの回転と水平移動を約ao
h行った所、コイルの末端付近が局所加熱の位置に来た
ので、加熱を止め、10℃/ minの降温速度で降温
し九〇 上記の熱処理によって得られたコイル線材の両端を線材
長さとして20 mmずつ切除し、臨界電流密度JC測
定を行った。JC値は、4端子法によって求めた値であ
シ、電圧端子間1omK1μV発生したときの電流で定
義した。液体窒素温度77に、IT(テスラ)の磁界の
下でJCは1i0A/am2であった◎ コイル線材の長手方向の断面及び長手方向に垂直な断面
を観察した結果、気孔の少ない、柱状結晶の集合体とな
っていることがわかった。おそらく、酸化物超伝導体Y
B’a2 cu、 o、 zの臨界電流密度値が大きい
結晶軸のa軸またFib軸に配向していると思われる。
First, the coil wire was rotated and moved horizontally by driving a motor so that the coil wire portion was placed 10 mm away from the tip of the coil at the local heating position. Next, set the local heating temperature to 1040°C, and increase the temperature by 10°C/! 1
The temperature was increased at a rate of 1 inch. This state was maintained for 1 hour. Thereafter, it was rotated in the opposite direction to the coil winding at a speed of one rotation in 1jL5h, and horizontally moved by one turn of the coil in the same time. The rotation and horizontal movement of the coil is approximately ao
When the coil wire was heated, the area near the end of the coil came to the position of local heating, so the heating was stopped and the temperature was lowered at a cooling rate of 10℃/min. A section of 20 mm was removed and critical current density JC was measured. The JC value was determined by the four-terminal method, and was defined as the current when a voltage of 1 umK 1 μV was generated between the terminals. The JC was 1i0A/am2 under the IT (Tesla) magnetic field at a liquid nitrogen temperature of 77%. ◎ As a result of observing the longitudinal cross section of the coil wire material and the cross section perpendicular to the longitudinal direction, it was found that the coil wire had columnar crystals with few pores. It turned out that it was a collective. Probably oxide superconductor Y
It is thought that B'a2 cu, o, and z are oriented along the a axis or the Fib axis of the crystal axes where the critical current density values are large.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液体窒素温度における臨界電流密度値
が1!の磁界中において、100OA/am2以上を有
する酸化物超伝導コイル線材及びその製造方法が得られ
る。これだより、酸化物系高温超伝導体の産業上の新規
な応用分野を關<、顕著な効果を有する。
According to the present invention, the critical current density value at liquid nitrogen temperature is 1! In a magnetic field of 100 OA/am2 or more, an oxide superconducting coil wire material and a method for manufacturing the same can be obtained. This newsletter has a remarkable effect on new industrial application fields of oxide-based high-temperature superconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一方向凝固法による酸化物超伝導コイ
ル線材の製造方法の原理図、第2図は第1図のI−1線
断面図である。 1・・・合金パイプ、2・・・アルミナ管、3・・・モ
ータ、4・・・動力伝達部、5・・・熱処理炉、6・・
・回転方向、7・・・水平移動方向、8・・・局部加熱
ヒータ。
FIG. 1 is a principle diagram of a method for manufacturing an oxide superconducting coil wire by the unidirectional solidification method of the present invention, and FIG. 2 is a sectional view taken along the line I-1 in FIG. 1. DESCRIPTION OF SYMBOLS 1... Alloy pipe, 2... Alumina pipe, 3... Motor, 4... Power transmission part, 5... Heat treatment furnace, 6...
- Rotation direction, 7... Horizontal movement direction, 8... Local heating heater.

Claims (5)

【特許請求の範囲】[Claims] 1.酸化物系超伝導コイル線材の製造方法において、融
液から所望の酸化物超伝導結晶が析出する組成の粉末を
金属管に充填し、コイル状に成形した後、特定の温度公
配をもった熱処理炉に入れ、コイルの巻き方向と逆方向
にコイルを回転させながらコイルの長手方向に移動させ
ることにより、酸化物超伝導結晶体を一方向に凝固させ
ることを特徴とする酸化物超伝導コイル線材の製造方法
1. In a method for manufacturing oxide-based superconducting coil wire material, a metal tube is filled with powder having a composition that allows desired oxide superconducting crystals to precipitate from a melt, and after being formed into a coil shape, the powder is heated to a specific temperature distribution. An oxide superconducting coil characterized in that the oxide superconducting crystal is solidified in one direction by placing it in a heat treatment furnace and moving the coil in the longitudinal direction while rotating the coil in a direction opposite to the winding direction of the coil. A method of manufacturing wire rods.
2.請求項1において、最初に溶融・凝固させる部分に
種子結晶を設置したことを特徴とする酸化物超伝導コイ
ル線材の製造方法。
2. 2. The method for producing an oxide superconducting coil wire according to claim 1, characterized in that a seed crystal is placed in a portion to be melted and solidified first.
3.請求項1において、最初に溶融させる部分の端部側
を一部溶融させないで焼結体として、その焼結体を種子
結晶として用いることを特徴とする酸化物超伝導コイル
線材の製造方法。
3. 2. The method for producing an oxide superconducting coil wire according to claim 1, characterized in that the end portion of the portion to be melted first is partially unmelted to form a sintered body, and the sintered body is used as a seed crystal.
4.請求項1において、金属管材料として、銀,金,白
金,パラジウム,ニッケルまたはこれらの金属元素の2
種以上を母合金とした金属を用いることを特徴とする酸
化物超伝導コイル線材の製造方法。
4. In claim 1, the metal tube material is silver, gold, platinum, palladium, nickel or two of these metal elements.
1. A method for manufacturing an oxide superconducting coil wire material, characterized in that a metal containing at least one seed is used as a master alloy.
5.請求項1において、熱処理炉の加熱源として、赤外
線等のランプ加熱もしくは炭酸ガス等のレーザ加熱など
の局所集光加熱源を用いることを特徴とする酸化物超伝
導コイル線材の製造方法。
5. 2. The method for manufacturing an oxide superconducting coil wire according to claim 1, characterized in that a local condensed heating source such as infrared ray lamp heating or carbon dioxide gas laser heating is used as the heating source of the heat treatment furnace.
JP2096415A 1990-04-13 1990-04-13 Manufacture of oxide superconducting coil wire material Pending JPH03295208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096415A JPH03295208A (en) 1990-04-13 1990-04-13 Manufacture of oxide superconducting coil wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096415A JPH03295208A (en) 1990-04-13 1990-04-13 Manufacture of oxide superconducting coil wire material

Publications (1)

Publication Number Publication Date
JPH03295208A true JPH03295208A (en) 1991-12-26

Family

ID=14164345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096415A Pending JPH03295208A (en) 1990-04-13 1990-04-13 Manufacture of oxide superconducting coil wire material

Country Status (1)

Country Link
JP (1) JPH03295208A (en)

Similar Documents

Publication Publication Date Title
JPH03295208A (en) Manufacture of oxide superconducting coil wire material
JPH03153558A (en) Production of oxide superconductor
JPH01261230A (en) Superconductor, superconducting wire and production of said wire
JPH0346710A (en) Manufacture of superconductive wire
JPH027309A (en) Manufacture of oxide type superconductive wire
JP3709532B2 (en) Manufacturing method of oxide superconductor
JP3179084B2 (en) Manufacturing method of oxide superconducting wire
JPH02141423A (en) Production of thallium-based superconductor
JPH01246719A (en) Manufacture of oxide superconductor
JP3597319B2 (en) Method for producing oxide superconducting conductor and melt solidification apparatus
JPH01176608A (en) Manufacture of oxide superconductive linear body
JPH05258625A (en) Manufacture for superconductive wire
JPH02153821A (en) Production of thallium-based superconductor
JPH01143744A (en) Production of oxide superconducting fine wire
JP3466758B2 (en) Boron-containing metal oxide wire and method for producing metal oxide wire
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH05298946A (en) Manufacture of oxide superconductive wire rod
JPH02204325A (en) Production of thallium-based superconductor
JPH01239713A (en) Manufacture of oxide superconductive wire
JPH0582340A (en) Low-resistance current lead
JPH02158012A (en) Manufacture of oxide superconductive liner body
JPH0312313A (en) Production of superconducting ceramic fiber
JPH02230612A (en) Manufacture of oxide superconductive wire material
JPH04292452A (en) Production of oxide superconductor and wire
JPH0471114A (en) Manufacture of oxide superconducting wire material