JPH03295175A - Removing method for carbon dioxide - Google Patents

Removing method for carbon dioxide

Info

Publication number
JPH03295175A
JPH03295175A JP2096392A JP9639290A JPH03295175A JP H03295175 A JPH03295175 A JP H03295175A JP 2096392 A JP2096392 A JP 2096392A JP 9639290 A JP9639290 A JP 9639290A JP H03295175 A JPH03295175 A JP H03295175A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
aqueous solution
raw material
feed grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2096392A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2096392A priority Critical patent/JPH03295175A/en
Publication of JPH03295175A publication Critical patent/JPH03295175A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the hydrogen partial pressure in the hydrogen raw material reform gas and improve the removing efficiency of carbon dioxide by bringing an alkaline aqueous solution into direct contact or indirect contact via a permeable gas diffusing film in advance with the hydrogen raw material reform gas fed to a hydrogen electrode. CONSTITUTION:A gas separator 5 is formed with hydrogen feed grooves 5a and alkaline water feed grooves 5b in turn on a plate-shaped main body made of a metal, the hydrogen feed grooves 5a are communicated by two gas communicating paths 5c, and the alkaline water feed grooves 5b are communicated by two alkaline water communicating paths 5d respectively. When the hydrogen raw material reform gas is fed to the hydrogen feed grooves 5a and a KOH aqueous solution is fed to the alkaline water feed grooves 5b, the hydrogen raw material reform gas is once fed into a gas diffusing film 4A then brought into contact with the KOH aqueous solution in the adjacent alkaline water feed grooves 5b. The carbon dioxide in the hydrogen raw material reform gas is made K2CO3 by reaction and removed to the outside of the system together with the KOH aqueous solution.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 本発明は、燃料電池や電解装置における水素極へ供給さ
れる水素原料改質ガス中の水素分圧を高めることができ
る二酸化炭素除去方法に関する。
[Detailed Description of the Invention] <Industrial Application> The present invention provides a method for removing carbon dioxide that can increase the partial pressure of hydrogen in reformed hydrogen gas supplied to a hydrogen electrode in a fuel cell or an electrolyzer. Regarding.

〈従来の技術〉 金属等の還元ガスとして有効な水素ガスは、燃料電池用
の反応ガスとしても利用できることは周知の通りである
。この燃料電池は、資源の枯渇問題を有する化石燃料を
使う必要がない上、騒音をほとんど発生せず、エネルギ
の回収効率も他のエネルギ機関と、較べて非常に高くで
きる等の優れた特徴を持っているため、例えばビルディ
ング単位や工場単位の比較的小型の発電プラントとして
利用されている。
<Prior Art> It is well known that hydrogen gas, which is effective as a reducing gas for metals, etc., can also be used as a reaction gas for fuel cells. This fuel cell does not require the use of fossil fuels, which have resource depletion issues, generates almost no noise, and has excellent features such as being able to recover energy much more efficiently than other energy engines. Because of this, it is used as a relatively small power generation plant for each building or factory, for example.

近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、このモータにより車両等
を駆動することが考えられている。この場合に重要なこ
とは、反応によって生成する物質をできるだけ再利用す
ることは当然のこととして、車載用であることからも明
らかなように、余り大きな出力は必要でないものの、全
ての付帯設備と共に可能な限り小型であることが望まし
い。
In recent years, it has been considered to use this fuel cell as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and to use this motor to drive a vehicle or the like. What is important in this case is that it is natural to reuse the substances produced by the reaction as much as possible, and as it is clear from the fact that it is for automotive use, although a large output is not required, It is desirable to be as small as possible.

ところで、燃料電池の水素原料として一般的なメタノー
ルから水素ガスを得る場合、通常は多管形式の固定床反
応器を改質装置として使用し、熱媒ボイラ等で得られる
高温の熱媒を介して吸熱反応によりメタノールを水蒸気
改質している。そして、かかる改質反応は次式で表され
る。
By the way, when hydrogen gas is obtained from methanol, which is commonly used as a hydrogen raw material for fuel cells, a multi-tubular fixed bed reactor is usually used as a reformer, and hydrogen gas is produced through a high temperature heat medium obtained from a heat medium boiler etc. methanol is reformed with steam through an endothermic reaction. This modification reaction is expressed by the following formula.

C)(30H+nH20−=(1−n)C0eCO2+
(2+n)H2但し、0 < n < 1 すなわち、水素原料改質ガス中には一酸化炭素(CO)
及び二酸化炭素(Co2)が含まれている。
C) (30H+nH20-=(1-n)C0eCO2+
(2+n)H2 However, 0 < n < 1 In other words, there is carbon monoxide (CO) in the hydrogen raw material reformed gas.
and carbon dioxide (Co2).

ここで、固体高分子電解質膜燃料電池の電極に含まれる
Pt等の触媒は特に100℃程度の低温で動作される場
合にCOにより被毒され易いので、一般に水素原料改質
ガス中のC0eCO2に変化させるような処理がなされ
ている。
Here, catalysts such as Pt contained in the electrodes of solid polymer electrolyte membrane fuel cells are easily poisoned by CO, especially when operated at low temperatures of about 100°C, so generally CO2 in the hydrogen raw material reformed gas Processing is being done to change it.

〈発明が解決しようとする課題〉 したがって、一般に、メタノール改質反応で得られた水
素原料改質ガス中には、CO2が約25%程度含まれる
ことになる。
<Problems to be Solved by the Invention> Therefore, in general, the hydrogen raw material reformed gas obtained by the methanol reforming reaction contains about 25% CO2.

しかしながら、燃料電池に供給される水素原料改質ガス
中の水素分圧は、なるべく高し)方が電池性能が向上す
るので、特に小型化を目指した固体貴公子電解質膜燃料
電池においては水素原料改質ガス中の水素分圧の向上が
望まれている。また、アルカリ型燃料電池ではCOを完
全に除く必要がある。
However, since cell performance improves when the hydrogen partial pressure in the hydrogen raw material reformed gas supplied to the fuel cell is as high as possible, especially in solid noble electrolyte membrane fuel cells aiming at miniaturization, hydrogen raw material reformed gas is supplied to the fuel cell. It is desired to improve the hydrogen partial pressure in quality gas. Furthermore, in alkaline fuel cells, it is necessary to completely remove CO.

本発明はこのような事情に鑑み、水素原料改質ガス中の
水素分圧を高めることができる二酸化炭素除去方法を提
供することを目的とする。
In view of these circumstances, an object of the present invention is to provide a carbon dioxide removal method that can increase the hydrogen partial pressure in the reformed hydrogen raw material gas.

く課題を解決するための手段〉 水素極へ供給される水素原料改質ガスに、予め直接又は
通気性のガス拡散膜を介して間接的にアルカリ水溶液を
接触させることを特徴とする。
Means for Solving the Problems> The present invention is characterized in that the hydrogen raw material reformed gas supplied to the hydrogen electrode is brought into contact with an alkaline aqueous solution in advance, either directly or indirectly through an air-permeable gas diffusion membrane.

〈作   用〉 水素原料改質ガスを直接又は間接的にアルカリ水溶液と
接触させると該水素原料改質ガス中の二酸化炭素がアル
カリ水溶液中のアルカリと反応して除去され、水素原料
改質ガス中の水素分圧が向上する。
<Function> When the reformed hydrogen raw material gas is brought into contact with an aqueous alkali solution directly or indirectly, the carbon dioxide in the reformed hydrogen raw gas is removed by reacting with the alkali in the aqueous alkaline solution, and the reformed hydrogen raw gas is removed. hydrogen partial pressure increases.

く実 施 例〉 以下、本発明を固体高分子電解質膜燃料電池に応用した
例について説明する。
EXAMPLE Hereinafter, an example in which the present invention is applied to a solid polymer electrolyte membrane fuel cell will be described.

第1図には固体高分子電解質膜燃料電池本体の一例を概
念的に示す。
FIG. 1 conceptually shows an example of a solid polymer electrolyte membrane fuel cell main body.

第1図中、1は固体高分子電解質膜、2A。In FIG. 1, 1 is a solid polymer electrolyte membrane and 2A.

2Bはガス拡散電極であり、ガス拡散電極2A。2B is a gas diffusion electrode, and 2A is a gas diffusion electrode.

2Bはそれぞれ反応膜3A、3B及びガス拡散膜4A、
4Bからなる。また、5,6はガスセパレータである。
2B are reaction membranes 3A, 3B and gas diffusion membrane 4A, respectively.
Consists of 4B. Further, 5 and 6 are gas separators.

ガスセパレータ5は水素さとなるガス拡散電極2Aに水
素を供給するための水素供給溝5aとアルカリ水溶液と
して水酸化カリウム(KOH)水溶液を流すためのアル
カリ水供給溝5bとを交互に有しており、ガスセパレー
タ6は酸素極となるガス拡散電極2Bに酸素を供給する
ための酸素供給溝6aを有している。
The gas separator 5 alternately has hydrogen supply grooves 5a for supplying hydrogen to the gas diffusion electrode 2A to become hydrogen, and alkaline water supply grooves 5b for flowing a potassium hydroxide (KOH) aqueous solution as an alkaline aqueous solution. The gas separator 6 has an oxygen supply groove 6a for supplying oxygen to the gas diffusion electrode 2B serving as an oxygen electrode.

ここで、ガス拡散電極2A、2Bは、平均粒径50人の
白金と平均粒径450人の親水性カーボンブラックと平
均粒径0.3μのポリテトラフルオロエチレンとが0,
7: 7: 3の割合て成る親水性反応膜3A、3.8
と、平均粒径42〇への疎水性カーボンブラックと平j
l径0.3μのポリテトラフルオロエチレンとが7: 
3の割合から成る疎水性ガス拡散膜4A、4Bとから構
成されている。親水性反応膜3A、3B及び疎水性ガス
拡散膜4A。
Here, the gas diffusion electrodes 2A and 2B contain platinum with an average particle size of 50, hydrophilic carbon black with an average particle size of 450, and polytetrafluoroethylene with an average particle size of 0.3μ.
Hydrophilic reaction membrane 3A with a ratio of 7: 7: 3, 3.8
and hydrophobic carbon black with an average particle size of 420
Polytetrafluoroethylene with a l diameter of 0.3 μ is 7:
It is composed of hydrophobic gas diffusion membranes 4A and 4B having a ratio of 3:3. Hydrophilic reaction membranes 3A, 3B and hydrophobic gas diffusion membrane 4A.

4Bは、白金以外の各原料粉末にソルベントナフサ、ア
ルコール、水2炭化水素などの溶液を混合した後、圧縮
成形することにより得ろことができろ。そして、これら
を重ねて圧延し、親水性反応膜3A、3B側に、塩化白
金酸化還元法によ’) Pt O,56W@、’Ciを
担持させろことによりガス拡散電極2A、2Bが製造さ
れる。
4B can be obtained by mixing raw material powders other than platinum with a solution of solvent naphtha, alcohol, water, two hydrocarbons, etc., and then compression molding the mixture. The gas diffusion electrodes 2A and 2B are manufactured by stacking these and rolling them to support PtO, 56W@, and Ci on the hydrophilic reaction membranes 3A and 3B using a platinum chloride redox method. Ru.

一方、上記固体高分子電解質膜1としては0.1711
1111FJのパーフルオロスルフォン酸ホリマー膜(
ナフィオン117:デュポン社製)を用いた。
On the other hand, as the solid polymer electrolyte membrane 1, 0.1711
1111FJ perfluorosulfonic acid polymer membrane (
Nafion 117 (manufactured by DuPont) was used.

そして、ガス拡散電極2A、2Bの間に固体高分子電解
質膜1をはさみ、ホットプレスすることにより接合体と
し、これをさらに2枚のガスセパレータ5,6で挾持し
て燃料電池本体としている。
Then, the solid polymer electrolyte membrane 1 is sandwiched between the gas diffusion electrodes 2A and 2B and hot pressed to form a bonded body, which is further sandwiched between two gas separators 5 and 6 to form a fuel cell body.

ここで、ガスセパレータ5の一例を第2図を参照しなが
ら説明する。第2図はガスセパレータ5のガス拡散電極
2Aとの接合面の外観を示すものである。同図に示すよ
うに、ガスセパレータ5は例えば金属からなる板状の本
体に水素供給溝5aとアルカリ水供給溝5bとを交互に
形成したものであり、各水素供給溝5aは2本のガス連
通路5Cによゆ、また、各アルカリ水供給溝5bは2本
のアルカリ水連通路5dにより、それぞれ連通されてい
る。
Here, an example of the gas separator 5 will be explained with reference to FIG. 2. FIG. 2 shows the appearance of the joint surface of the gas separator 5 with the gas diffusion electrode 2A. As shown in the figure, the gas separator 5 has hydrogen supply grooves 5a and alkaline water supply grooves 5b alternately formed in a plate-shaped body made of, for example, metal, and each hydrogen supply groove 5a has two gas The communication passages 5C and each alkaline water supply groove 5b are communicated with each other by two alkaline water communication passages 5d.

なお、ガスセパレータ6もガスセパレータ5と同様な構
造を有している。
Note that the gas separator 6 also has a similar structure to the gas separator 5.

このような構成においては、ガスセパレータ5の水素供
給溝55Lとアルカリ水供給溝5bとは該ガスセパレー
タ5と接触する疎水性ガス拡散膜4A、すなわち不通水
性で通気性を有するガス拡散膜を介して連通しているこ
とになる。つまり、水素供給溝5aに水素原料改質ガス
を供給すると共に、アルカリ水供給溝5bにKOH水溶
液を供給すると、水素原料改質ガスは一端ガス拡散膜4
A内に入るがその後隣接するアルカリ水供給溝5b内の
KOH水溶液と接触することになる。そして、水素原料
改質ガス中の二酸化炭素は次式に示す反応によりに2C
O3としてKOH水溶液と共に系外に除去される。
In such a configuration, the hydrogen supply groove 55L and the alkaline water supply groove 5b of the gas separator 5 are connected to each other through a hydrophobic gas diffusion membrane 4A that contacts the gas separator 5, that is, a gas diffusion membrane that is water-impermeable and air permeable. This means that they are communicating. That is, when the hydrogen raw material reformed gas is supplied to the hydrogen supply groove 5a and the KOH aqueous solution is supplied to the alkaline water supply groove 5b, the hydrogen raw material reformed gas is supplied to the gas diffusion membrane 4.
After that, it comes into contact with the KOH aqueous solution in the adjacent alkaline water supply groove 5b. Then, carbon dioxide in the hydrogen raw material reformed gas is converted to 2C by the reaction shown in the following equation.
It is removed from the system as O3 together with the KOH aqueous solution.

2KOH+CO2→に2CO3+H20すなわち、この
ような構成とすることにより、固体高分子電解質膜1と
の界面まで供給される水素原料改質ガス中のCO2濃度
は低下し、逆に、水素分圧は高くなることになる。
2KOH + CO2 → 2CO3 + H20 In other words, with such a configuration, the CO2 concentration in the hydrogen raw material reformed gas supplied to the interface with the solid polymer electrolyte membrane 1 decreases, and conversely, the hydrogen partial pressure increases. It turns out.

思上説明した電池本体を用いた固体高分子電解質膜燃料
電池の全体システムを第3図に示す。
FIG. 3 shows the entire system of a solid polymer electrolyte membrane fuel cell using the cell body just described.

同図に示すように、燃料電池本体11の水素極12に供
給されるメタノール改質ガスばメタノール改質装置13
で製造されろ。メタノール改質装置13は改質部14及
び予熱部15からなり、改質部14は水素極12からの
未反応ガス及び空気からなる燃焼用ガスの燃焼により加
熱され、また、予熱部15は改質部14を加熱した燃焼
用ガスの排ガスにより加熱されるようになっている。こ
の予熱部15は、改質用メタノール供給管16を介して
メタノールタンク17と連結されており、改質用メタノ
ール供給管16の途中には改質ガスの原料となるメタノ
ールタンク17中のメタノール18をメタノール改質装
置113へ圧送するためのモータ19駆動のポンプ20
が取り付けられている。また、改質用メタノール供給管
16の途中には、一端側が水タンク21に連通する水供
給管22の他端側が接続されており、この水供給管22
の途中にはメタノール18と共に改質原料となる水タン
ク21内の水23を改質用メタノール供給管16内に圧
送するためのモータ24駆動のポンプ25が取り付けら
れている。
As shown in the figure, the methanol reformer 13 is supplied with methanol reformed gas supplied to the hydrogen electrode 12 of the fuel cell main body 11.
Manufactured in The methanol reformer 13 consists of a reforming section 14 and a preheating section 15. The reforming section 14 is heated by combustion of combustion gas consisting of unreacted gas and air from the hydrogen electrode 12, and the preheating section 15 is heated by combustion of combustion gas consisting of unreacted gas and air from the hydrogen electrode 12. The mass part 14 is heated by the exhaust gas of the combustion gas that has heated it. This preheating section 15 is connected to a methanol tank 17 via a reforming methanol supply pipe 16, and in the middle of the reforming methanol supply pipe 16, methanol 18 in the methanol tank 17, which is a raw material for reformed gas, is connected. A pump 20 driven by a motor 19 for pumping the methanol to the methanol reformer 113
is installed. Further, the other end side of a water supply pipe 22 whose one end side communicates with a water tank 21 is connected to the middle of the reforming methanol supply pipe 16.
A pump 25 driven by a motor 24 is installed in the middle of the methanol 18 for pumping water 23 in the water tank 21, which serves as a raw material for reforming, into the reforming methanol supply pipe 16.

したがって、メタノール18と水23とからなる改質原
料は、予熱部15中の予熱管26を通過する間に、上述
した燃焼用ガスが燃焼して生成した高温の燃焼排ガスと
の間での熱交換により200℃〜500℃程度に予熱さ
れろ。そして、予熱された改質原料;よ改質部14でガ
ス化されて改質ガス生成’1127中を通過し、この改
質ガス生成管27に充填された改質用触媒に加熱下で接
触することになり、次の改質反応により改質される。
Therefore, while the reforming raw material consisting of methanol 18 and water 23 passes through the preheating tube 26 in the preheating section 15, it loses heat between it and the high temperature combustion exhaust gas generated by the combustion of the above-mentioned combustion gas. Preheat to about 200°C to 500°C by exchanging. Then, the preheated reforming raw material is gasified in the reforming section 14, passes through the reformed gas generation '1127, and comes into contact with the reforming catalyst filled in the reformed gas generation pipe 27 under heating. Therefore, it is modified by the following modification reaction.

C)(30H+nH20−(1−n)CO+nCO2+
(2+n)H2但し、O< n < 1 このような改質においては、メタノール18と水23と
の混合比は、1モルのメタノールに対して水を0.05
モルから5モル程度に設定するのが望ましい。また、原
料ガスの改質反応を効率良(行わせるためには、改質ガ
ス生成管27内の圧力を一平方センチメートル当たl)
Okg重〜20kg重程度に設定し、又、この改質ガス
生成管27内の温度を200℃〜600℃程度に設定す
ることが望ましい。
C) (30H+nH20-(1-n)CO+nCO2+
(2+n)H2 However, O < n < 1 In such reforming, the mixing ratio of methanol 18 and water 23 is 0.05 water to 1 mole of methanol.
It is desirable to set the amount to about 5 moles. In addition, in order to carry out the reforming reaction of the raw material gas efficiently (in order to carry out the reforming reaction, the pressure inside the reformed gas generation pipe 27 must be set to l per square centimeter).
It is desirable to set the weight to about 100 kg to 20 kg, and to set the temperature inside the reformed gas generation tube 27 to about 200°C to 600°C.

なお、改質用触媒としては、例えばプラチナ(pt)及
びバランラム(Pd)及びロジウム(Rh)及びニッケ
ル(Ni)の内の少なくとも一つの元素を含むもの、或
いは銅(Cu)及び亜鉛(Zn)及びクロム(Cr)の
内の少なくとも一つの元素を含むものを挙げることがで
きろ。
Note that the reforming catalyst includes, for example, one containing at least one element among platinum (pt), balanrum (Pd), rhodium (Rh), and nickel (Ni), or copper (Cu) and zinc (Zn). and chromium (Cr).

また、メタノール改質装置13の始動時には燃焼用ガス
に用いる電池本体11からの未反応ガスの代りにメタノ
ールタンク17中のメタノール18を供給するようにな
っている。
Further, when the methanol reformer 13 is started, methanol 18 in the methanol tank 17 is supplied in place of the unreacted gas from the battery main body 11 used as combustion gas.

すなわち、改質部]4どメタノールタンク17とを連結
する起動用メタノール供給管28が設けられてお秒、こ
の起動用メタノール供給’128の途中には始動装置2
9が設けられている。この始動装置29はメタノールタ
ンク17内のメタノール18を改質部14内の図示しな
いノズル部側に圧送するための図示しない始動用燃料供
給ポンプと、この始動用燃料供給ポンプから供給される
メタノール18を蒸発気化させて図示しないノズル部へ
送り込むための図示しないメタノール気化諸とを具えて
いる。
That is, a starting methanol supply pipe 28 is provided which connects the 4th methanol tank 17 to the reforming section.
9 is provided. This starting device 29 includes a starting fuel supply pump (not shown) for pressure-feeding methanol 18 in the methanol tank 17 to a nozzle section (not shown) in the reforming section 14, and methanol 18 supplied from the starting fuel supply pump. It is equipped with methanol vaporizers (not shown) for evaporating and vaporizing the methanol and sending it to a nozzle part (not shown).

一方、このメタノール改質装置13の改質ガス出口側に
連通するように第1のCO低減装置30が設けられてい
る。この第1のCO低減装置30には、改質ガス生成管
27内での改質反応により生成する改質ガス中のCOを
低減するためのCOシフト触媒が充填されている。なお
、COシフト触媒としては、例えば銅(Cu)及び亜鉛
(Zn)の内の少な(とも一つの元素を含むものを挙げ
ることができる。
On the other hand, a first CO reduction device 30 is provided so as to communicate with the reformed gas outlet side of the methanol reformer 13. This first CO reduction device 30 is filled with a CO shift catalyst for reducing CO in the reformed gas generated by the reforming reaction within the reformed gas generation pipe 27. Note that examples of the CO shift catalyst include those containing at least one of copper (Cu) and zinc (Zn).

ここで、第1のCO低減装置30におけるCOシフト処
理では、COはHOとの反応でCO2に転化され、CO
濃度は1%程度まで低減されるようになっている。
Here, in the CO shift process in the first CO reduction device 30, CO is converted to CO2 by reaction with HO, and CO
The concentration is reduced to about 1%.

また、この第1のCO低減装置30に連通ずる改質ガス
供給管31は第2のCO低減装置32に接続されている
。この第2のCO低減装置32では、改質ガスに空気を
導入することにより、上述したように1%程度となった
COを、さらに100 ppm程度まで低減する処理(
セしクトオキソ)が行われている。
Further, a reformed gas supply pipe 31 communicating with the first CO reduction device 30 is connected to a second CO reduction device 32. In this second CO reduction device 32, air is introduced into the reformed gas to further reduce CO, which has reached about 1% as described above, to about 100 ppm (
selective oxo) is being carried out.

そして、このようにCOが低減された改質ガスは通常は
加湿装置33により加湿された後、燃料電池本体11の
水素極12側に導入される。
The reformed gas with reduced CO in this way is usually humidified by the humidifier 33 and then introduced into the hydrogen electrode 12 side of the fuel cell main body 11 .

そして、このように燃料電池本体11の水素極12に送
り込まれた改質ガスのうち、余剰の未反応ガス(ま、燃
料電池本体11と前記メタノール改質装置13の改質部
14とを連通ずる未反応ガス供給管34を介して改質部
14へ供給される。
Of the reformed gas sent to the hydrogen electrode 12 of the fuel cell main body 11 in this way, excess unreacted gas (well, the fuel cell main body 11 and the reforming section 14 of the methanol reformer 13 are The unreacted gas is supplied to the reforming section 14 via the unreacted gas supply pipe 34.

一方、燃料電池本体11の酸素極35には空気供給管3
6を介してブロワ37が連結されており、このブロワ3
7からの加圧空気が酸素極35側へ圧送されるようにな
っている。
On the other hand, the air supply pipe 3 is connected to the oxygen electrode 35 of the fuel cell main body 11.
6, a blower 37 is connected to the blower 37.
The pressurized air from 7 is forced to be sent to the oxygen electrode 35 side.

そして、この空気は燃料電池本体11内の酸素極35側
で反応生成水を含んだ状態となって酸素極35に接続さ
れる気水分lllN38に供給され、この内の水分が水
回収管39を介して水タンク21に回収され、気体分が
排気管40から外部へ排出される。
Then, this air becomes a state containing reaction product water on the oxygen electrode 35 side in the fuel cell main body 11 and is supplied to the air/moisture IllN 38 connected to the oxygen electrode 35, and the water in this air flows through the water recovery pipe 39. The gas is collected in the water tank 21 via the water tank 21, and the gas is discharged to the outside through the exhaust pipe 40.

ここで、前記ブロワ37は電源である蓄電池41から電
気を供給されるブロワ駆動モータ42により駆動されて
いる。なお、蓄電池4]には、第1のCO低減装置30
と第2のCO低減装置32との間の改質ガス供給管31
に介装されろ排気タービン43によって駆動されろ発電
機44により発電された電気が蓄えられるようになって
いる。また、前記ブロワ37からの空気供給管36から
分岐する第2の空気供給管45はメタノール供給管28
の途中に連通しており、この第2の空気供給管45を介
して前述したようにメタノール改質装置13の改質部1
4においての燃焼ガスとなる空気が供給されている。
Here, the blower 37 is driven by a blower drive motor 42 supplied with electricity from a storage battery 41 serving as a power source. Note that the storage battery 4] is equipped with a first CO reduction device 30.
and the second CO reduction device 32.
Electricity generated by a generator 44 installed in the exhaust turbine 43 and driven by an exhaust turbine 43 is stored. Further, a second air supply pipe 45 branching from the air supply pipe 36 from the blower 37 is connected to the methanol supply pipe 28.
The second air supply pipe 45 communicates with the reforming section 1 of the methanol reformer 13 as described above.
Air, which becomes the combustion gas in step 4, is supplied.

なお、前記モータ19,24もブロワ駆動モータと同様
に蓄電池41から供給される電気によって運転されるよ
うになっている。
Note that the motors 19 and 24 are also driven by electricity supplied from the storage battery 41, similar to the blower drive motor.

そして、本実施例では、KOH水溶液タンク46内のK
OH水溶液47がKOH循環配管48を介して燃料電池
本体11の上述したガスセパレータ5のアルカリ水連通
路5d(第1図。
In this embodiment, K in the KOH aqueous solution tank 46 is
The OH aqueous solution 47 is passed through the KOH circulation pipe 48 to the alkaline water communication passage 5d of the gas separator 5 of the fuel cell main body 11 (see FIG. 1).

第2図参照)に供給されるようになっている。(see Figure 2).

また、このKOH水溶液47の循環は燃料電池本体11
の冷却も兼ねており、ガスセパレータ5から出るKOH
水溶液47は加熱されている。そして、かかるKOH水
溶液47は加湿装置33へ導入された後、KOH水溶液
タンク46に戻される。加湿装置133内では改質ガス
供給管31内を流れる改質ガスと加熱されたKOH水溶
液47とがガス拡散膜を介して接触しており、加熱され
たKOH水溶液47の温度に対応する水蒸気分圧で改質
ガスに水蒸気が添加されるようになっている。なお、こ
のようなKOH水溶液47の循環はモータ49駆動のポ
ンプ50により行われており、モータ49は蓄電池41
の電気によって運転されるようになっている。
Further, the circulation of this KOH aqueous solution 47 is carried out in the fuel cell main body 11.
It also serves as a cooling for the KOH released from the gas separator 5.
The aqueous solution 47 is heated. After the KOH aqueous solution 47 is introduced into the humidifier 33, it is returned to the KOH aqueous solution tank 46. In the humidifying device 133, the reformed gas flowing through the reformed gas supply pipe 31 and the heated KOH aqueous solution 47 are in contact with each other via a gas diffusion membrane, and the water vapor corresponding to the temperature of the heated KOH aqueous solution 47 is Steam is added to the reformed gas under pressure. Incidentally, such circulation of the KOH aqueous solution 47 is performed by a pump 50 driven by a motor 49, and the motor 49 is connected to a storage battery 41.
It is designed to be driven by electricity.

このような装置により発電を行うと、水素極1zに送ら
れる水素原料改質ガス中の水素分圧が高くなるので、発
電性能が向上される。
When power is generated using such a device, the hydrogen partial pressure in the hydrogen raw material reformed gas sent to the hydrogen electrode 1z increases, so power generation performance is improved.

第4図は、上記実施例に係る固体高分子電解質膜燃料電
池においてKOH水溶液でC02を除去した場合と、K
OH水溶液を流さないでC02を除去しない場合(比較
例)との電池性能を比較したものである(改質ガス組成
:H275%、co□25%)が、C02除去を行った
場合に電池性能が向上しているのが明らかである。
FIG. 4 shows the case where CO2 is removed with a KOH aqueous solution in the solid polymer electrolyte membrane fuel cell according to the above example, and the case where K
This is a comparison of the battery performance with a case where the OH aqueous solution is not flowed and CO2 is not removed (comparative example) (reformed gas composition: H275%, CO□25%), but the battery performance is different when CO2 is removed. It is clear that this has improved.

なお、上述した装置においては、KOH水溶液タンク4
6内のKOH水溶液47は定期的に交換する必要がある
In addition, in the above-mentioned apparatus, the KOH aqueous solution tank 4
The KOH aqueous solution 47 in 6 needs to be replaced periodically.

また、本発明方法を実施する場合、アルカリ水溶液はK
OH水溶液に限定されず、水酸化ナトリウム(NaOH
)水溶液、水酸化カルシウム〔Ca(OH)2〕水溶液
などCO2を除去するものであればよい。このとき、C
a(OH)2水溶液を用いた場合、C02はCaC0,
として固体となるので、フィルタ等によりCa (OH
)2水溶液を再生処理することができる。
In addition, when carrying out the method of the present invention, the alkaline aqueous solution is K
Not limited to OH aqueous solution, sodium hydroxide (NaOH
) aqueous solution, calcium hydroxide [Ca(OH)2] aqueous solution, etc., as long as they remove CO2. At this time, C
When using a(OH)2 aqueous solution, C02 is CaC0,
Since it becomes a solid as Ca (OH
) 2 aqueous solution can be regenerated.

さらに、上記実施例ではガスセパレータ5内でC02除
去を行っているが、例えば改質ガス供給管31の途中で
水素原料改質ガスをKO)l水溶液などのアルカリ水溶
液に接触させ、CO2が除去されて水素分圧の向上した
水素原料改質ガスをガスセパレータ5に送るようにして
もよい。
Furthermore, in the above embodiment, CO2 is removed in the gas separator 5, but for example, the hydrogen raw material reformed gas is brought into contact with an alkaline aqueous solution such as a KO)l aqueous solution in the middle of the reformed gas supply pipe 31, so that CO2 is removed. The hydrogen raw material reformed gas with improved hydrogen partial pressure may be sent to the gas separator 5.

この場合、例えばアルカリ水溶液中に水素原料改質ガス
をバブリングしたり、一部がガス拡散膜で形成された容
器に充填されたアルカリ水溶液中に水素原料改質ガスを
導入してCO2が除去された水素改質ガスをガス拡散膜
を介して取り出し・たりして、水素原料改質ガスとアル
カリ水溶液との直接接触させることによりCO2濃度を
低減するようにしてもよい。
In this case, CO2 is removed by, for example, bubbling hydrogen raw material reformed gas into an alkaline aqueous solution, or introducing hydrogen raw material reformed gas into an alkaline aqueous solution filled in a container partially formed with a gas diffusion membrane. The CO2 concentration may be reduced by taking out the hydrogen reformed gas through a gas diffusion membrane and bringing the hydrogen raw material reformed gas into direct contact with the alkaline aqueous solution.

例えば第5図に示すように、両側面がガス拡散膜51で
形成された部屋52へKOHまたはNaOHからなるア
ルカリ水溶液と共にCO2を含む水素原料改質ガスを通
すことにより、Hだけがガス拡散膜51を通過して分離
することができる。
For example, as shown in FIG. 5, by passing a reformed hydrogen raw material gas containing CO2 together with an alkaline aqueous solution of KOH or NaOH into a chamber 52 whose both sides are formed with gas diffusion membranes 51, only H is absorbed through the gas diffusion membrane. 51 for separation.

また、通気性のガス拡散膜を介して水素原料改質ガスと
アルカリ水溶液とを間接的に接触させろようにしてCO
7濃度を低減するようにしてもよい。
In addition, the hydrogen raw material reformed gas and the alkaline aqueous solution are made to come into indirect contact through a gas-permeable gas diffusion membrane.
7 concentration may be reduced.

例えば第6図に示すように、気体及び液体の両者を通さ
ない外管53と気体のみ透過する内管54とからなる二
重管を用い、外管53と内管54との間にKOHやNa
OHからなるアルカリ水溶液55を保持するか循環させ
る一方、内管54の中へCOを含む水素原料改質ガスを
通すようにする。これにより、アルカリ水溶液55とC
O含有水素原料改質ガスとがガス拡散膜54を介して接
触するので、CO2がアルカリ水溶液55内へ溶は込む
ようになろ。また、この場合、アルカリ水溶w!jL5
5からの水蒸気が水素原料改質ガス内へ供給され、すな
わち改質ガスの水蒸気圧の過不足分がアルカリ水溶液5
5の温度調整により調整されるという効果も奏する。
For example, as shown in FIG. 6, a double tube consisting of an outer tube 53 that does not pass both gas and liquid and an inner tube 54 that allows only gas to pass through is used, and a KOH or Na
While the alkaline aqueous solution 55 consisting of OH is held or circulated, the hydrogen raw material reformed gas containing CO is passed into the inner pipe 54. As a result, the alkaline aqueous solution 55 and C
Since the O-containing hydrogen raw material reformed gas comes into contact with the gas through the gas diffusion membrane 54, CO2 dissolves into the alkaline aqueous solution 55. Also, in this case, alkaline water soluble lol! jL5
The water vapor from 5 is supplied into the hydrogen raw material reformed gas, that is, the excess or deficiency in the water vapor pressure of the reformed gas is added to the alkaline aqueous solution 5.
It also has the effect of being adjusted by the temperature adjustment in step 5.

〈発明の効果〉 以上説明したように、本発明ではアルカリ水溶液に直接
又はガス拡散膜を介して間接的に接触させた水素原料改
質ガスを燃料電池等の水素電極へ供給するので、水素原
料改質ガス中の水素分圧が高くなり、燃料電池等の性能
の向上を図ることができる。
<Effects of the Invention> As explained above, in the present invention, the hydrogen raw material reformed gas brought into contact with an alkaline aqueous solution directly or indirectly through a gas diffusion membrane is supplied to the hydrogen electrode of a fuel cell, etc. The hydrogen partial pressure in the reformed gas is increased, making it possible to improve the performance of fuel cells and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための固体高分子電解質
膜燃料電池本体を示す概念図、第2図はそのガスセパレ
ータを示す外観図、第3図は固体高分子電解質膜燃料電
池の全体システムを示す概念図、第4図はその発電性能
を示すグラフ、第5図及び第6図はそのCO2除去方法
の具体例を示す説明図である。 図 面  中、 は固体高分子電解質膜、 A、2Bはガス拡散電極、 A、3Bは反応膜、 A、4Bはガス拡散膜1 .6;よガスセパレータ、 aは水素供給溝、 bはKOH水溶液供給溝、 aは酸素供給溝、 1は燃料電池本体、 2は水素極、 3はメタノール改質装置、 4は改質部、 5は予熱部、 6は改質用メタノール供給管1 7はメタノールタンク、 8はメタノール、 1ば水タンク、 3は水、 0は第1のCO低減装置、 1は改質ガス供給管、 2は第2のCO低減装置、 3は加湿装置、 5は酸素極、 6(よ空気供給管、 (:よKOH水溶液タンク、 7はK OH水溶液、 8 !′1KOH循環配管である。 A B 特  許  出  願  人 三菱重工業株式会社 代    理    人
Figure 1 is a conceptual diagram showing the solid polymer electrolyte membrane fuel cell main body for carrying out the method of the present invention, Figure 2 is an external view showing the gas separator, and Figure 3 is the entire solid polymer electrolyte membrane fuel cell. FIG. 4 is a conceptual diagram showing the system, FIG. 4 is a graph showing its power generation performance, and FIGS. 5 and 6 are explanatory diagrams showing specific examples of the CO2 removal method. In the drawing, indicates a solid polymer electrolyte membrane, A and 2B are gas diffusion electrodes, A and 3B are reaction membranes, and A and 4B are gas diffusion membranes 1. 6; Yo gas separator, a is the hydrogen supply groove, b is the KOH aqueous solution supply groove, a is the oxygen supply groove, 1 is the fuel cell body, 2 is the hydrogen electrode, 3 is the methanol reformer, 4 is the reforming section, 5 is a preheating section, 6 is a methanol supply pipe for reforming 1, 7 is a methanol tank, 8 is methanol, 1 is a water tank, 3 is water, 0 is the first CO reduction device, 1 is a reformed gas supply pipe, 2 is 2nd CO reduction device, 3 is a humidifying device, 5 is an oxygen electrode, 6 is an air supply pipe, (: is a KOH aqueous solution tank, 7 is a KOH aqueous solution, 8!'1 is a KOH circulation pipe. A B Patent Applicant Mitsubishi Heavy Industries, Ltd. Agent

Claims (1)

【特許請求の範囲】[Claims] 水素極へ供給される水素原料改質ガスに、予め直接又は
通気性のガス拡散膜を介して間接的にアルカリ水溶液を
接触させることを特徴とする二酸化炭素除去方法。
A method for removing carbon dioxide, characterized in that a reformed hydrogen raw material gas supplied to a hydrogen electrode is brought into contact with an alkaline aqueous solution in advance, either directly or indirectly through an air-permeable gas diffusion membrane.
JP2096392A 1990-04-13 1990-04-13 Removing method for carbon dioxide Pending JPH03295175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096392A JPH03295175A (en) 1990-04-13 1990-04-13 Removing method for carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096392A JPH03295175A (en) 1990-04-13 1990-04-13 Removing method for carbon dioxide

Publications (1)

Publication Number Publication Date
JPH03295175A true JPH03295175A (en) 1991-12-26

Family

ID=14163691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096392A Pending JPH03295175A (en) 1990-04-13 1990-04-13 Removing method for carbon dioxide

Country Status (1)

Country Link
JP (1) JPH03295175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106503A (en) * 1999-10-07 2001-04-17 Toyota Motor Corp Hydrogen enriching device and fuel cell device
CN102956904A (en) * 2011-08-25 2013-03-06 夏普株式会社 Alkaline fuel cell and alkaline fuel cell system
WO2013161618A1 (en) * 2012-04-23 2013-10-31 シャープ株式会社 Alkaline fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106503A (en) * 1999-10-07 2001-04-17 Toyota Motor Corp Hydrogen enriching device and fuel cell device
JP4534278B2 (en) * 1999-10-07 2010-09-01 トヨタ自動車株式会社 Fuel cell device
CN102956904A (en) * 2011-08-25 2013-03-06 夏普株式会社 Alkaline fuel cell and alkaline fuel cell system
US9190678B2 (en) 2011-08-25 2015-11-17 Sharp Kabushiki Kaisha Alkaline fuel cell and alkaline fuel cell system
WO2013161618A1 (en) * 2012-04-23 2013-10-31 シャープ株式会社 Alkaline fuel cell

Similar Documents

Publication Publication Date Title
US5741474A (en) Process for production of high-purity hydrogen
CA2345966C (en) Fuel processing system
JP3328993B2 (en) Hydrogen generation method
JP2003535450A (en) Fuel cell and fuel cell system containing non-aqueous electrolyte
JP2009537440A (en) Hydrogen treatment assembly and hydrogen generator, and fuel cell apparatus including them (related application) This application is filed on May 22, 2006, entitled “HYDROGEN-PRODUCING GFLELPRECESSINGGASEMBLIESANDMEMBRANE-BASEDSEPAPARATIONASEMBLIESFORUSEHETHERITEH” US Provisional Patent Application No. 60 / 802,716 entitled &#34;Membrane-Based Separation Assembly&#34; and US Patent Application No. 11 / 750,806 filed May 18, 2007 of the same name. Claims priority based on. The complete disclosure of the above patent application is incorporated by reference for all purposes.
US6551732B1 (en) Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode
CN106082127B (en) Selective oxidation purifies the methanol steam reforming device of CO
WO2006129885A1 (en) Hydrogen production apparatus, and making use of the same, fuel cell power generator, electric vehicle, submersible ship and hydrogen supply system
JP2002530817A (en) Fuel cell system with improved startable output
US6129861A (en) Membrane reactor for producing CO- and CO2 -free hydrogen
JP4624670B2 (en) Integration of the functions of many components of a fuel cell power plant
CN105720285A (en) Enclosed fuel cell hydrogen source system
JPH06325782A (en) Fuel cell
JPH0812301A (en) Methanol reformer
US7122269B1 (en) Hydronium-oxyanion energy cell
JPH08167417A (en) Solid high polymer electrolyte film fuel cell main body
JP3358820B2 (en) Hydrogen booster and fuel cell using the same
JP2005200266A (en) Reforming method, reformer, power generator and fuel vessel
CN205933214U (en) Methanation reaction purifies CO&#39;s methanol reforming reactor
JPH03295175A (en) Removing method for carbon dioxide
JP2002231282A (en) Solid polymer electrolyte fuel cell generating device
CA2458314A1 (en) Steam reformer with internal hydrogen purification
JPH03208801A (en) Method for removing carbon monoxide in reformed gas as raw material for hydrogen
JPH05129029A (en) Power generation system formed by using fuel cell
JP2670168B2 (en) Hydrogen raw material reformer