JPH03294466A - Production of grain-oriented silicon steel sheet having small iron loss - Google Patents

Production of grain-oriented silicon steel sheet having small iron loss

Info

Publication number
JPH03294466A
JPH03294466A JP2096883A JP9688390A JPH03294466A JP H03294466 A JPH03294466 A JP H03294466A JP 2096883 A JP2096883 A JP 2096883A JP 9688390 A JP9688390 A JP 9688390A JP H03294466 A JPH03294466 A JP H03294466A
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
iron loss
film
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2096883A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
尚 小林
Hiroyasu Fujii
浩康 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2096883A priority Critical patent/JPH03294466A/en
Publication of JPH03294466A publication Critical patent/JPH03294466A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To industrially produce a grain-oriented silicon steel sheet having very small iron loss at a low cost by plating the matrix iron surface of a finish annealed grain-oriented silicon steel sheet with a metal and forming an oxide film by low pressure plasma spraying. CONSTITUTION:The matrix iron surface of a finish-annealed grain-oriented silicon steel sheet contg. about <=4wt.% Si is plated with a metal. This matrix iron surface is formed by chemically or mechanically removing a forsterite film formed by annealing so that the matrix iron in the surface of the steel sheet is exposed. By the metal plating, a plating layer of Zn, Sn, Cu or Ni is preferably formed in about >=1mum thickness. An oxide film is formed on the plating layer by low pressure plasma spraying. Alumina or silica may be used as the oxide. A tension applying film is further formed by coating and baking as required. The iron loss of the silicon steel sheet can remarkably be reduced with high productivity at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鉄損値が極めて低い一方向性珪素鋼板の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet having an extremely low core loss value.

(従来の技術) 一方向性珪素鋼板は、磁気鉄芯として多用され、エネル
ギロスを少なくすべく鉄損を低減することが要求される
。而して、一方向性珪素鋼板の鉄損を低減する手段とし
て、仕上焼鈍後の材料表面にレーザビームを照射して局
部的な歪を与え、それによって磁区を細分化して鉄損を
低下させる方法が、たとえば特開昭58−26405号
公報に開示されている。また、一方向性珪素鋼板を鉄芯
へ加工した後歪取り焼鈍(応力除去焼鈍)を施しても磁
区細分化効果が消失しない磁区細分化手段として、例え
ば特開昭62−86175号公報に開示されている方法
がある。これらの技術的手段によって、一方向性珪素網
板の鉄損値を低下させることができるが、さらに鉄損値
の低減を図ろうとするときは、仕上焼鈍後の材料表面に
存在するグラス皮膜を除去し、鋼板表面近傍の磁区の動
きを阻害する地鉄表面の凹凸を取り除くことが重要であ
る。そのための手段として、仕上焼鈍後の材料の地鉄表
面を鏡面仕上げするかまたは、鏡面仕上げした材料表面
に金属めっきを施すという方法がある。さらには、前記
鏡面仕上げし金属めっきした材料表面に絶縁皮膜を塗布
し焼き付けることによって、超低鉄損の一方向性珪素鋼
板を得る方法が、特公昭52−24499号公報に提案
されている。さらに、例えば特開昭61−201732
号公報には、表面の平均粗さが0.4n以下の鏡面状態
に仕上げた一方向性珪素鋼板を、Tiを含むガスと非酸
化性ガスからなる雰囲気下に500〜1000°Cの温
度域で熱処理し、表面にTiN 、 TiC、Ti (
C,N)からなる極薄張力皮膜を形成し、さらに絶縁皮
膜を被覆することによって鉄損値の低い一方向性珪素鋼
板を得る方法が開示されている。
(Prior Art) Unidirectional silicon steel sheets are often used as magnetic iron cores, and are required to reduce iron loss in order to reduce energy loss. Therefore, as a means to reduce iron loss in unidirectional silicon steel sheets, a laser beam is irradiated onto the material surface after final annealing to give local strain, thereby subdividing the magnetic domains and reducing iron loss. A method is disclosed, for example, in Japanese Patent Application Laid-Open No. 58-26405. Furthermore, as a magnetic domain refining means in which the magnetic domain refining effect does not disappear even if a unidirectional silicon steel plate is processed into an iron core and then subjected to stress relief annealing, it is disclosed in, for example, JP-A-62-86175. There is a way it has been done. These technical measures can reduce the iron loss value of the unidirectional silicon mesh plate, but when trying to further reduce the iron loss value, it is necessary to reduce the glass film that exists on the surface of the material after final annealing. It is important to remove the irregularities on the surface of the steel substrate that inhibit the movement of magnetic domains near the surface of the steel plate. As a means for this purpose, there is a method of mirror-finishing the bare surface of the material after finish annealing, or applying metal plating to the mirror-finished material surface. Furthermore, Japanese Patent Publication No. 52-24499 proposes a method of obtaining an ultra-low core loss unidirectional silicon steel plate by applying and baking an insulating film on the surface of the mirror-finished and metal-plated material. Furthermore, for example, JP-A-61-201732
In the publication, a unidirectional silicon steel plate finished to a mirror finish with an average surface roughness of 0.4n or less is heated in a temperature range of 500 to 1000°C in an atmosphere consisting of a Ti-containing gas and a non-oxidizing gas. The surface was heat treated with TiN, TiC, Ti (
A method of obtaining a unidirectional silicon steel sheet with a low core loss value by forming an ultra-thin tensile film consisting of C, N) and further covering with an insulating film is disclosed.

(発明が解決しようとする課B) 一方向性珪素鋼板の地鉄表面を鏡面仕上げし、CVD、
PVD或はイオンブレーティングといった手段によって
皮膜を形成することが近来多く提案されている。これら
の方法は、それなりの効果が認められるけれども、10
−’Torr以下の真空を必要とし厚い膜を形成するた
めに長い時間がかかるから生産性が極めて低くまた高い
コストを要する。
(Problem B to be solved by the invention) The base surface of the unidirectional silicon steel plate is mirror-finished, CVD,
Recently, many proposals have been made to form a film by means such as PVD or ion blating. Although these methods are recognized to be effective to some extent, 10
It requires a vacuum of -'Torr or less and takes a long time to form a thick film, resulting in extremely low productivity and high cost.

本発明は、これら従来技術における問題を解決し、極め
て鉄損値の低い一方向性珪素鋼板を低いコストで工業的
に生産することができる製造プロセスを提供することを
目的としてなされた。
The present invention has been made with the object of solving these problems in the prior art and providing a manufacturing process that can industrially produce unidirectional silicon steel sheets with extremely low iron loss values at low cost.

(課題を解決するための手段) 本発明の要旨とするところは下記のとおりである。(Means for solving problems) The gist of the present invention is as follows.

(1)仕上焼鈍後の一方向性珪素鋼板の地鉄表面に金属
メッキを施した後、低圧プラズマ溶射にて酸化物皮膜を
形成せしめることを特徴とする低鉄損一方向性珪素鋼板
の製造方法。
(1) Production of a low iron loss unidirectional silicon steel sheet, which is characterized by applying metal plating to the base surface of the unidirectional silicon steel sheet after final annealing, and then forming an oxide film by low-pressure plasma spraying. Method.

(2)仕上焼鈍後の一方向性珪素鋼板の地鉄表面に金属
メッキを施した後、低圧プラズマ溶射にて酸化物皮膜を
形成せしめ、さらに張力付与皮膜を塗布焼付けることを
特徴とする低鉄損一方向性珪素鋼板の製造方法。
(2) After applying metal plating to the base surface of the unidirectional silicon steel sheet after finish annealing, an oxide film is formed by low-pressure plasma spraying, and a tension-imparting film is further applied and baked. A method for producing a silicon steel plate with unidirectional iron loss.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

発明者等は、上記従来技術における問題を解決するため
に、低圧プラズマ溶射法によって一方向性珪素鋼板表面
に酸化物皮膜を形成することを考えた。従来の低圧プラ
ズマ溶射では、噴射酸化物の粒径が50〜100−と大
きいため、形成される酸化物皮膜も10〇−以上の極め
て厚いものとなってしまう。発明者等は、酸化物の粒径
を15μm以下にするとともに、基板の温度を400°
C以上とすることによって短時間で極めて密着性の優れ
た厚さ15頗以下の皮膜を形成せしめ得ることを見出し
た。
In order to solve the problems in the prior art described above, the inventors considered forming an oxide film on the surface of a unidirectional silicon steel plate using a low-pressure plasma spraying method. In conventional low-pressure plasma spraying, the particle size of the sprayed oxide is as large as 50 to 100 mm, resulting in an extremely thick oxide film of 100 mm or more. The inventors reduced the particle size of the oxide to 15 μm or less and raised the temperature of the substrate to 400°.
It has been found that by setting the temperature to C or higher, a film with a thickness of 15 mm or less with extremely excellent adhesion can be formed in a short time.

このようにして形成された皮膜は張力が1〜3kg/−
とフォルステライト皮膜にくらべ著しく大きい。しかし
ながら、直接下地面に溶射を行うと溶射粒子の衝突によ
り下地面が粗らされるため磁区がピンニングされ磁気特
性が悪くなる。そこで種々の検討を行った結果、下地面
に好ましくは厚さlItm以上の金属メッキを施したの
ちに溶射を行えば磁気特性を損なうことなく低圧プラズ
マ溶射皮膜が付与できるという新知見を得た。
The film thus formed has a tension of 1 to 3 kg/-
This is significantly larger than that of the forsterite film. However, if thermal spraying is performed directly on the underlying surface, the underlying surface will be roughened due to the collision of the sprayed particles, causing pinning of the magnetic domains and deterioration of the magnetic properties. As a result of various studies, we have found that a low-pressure plasma sprayed coating can be applied without impairing magnetic properties by applying metal plating to the underlying surface, preferably to a thickness of lItm or more, and then thermal spraying.

上記した低圧プラズマ溶射による酸化物皮膜形成手段は
(仕上焼鈍後の材料表面のグラス皮膜を除去して地鉄表
面に金属メッキを施した後、その表面に酸化物皮膜を形
成せしめるべく適用することができる。また、この手段
は、一方向性珪素鋼板をストリップを走行させる状態下
に二次再結晶させるプロセスにも適用できる。さらに、
特公昭63−44804号公報、特公昭63−6611
号公報に開示されている如く、一方向性珪素鋼板を鉄芯
へ加工した後歪取り焼鈍を施しても磁区細分化効果が消
失しない磁区制御技術と組合せて使用することができる
ことは勿論である。
The method of forming an oxide film by low-pressure plasma spraying described above is applied to form an oxide film on the surface after removing the glass film on the surface of the material after final annealing and applying metal plating to the surface of the base steel. This method can also be applied to the process of secondary recrystallization of a unidirectional silicon steel sheet under the condition of running a strip.Furthermore,
Special Publication No. 63-44804, Special Publication No. 63-6611
Of course, as disclosed in the above publication, it can be used in combination with magnetic domain control technology in which the magnetic domain refining effect does not disappear even if a unidirectional silicon steel plate is processed into an iron core and then subjected to strain relief annealing. .

以下に、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

4svt%以下のSiを含有する鋼スラブを加熱し、熱
間圧延して熱延板とし、必要に応じてこの段階で焼鈍を
施し次いで1回或は中間焼鈍を介挿する2回の冷間圧延
を施して最終板厚とした後、脱炭焼鈍し焼鈍分離剤を塗
布してストリップコイルとし、次いで高温長時間の仕上
焼鈍を施しく110)<001>方位の二次再結晶粒を
発達させた鋼板のフォルステライト皮膜を、化学的或は
機械的に除去するかまたは、前記焼鈍分離剤をアルミナ
等フォルステライト皮膜を形成しないものにして仕上焼
鈍後の鋼板表面の地鉄を露出させた後、金属メッキを行
い、低圧プラズマ溶射装置中で酸化物皮膜を形成する。
A steel slab containing 4 svt% or less of Si is heated and hot-rolled to form a hot-rolled plate, and if necessary, annealed at this stage and then cold-rolled once or twice with intermediate annealing interposed. After rolling to the final thickness, decarburization annealing and application of an annealing separator to form a strip coil, followed by finishing annealing at high temperature and long time to develop secondary recrystallized grains with 110) <001> orientation. The forsterite film of the steel plate that has been annealed is removed chemically or mechanically, or the annealing separator is used with a material that does not form a forsterite film, such as alumina, to expose the base iron on the surface of the steel plate after finish annealing. After that, metal plating is performed and an oxide film is formed in a low-pressure plasma spraying device.

金属メッキを施す意味は、プラズマ溶射の粒子衝突によ
る下地面のダメージを防止するためである。金属メッキ
は、そのメッキ金属、メッキ方法において特に限定され
ることはないが、Zn+ Sn、 Cu+ Ni等の金
属メッキを行うのが最も実用的である。通常のプラズマ
溶射条件では1%前後の下地の凹凸が生じ、交流磁場中
での磁区の動きをピンニングするので鉄損が損なわれる
。これを防止するために好ましくは厚さ1%以上のメッ
キを施した後に低圧プラズマ溶射するのが効果的である
。下地面を金属メッキで保護して低圧プラズマ溶射皮膜
で下地に大きな張力を付与して極めて磁性の良い製品を
得るのが本発明の目的である。
The purpose of applying metal plating is to prevent damage to the underlying surface due to particle collision during plasma spraying. The metal plating is not particularly limited in terms of the plating metal or the plating method, but it is most practical to perform metal plating such as Zn+Sn and Cu+Ni. Under normal plasma spraying conditions, irregularities of about 1% occur in the base, which pinning the movement of magnetic domains in an alternating magnetic field, impairing iron loss. To prevent this, it is effective to perform low-pressure plasma spraying after plating to a thickness of preferably 1% or more. It is an object of the present invention to obtain a product with extremely good magnetic properties by protecting the underlying surface with metal plating and applying a large tension to the underlying surface with a low-pressure plasma spray coating.

以下に、本発明の実施に際して用いた低圧プラズマ溶射
条件の一例を示す。
Below, an example of the low pressure plasma spraying conditions used in carrying out the present invention is shown.

作動ガス   :Ar十Hz 入力     :90kK 溶射雰囲気圧カニ 52Torr 溶射距lll   :500閣 粉末送給速度 : 46 g 7’win尚、本発明は
上記溶射条件に限定されるものではない。
Working gas: Ar 1Hz Input: 90kK Thermal spraying atmospheric pressure 52Torr Thermal spraying distance: 500mm Powder feed rate: 46g 7'win Note that the present invention is not limited to the above thermal spraying conditions.

第1図は、噴射粉末にアルミナを用いた時のアルミナ平
均粒径と溶射厚みの関係を示したものである。この図か
られかるように、噴射酸化物(溶射物粉末)の粒径を小
さくするほど同一溶射時間で薄い皮膜を形成できる。
FIG. 1 shows the relationship between the average particle diameter of alumina and the spray thickness when alumina is used as the spray powder. As can be seen from this figure, the smaller the particle size of the sprayed oxide (spray powder), the thinner the coating can be formed in the same spraying time.

次に、溶射時の珪素鋼板(基板)の温度と溶射後の溶射
皮膜の密着性について調べた結果を、第2図に示す。第
2図から明らかな如く、基板の温度を室温から漸次上昇
させて行くに従い、溶射皮膜の密着性が向上する。これ
は、溶射時に基板の温度を高くしておくことによって、
溶融した溶射材料液滴と基板との濡れ性が改善されると
ともに拡散が起こることの双方の効果によるものと考え
られる。
Next, FIG. 2 shows the results of investigating the temperature of the silicon steel plate (substrate) during thermal spraying and the adhesion of the thermal sprayed coating after thermal spraying. As is clear from FIG. 2, as the temperature of the substrate is gradually raised from room temperature, the adhesion of the sprayed coating improves. This is achieved by keeping the substrate temperature high during thermal spraying.
This is thought to be due to both the effects of improved wettability between the molten thermal spray material droplets and the substrate and diffusion.

溶射皮膜の密着性は、溶射後の珪素鋼板を20閣φの丸
棒に巻き付けたときの溶射皮膜の剥離率で評価した。第
2図から明らかな如く、基板の温度を400°C以上に
すると、溶射皮膜の密着性が良好となる(剥離率が低下
する)。400°C以上の基板温度で、通常のフォルス
テライト皮膜の密着性と同等の密着性を示している。
The adhesion of the thermal sprayed coating was evaluated by the peeling rate of the thermal sprayed coating when the silicon steel plate after thermal spraying was wound around a round bar with a diameter of 20 mm. As is clear from FIG. 2, when the temperature of the substrate is 400° C. or higher, the adhesion of the sprayed coating becomes better (the peeling rate decreases). At substrate temperatures of 400°C or higher, it exhibits adhesion comparable to that of ordinary forsterite films.

溶射に用いる粉体は、アルミナ、シリカ、ジルコニア、
マグネシア、チタニア等の単体の酸化物或はそれらの混
合物、さらにムライト、スピネル。
Powders used for thermal spraying include alumina, silica, zirconia,
Single oxides such as magnesia and titania, or mixtures thereof, as well as mullite and spinel.

クロムシリケート、モリブデンシリケート等の複合酸化
物の何れでも良いが、製品の鉄構向上を考&る場合は、
下地の珪素鋼板(地鉄)との間で熱膨張係数の差の大き
な酸化物を用いた方が下地に大きな張力が付与され鉄損
が向上する。酸化物皮膜の形成後、−旦下地を800℃
程度に加熱して下地と酸化物皮膜の歪の緩和を行った方
が鉄損が向上する。酸化物皮膜の形成後、鋼板に張力皮
膜を塗布し焼き付ける場合は、焼き付けがs o o 
”c以上の温度域でなされるから、下地と酸化物皮膜の
歪の緩和が併せて行われる。製品を巻き鉄芯等に加工し
た後800°C以上の温度域で歪取り焼鈍を行う場合に
も、下地と酸化物皮膜の歪の緩和が併せて行われる。
Any composite oxide such as chromium silicate or molybdenum silicate may be used, but when considering improving the steel structure of the product,
Using an oxide with a large difference in thermal expansion coefficient from the underlying silicon steel plate (substrate) provides greater tension to the underlying material and improves iron loss. After forming the oxide film, heat the substrate to 800℃
Iron loss is improved by heating to a certain degree to relax the strain on the base and oxide film. After the oxide film is formed, if a tension film is applied to the steel plate and baked, the baking is so
Since it is done in a temperature range of 800°C or higher, the strain on the base and oxide film is relaxed.When the product is processed into a rolled iron core, etc., and then subjected to strain relief annealing in a temperature range of 800°C or higher. Also, the strain on the base and oxide film is relaxed.

(実施例) 実施例I Si:3.2%を含む板厚0.3 mmの、仕上焼鈍後
の高磁束密度一方向性珪素鋼板を硫酸と弗酸の混合液中
に浸漬してフォルステライト皮膜を除去した後、2pの
Cuメンキを行い、この鋼板を低圧プラズマ溶射装置に
導入し基板温度を500°Cとして平均粒径12−アン
ダーのアルミナを溶射してlOn厚さの酸化物皮膜を形
成した。然る後、水素雰囲気下、800°Cに加熱して
歪の緩和を行った。こうして得られた製品の鉄損値を第
1表に示す。
(Example) Example I A high magnetic flux density unidirectional silicon steel plate containing 3.2% Si and having a thickness of 0.3 mm after final annealing was immersed in a mixed solution of sulfuric acid and hydrofluoric acid to form forsterite. After removing the film, a 2p Cu coating was applied, and the steel plate was introduced into a low-pressure plasma spraying device, and alumina with an average grain size of 12-under was sprayed at a substrate temperature of 500°C to form an oxide film with a thickness of 1On. Formed. Thereafter, the strain was relaxed by heating to 800°C in a hydrogen atmosphere. Table 1 shows the iron loss values of the products thus obtained.

第1表 このように、本発明法は従来法に比し鉄損値が格段に向
上している。
Table 1 As shown, the method of the present invention has a significantly improved iron loss value compared to the conventional method.

(実施例2) Si : 3.2%を含む板厚0.3 mm (7)、
仕上焼鈍後の高磁束密度一方向性珪素網板のフォルステ
ライト皮膜を砥石によって機械的に除去した後、厚さ2
nのNiメッキを施した後、この鋼板を低圧プラズマ装
置に導入し基板温度を600 ”Cとして平均粒径10
−アンダーのモリブデンシリケートの粉末を溶射して1
0頗厚さの酸化物皮膜を形成した。
(Example 2) Si: 0.3 mm plate thickness containing 3.2% (7),
After mechanically removing the forsterite film on the high magnetic flux density unidirectional silicon mesh plate after final annealing using a grindstone,
After applying Ni plating of n, this steel plate was introduced into a low pressure plasma device, and the average grain size was set to 600"C and an average grain size of 10".
- Under thermal spraying of molybdenum silicate powder 1
An oxide film of zero thickness was formed.

然る後、燐酸系張力皮膜溶液を塗布し、850″c×6
0秒間の焼き付は処理を行った。こうして得られた製品
の磁気特性を、第2表に示す。
After that, apply a phosphoric acid-based tension coating solution and
Burning for 0 seconds was processed. The magnetic properties of the product thus obtained are shown in Table 2.

第2表 本発明の低圧プラズマによる綱板表面における酸化物皮
膜形成後、張力付与皮膜形成処理を施すと、さらに鉄損
が向上(鉄損値が低下)していることがわかる。
Table 2 It can be seen that the iron loss further improves (the iron loss value decreases) when the tension imparting film formation treatment is performed after the oxide film is formed on the steel plate surface by the low-pressure plasma of the present invention.

(発明の効果) 本発明は、仕上焼鈍後の珪素鋼板のフォルステライト皮
膜を除去した後、金属メッキを施し、低圧プラズマ溶射
法により酸化物粉末を溶射して酸化物皮膜を形成するこ
とによって、製品の鉄損を低くするものであり、本発明
によるときは、従来の皮膜形成技術による場合に比し、
安価でかつ高い生産性下に大きく鉄損を低下せしめ得、
その工業的効果は甚大である。
(Effects of the Invention) The present invention removes the forsterite film of a silicon steel plate after final annealing, then metal plating it, and then spraying oxide powder using a low-pressure plasma spraying method to form an oxide film. This reduces the iron loss of the product, and when using the present invention, compared to when using conventional film forming technology,
It can significantly reduce iron loss at low cost and with high productivity.
Its industrial effects are enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、溶射すべき酸化物粉末の粒径と形成される酸
化物皮膜の厚さの関係を示す図、第2図は、溶射時の基
板の温度と溶射後の溶射皮膜の密着性の関係を示す図で
ある。
Figure 1 shows the relationship between the particle size of the oxide powder to be sprayed and the thickness of the oxide film formed, and Figure 2 shows the relationship between the temperature of the substrate during spraying and the adhesion of the sprayed film after spraying. FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)仕上焼鈍後の一方向性珪素鋼板の地鉄表面に金属
メッキを施した後、低圧プラズマ溶射にて酸化物皮膜を
形成せしめることを特徴とする低鉄損一方向性珪素鋼板
の製造方法。
(1) Production of a low iron loss unidirectional silicon steel sheet, which is characterized by applying metal plating to the base surface of the unidirectional silicon steel sheet after final annealing, and then forming an oxide film by low-pressure plasma spraying. Method.
(2)仕上焼鈍後の一方向性珪素鋼板の地鉄表面に金属
メッキを施した後、低圧プラズマ溶射にて酸化物皮膜を
形成せしめ、さらに張力付与皮膜を塗布焼付けることを
特徴とする低鉄損一方向性珪素鋼板の製造方法。
(2) After applying metal plating to the base surface of the unidirectional silicon steel sheet after finish annealing, an oxide film is formed by low-pressure plasma spraying, and a tension-imparting film is further applied and baked. A method for producing a silicon steel plate with unidirectional iron loss.
JP2096883A 1990-04-12 1990-04-12 Production of grain-oriented silicon steel sheet having small iron loss Pending JPH03294466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2096883A JPH03294466A (en) 1990-04-12 1990-04-12 Production of grain-oriented silicon steel sheet having small iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2096883A JPH03294466A (en) 1990-04-12 1990-04-12 Production of grain-oriented silicon steel sheet having small iron loss

Publications (1)

Publication Number Publication Date
JPH03294466A true JPH03294466A (en) 1991-12-25

Family

ID=14176804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2096883A Pending JPH03294466A (en) 1990-04-12 1990-04-12 Production of grain-oriented silicon steel sheet having small iron loss

Country Status (1)

Country Link
JP (1) JPH03294466A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168436A (en) * 2017-03-30 2018-11-01 新日鐵住金株式会社 Oriented electric magnetic steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018168436A (en) * 2017-03-30 2018-11-01 新日鐵住金株式会社 Oriented electric magnetic steel sheet

Similar Documents

Publication Publication Date Title
US4909864A (en) Method of producing extra-low iron loss grain oriented silicon steel sheets
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPS60131976A (en) Manufacture of grain-oriented silicon steel sheet having superior iron loss characteristic
JP2018154881A (en) Production method of grain-oriented electromagnetic steel sheet
JPH02243754A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPS621821A (en) Production of ultra-low iron loss grain oriented silicon steel sheet free from deterioration in characteristic even after stress relief annealing
JPH03294466A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH05287546A (en) Formation of insulating coating film of unidirectional silicon steel sheet
JPH03294467A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH03294468A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH03294469A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH03294465A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH0347957A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JPH03294470A (en) Production of grain-oriented silicon steel sheet having small iron loss
JPH1112755A (en) Super-low core loss grain-oriented silicon steel sheet
JP2627083B2 (en) Method for producing low iron loss unidirectional silicon steel sheet
JPH11158645A (en) Production of grain-oriented silicon steel sheet low in strain sensitivity and excellent in magnetic property and grain-oriented silicon steel sheet
JPH10317121A (en) Manufacture of hot dip galvanized steel sheet for undercoat painting
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH04259329A (en) Production of grain-oriented silicon steel sheet excellent in blankability
JPS62290844A (en) Grain-oriented silicon steel sheet having very small iron loss
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JPS61246321A (en) Manufacture of grain-oriented silicon steel sheet with extremely small iron loss
JPS6223984A (en) Very thin tensile film for improving compressive stress characteristic of magnetostriction of grain-oriented silicon steel sheet