JPH03293961A - Superconducting rotor - Google Patents

Superconducting rotor

Info

Publication number
JPH03293961A
JPH03293961A JP2090216A JP9021690A JPH03293961A JP H03293961 A JPH03293961 A JP H03293961A JP 2090216 A JP2090216 A JP 2090216A JP 9021690 A JP9021690 A JP 9021690A JP H03293961 A JPH03293961 A JP H03293961A
Authority
JP
Japan
Prior art keywords
field winding
superconducting
magnetic flux
flux density
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090216A
Other languages
Japanese (ja)
Inventor
Koichi Inoue
浩一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2090216A priority Critical patent/JPH03293961A/en
Publication of JPH03293961A publication Critical patent/JPH03293961A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To enable the increase of field currents so as to get a strong magnetic field by setting the number of parallel circuits at least at the part to become high magnetic flux density of a superconducting field winding to two or more so as to decrease current density. CONSTITUTION:The field winding 1 of the superconducting rotor of four poles is fixed firmly to the field winding attaching axis 2 consisting of a highly strong nonmagnetic steel. The coil #1 of the field winding 1 is made by the constitution of 4 rowsX10 stages of superconductors 1a. A parallel circuit is made in the inside diameter part (hatching part) of the coil #1 to become high magnetic flux density. For example, if the number of parallel circuits in the hatching part is set to two, the number of windings in this part becomes seven turns, and the number or windings in the left one parallel circuit becomes twenty six turns. This way, the number of parallel circuits in the part to become high magnetic flux density becomes two, so the current density in this part is reduced by half. The efficiency in use as the whole of field winding improves.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は超電導回転電機における超電導界磁巻線を有す
る超電導回転子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting rotor having a superconducting field winding in a superconducting rotating electric machine.

(従来の技術) 超電導回転子はモータや発電機等の回転電機用の界磁と
して開発されており、回転電機の効率向上、小形軽量化
等が可能になると考えられている。その特徴は界磁巻線
が極低温で電気抵抗零となり、そのため損失無しに大電
流を流すことができ、強力な磁界が得られることである
(Prior Art) Superconducting rotors have been developed as field magnets for rotating electric machines such as motors and generators, and are thought to make it possible to improve the efficiency of rotating electric machines and make them smaller and lighter. Its feature is that the field winding has zero electrical resistance at extremely low temperatures, allowing a large current to flow without loss and producing a strong magnetic field.

このような超電導回転子において問題となるのは超電導
界磁巻線が超電導状態から常電導状態に転移する、いわ
ゆるクエンチが発生することである。このクエンチが発
生すると界磁巻線にジュール熱が発生し、超電導回転子
内の冷媒圧力が上昇し、最悪の場合には超電導回転子の
破壊事故にもつながりかねない9従って、超電導回転子
の設計に当たっては、クエンチを起こさず、万が一クエ
ンチを起こしても適切な保護機構により超電導状態に復
帰したり安全な状態に移行する様な配慮がなされている
A problem with such a superconducting rotor is that a so-called quench occurs in which the superconducting field winding transitions from a superconducting state to a normal conducting state. When this quench occurs, Joule heat is generated in the field windings, and the refrigerant pressure in the superconducting rotor increases, which in the worst case can lead to the destruction of the superconducting rotor9. In the design, consideration has been given to ensuring that quenching does not occur, and even if quenching occurs, appropriate protection mechanisms are used to restore the superconducting state or transition to a safe state.

このようなりエンチの発生原因としては、超電導材料に
おいて、温度が高い、電流導度が高い、磁束導度が高い
、という要因があげられる。従って超電導回転子の設計
においては、前記の要因に対し充分な裕度を持った設計
がなされている。
The causes of such quenching include high temperature, high current conductivity, and high magnetic flux conductivity in the superconducting material. Therefore, when designing a superconducting rotor, a design with sufficient margin for the above-mentioned factors is made.

つぎに従来の超電導回転子の超電導界磁巻線について図
面を参照して説明する。第3図は従来の4極の超電導回
転子の概略的な横断面を示す図である。第3図において
、超電導体からなる界磁巻線1は高強度非磁性鋼からな
る界磁巻線取付軸2に強固に固定され、冷媒である液体
ヘリウム3は。
Next, a conventional superconducting field winding of a superconducting rotor will be explained with reference to the drawings. FIG. 3 is a diagram showing a schematic cross section of a conventional four-pole superconducting rotor. In FIG. 3, a field winding 1 made of a superconductor is firmly fixed to a field winding mounting shaft 2 made of high-strength non-magnetic steel, and a liquid helium 3 as a coolant is used.

界磁巻線の内外周部及び界磁巻線部に設けられた冷却通
路等を循環し巻線を冷却する。また、液体ヘリウム容器
4の外周には、真空断熱層5、輻射熱シールド6及び真
空容器を構成する常温ダンパ7が設置されている。そし
て、界磁巻線取付軸2の各スロット内に収められた界磁
巻線1は、通常1本(撚線により構成される場合もある
)の超電導導体により並列回路を設けず巻回され構成さ
れている。第2図は、従来の1スロット分の界磁巻線を
示した図で、図においては超電導導体1aは4列XIO
段の構成で、直列に並列回路を構成せず40ターンの巻
回数となっている。
The winding is cooled by circulating through cooling passages provided in the inner and outer circumferential portions of the field winding and the field winding portion. Further, on the outer periphery of the liquid helium container 4, a vacuum heat insulating layer 5, a radiant heat shield 6, and a normal temperature damper 7 constituting the vacuum container are installed. The field winding 1 housed in each slot of the field winding mounting shaft 2 is usually wound by one superconducting conductor (which may be composed of stranded wires) without providing a parallel circuit. It is configured. Figure 2 is a diagram showing a conventional field winding for one slot.
It has a stage configuration and has a winding number of 40 turns without configuring a parallel circuit in series.

さらに、第3図に丸印で示した磁極中心に最も近い#1
コイルの内径部は、同図内で最も磁束密度が高くなる高
磁束密度部Aとなることが実験及び解析より明らかにな
っている。(丸印で示していない同様の高磁束密度部は
他に7箇所ある)(発明が解決しようとする課題) 以上説明したような従来の超電導回転子では。
Furthermore, #1, which is closest to the center of the magnetic pole indicated by the circle in Figure 3,
Experiments and analyzes have revealed that the inner diameter portion of the coil is a high magnetic flux density portion A in which the magnetic flux density is highest in the figure. (There are seven other similar high magnetic flux density parts that are not indicated by circles.) (Problems to be Solved by the Invention) In the conventional superconducting rotor as described above.

クエンチを発生しない安定した界磁巻線を得るために、
界磁巻線の高磁束密度部における超電導導体がクエンチ
しない最大電流密度を基準として界磁電流を決めている
。しかし、これでは磁束密度の低い部分の超電導導体の
電流密度に過大な裕度を持たせることになり、超電導導
体の能力を有効に利用できない。
In order to obtain a stable field winding that does not generate quench,
The field current is determined based on the maximum current density at which the superconducting conductor in the high magnetic flux density part of the field winding does not quench. However, in this case, an excessive margin is given to the current density of the superconducting conductor in the portion where the magnetic flux density is low, and the ability of the superconducting conductor cannot be effectively utilized.

そこで、高磁束密度部となる超電導導体の材料を他の部
分より能力の高いものを使用することが行われているが
、材料の性質や構成が異なるものとなるため製造が難し
くコストも高いものとなる。
Therefore, the material of the superconducting conductor that forms the high magnetic flux density part is used with a higher capacity than the other parts, but since the properties and composition of the materials are different, manufacturing is difficult and expensive. becomes.

本発明は上記の課題を解決するためになされたものであ
り、超電導導体の能力を有効に利用し、製造性とコスト
を悪化させず、界磁電流を増大してより強力な磁場を得
ることが可能な超電導回転子を提供することを目的とす
る。
The present invention has been made to solve the above problems, and aims to effectively utilize the ability of superconducting conductors to increase field current and obtain a stronger magnetic field without deteriorating manufacturability and cost. The purpose is to provide a superconducting rotor that is capable of

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するため本発明は、超電導界磁巻線を有
する超電導回転子において、超電導界磁巻線の少なくと
も高磁束密度となる部分の並列回路数を2以上にした構
成とする。
(Means for Solving the Problem) In order to achieve the above object, the present invention provides a superconducting rotor having a superconducting field winding, in which the number of parallel circuits in at least a portion of the superconducting field winding having a high magnetic flux density is reduced to 2. The above configuration is used.

(作 用) 上記のような手段を講することにより、超電導界磁巻線
の高磁束密度となる部分の電流密度を減少させることが
でき、界磁電流を増大してより強力な磁場を得ることが
可能となり、超電導導体の能力を有効に利用することが
できる。
(Function) By taking the above measures, it is possible to reduce the current density in the part of the superconducting field winding where the magnetic flux density is high, and increase the field current to obtain a stronger magnetic field. This makes it possible to effectively utilize the capabilities of superconducting conductors.

(実施例) 以下本発明の実施例を図面を参照して説明する。第1図
は、本発明による超電導界磁巻線の高磁束密度となる部
分を含む#1コイルの断面を示した図で、第2図におけ
る一点鎖線Bの部分を示す断面図である。第1図におい
て、界磁巻線(#1コイル)1は、超電導導体1aの4
列×10段の構成により形成されているが、従来と異な
り高磁束密度となる部分すなわち磁極中心に最も近い#
1コイルの内径部(ハツチング部分)で並列回路を形成
している。図において、例えばハツチング部分を並列回
路数2とすれば、この部分の巻回数は7ターンとなり、
残りの並列回路数1の部分の巻回数は26ターンとなる
から合計巻回数は33ターンとなる。従って、従来の巻
回数40ターンより巻回数が減少することになるが、#
1コイル以外の界磁巻線では変更がないため、全コイル
での巻回数の減少の割合は小さい。そして、高磁束密度
となる部分での並列回路数は2となるため、この部分で
の電流密度は半減することになる。従って界磁電流を増
大させる上で問題となる高磁束密度となる部分での電流
密度の制限が大幅に緩和されることになり、巻回数の減
少を上回って界磁電流を増加させることが可能となる。
(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a cross section of the #1 coil including a portion having a high magnetic flux density of a superconducting field winding according to the present invention, and is a cross-sectional view showing a portion indicated by a dashed line B in FIG. 2. In Fig. 1, the field winding (#1 coil) 1 is the 4th coil of the superconducting conductor 1a.
It is formed with a structure of rows x 10 stages, but unlike the conventional one, the part with high magnetic flux density, that is, the part # closest to the center of the magnetic pole.
A parallel circuit is formed by the inner diameter part (hatched part) of one coil. In the figure, for example, if the number of parallel circuits in the hatched part is 2, the number of turns in this part is 7 turns,
The number of turns of the remaining part with the number of parallel circuits being 1 is 26 turns, so the total number of turns is 33 turns. Therefore, the number of turns will be reduced compared to the conventional number of turns of 40 turns, but #
Since there is no change in the field windings other than the first coil, the rate of decrease in the number of turns in all coils is small. Since the number of parallel circuits in the portion where the magnetic flux density is high is 2, the current density in this portion is halved. Therefore, restrictions on current density in areas with high magnetic flux density, which is a problem when increasing field current, are significantly relaxed, making it possible to increase field current more than decreasing the number of turns. becomes.

また、高磁束密度となる部分以外での電流密度の過大な
余裕を適切なものに改善でき、界磁巻線全体としての利
用効率を向上させることになる。特に、高磁束密度とな
る部分の割合が小さく、巻回数の減少が少ない2極の回
転子の場合には、より効果が大きい。
Further, the excessive margin of current density in areas other than the portions where the magnetic flux density is high can be improved to an appropriate one, and the efficiency of use of the field winding as a whole is improved. In particular, the effect is greater in the case of a two-pole rotor in which the proportion of the portion with high magnetic flux density is small and the number of turns is less reduced.

また、並列回路の構成方法は、従来のように連続して超
電導導体を巻回しながら、並列回路を必要とする部分で
上下または左右に隣接するターン間のターン間絶縁の除
去と電気的接続および導体の切断により構成でき、生産
性、コスト面の大幅な悪化にならない。
In addition, the method for constructing a parallel circuit is to continue winding the superconducting conductor as in the conventional method, and to remove the inter-turn insulation between vertically or horizontally adjacent turns where a parallel circuit is required, and to establish electrical connections. It can be constructed by cutting the conductor, and there is no significant deterioration in productivity or cost.

他の実施例としては、tt1コイル以外の比較的磁束密
度の高い部分も並列回路数2以上としたものや、#1コ
イル全てを並列回路数2以上としたものがある。
As other embodiments, there is one in which the number of parallel circuits is 2 or more in the portions with relatively high magnetic flux density other than the tt1 coil, and in which the number of parallel circuits in all #1 coils is 2 or more.

尚、本発明は以上の実施例に限定されるものではなく、
その要旨を変更しない範囲で種々変形して実施できるこ
とは勿論である。
It should be noted that the present invention is not limited to the above embodiments,
It goes without saying that various modifications can be made without changing the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明によれば、超電導界磁巻線の高
磁束密度となる部分の電流密度を減少させることができ
、界磁電流を増大してより強力な磁場を得ることが可能
となり、超電導導体の能力を有効に利用できる超電導回
転子を得ることができる。
As explained above, according to the present invention, it is possible to reduce the current density in the portion of the superconducting field winding where the magnetic flux density is high, and it is possible to increase the field current and obtain a stronger magnetic field. , it is possible to obtain a superconducting rotor that can effectively utilize the capabilities of superconducting conductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明による超電導回転子の一実施例を示す
超電導界磁巻線の断面構成図、第2図は従来の1スロッ
ト分の界磁巻線を示す断面構成図、第3図は従来の4極
の超電導回転子の概略を示す横断面図である。 l・・・界磁巻線 1a・・・超電導導体 2・・・界磁巻線取付軸 3・・・液体ヘリウム 4・・・液体ヘリウム容器 5・・・真空断熱層 6・・・輻射熱シールド 7・・・常温ダンパ
FIG. 1 is a cross-sectional configuration diagram of a superconducting field winding showing an embodiment of a superconducting rotor according to the present invention, FIG. 2 is a cross-sectional configuration diagram showing a conventional field winding for one slot, and FIG. 1 is a cross-sectional view schematically showing a conventional four-pole superconducting rotor. l...Field winding 1a...Superconducting conductor 2...Field winding mounting shaft 3...Liquid helium 4...Liquid helium container 5...Vacuum insulation layer 6...Radiation heat shield 7...Normal temperature damper

Claims (1)

【特許請求の範囲】[Claims] 超電導界磁巻線を有する超電導回転子において、前記超
電導界磁巻線の少なくとも高磁束密度となる部分の並列
回路数を2以上としたことを特徴とする超電導回転子。
A superconducting rotor having a superconducting field winding, characterized in that the number of parallel circuits in at least a portion of the superconducting field winding having a high magnetic flux density is two or more.
JP2090216A 1990-04-06 1990-04-06 Superconducting rotor Pending JPH03293961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090216A JPH03293961A (en) 1990-04-06 1990-04-06 Superconducting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090216A JPH03293961A (en) 1990-04-06 1990-04-06 Superconducting rotor

Publications (1)

Publication Number Publication Date
JPH03293961A true JPH03293961A (en) 1991-12-25

Family

ID=13992294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090216A Pending JPH03293961A (en) 1990-04-06 1990-04-06 Superconducting rotor

Country Status (1)

Country Link
JP (1) JPH03293961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259191A (en) * 2009-04-23 2010-11-11 Sumitomo Electric Ind Ltd Superconducting coil, super-conductive apparatus, rotor, and stator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259191A (en) * 2009-04-23 2010-11-11 Sumitomo Electric Ind Ltd Superconducting coil, super-conductive apparatus, rotor, and stator

Similar Documents

Publication Publication Date Title
JP4308308B2 (en) Superconducting electric motor
US4709180A (en) Toothless stator construction for electrical machines
EP0920107B1 (en) Winding arrangement for switched reluctance machine based internal starter generator
WO2001089060A1 (en) Hybrid superconducting motor/generator
US4126798A (en) Superconductive winding
US6891308B2 (en) Extended core for motor/generator
EP1593194B1 (en) A rotor assembly
US4217511A (en) Stator core cooling for dynamoelectric machines
US4577126A (en) Synchronous electric machine with superconductive field windings
KR100888030B1 (en) Superconducting synchronous machine
US3335308A (en) Dynamoelectric machine having means for reducing torque and inrush current
US4583014A (en) Dynamoelectric machine with a rotor having a superconducting field winding and damper winding
US2812459A (en) Electric motor winding arrangement
JP4158013B2 (en) Permanent magnet synchronous motor armature and permanent magnet synchronous motor using the same
JPH03293961A (en) Superconducting rotor
US7291958B2 (en) Rotating back iron for synchronous motors/generators
CA2403666A1 (en) Superconductive armature winding for an electrical machine
US20060044100A1 (en) Windings for electrical machines
KR20100044393A (en) Superconducting motor having cooling device for armature coil
JP2001307917A (en) Method for connecting superconducting wire
JP2000253645A (en) Rotor for superconducting rotating machine
Wan et al. Research on interturn short-circuit characteristic of the high-speed permanent-magnet machine with gramme-ring windings
JP3217531B2 (en) Superconducting rotor
JPH053228B2 (en)
JPS59198868A (en) Rotor of superconductive rotary electric machine