JPS59198868A - Rotor of superconductive rotary electric machine - Google Patents
Rotor of superconductive rotary electric machineInfo
- Publication number
- JPS59198868A JPS59198868A JP58069995A JP6999583A JPS59198868A JP S59198868 A JPS59198868 A JP S59198868A JP 58069995 A JP58069995 A JP 58069995A JP 6999583 A JP6999583 A JP 6999583A JP S59198868 A JPS59198868 A JP S59198868A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- conductor
- sectional area
- rotor
- field winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K55/00—Dynamo-electric machines having windings operating at cryogenic temperatures
- H02K55/02—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
- H02K55/04—Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は回転子の超電導界磁巻線を改良した超電導回転
電機の回転子に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rotor for a superconducting rotating electric machine in which a superconducting field winding of the rotor is improved.
超電導回転電機の回転子では、その界磁巻線に超電導線
を用い、液体ヘリウム等で極低温に保持している。この
ようにすると界磁巻線の電気抵抗がなくなシ、損失なく
大電流を流すことが出来るので強力な磁界が得られるた
めである。従って損失の少ない高出力の回転電機となる
利点があるため、近年その研究開発が急速に進められて
いる。The rotor of a superconducting rotating electrical machine uses superconducting wire for its field winding, and is kept at an extremely low temperature with liquid helium or the like. This is because the electrical resistance of the field winding is eliminated and a large current can be passed without loss, resulting in a strong magnetic field. Therefore, since it has the advantage of being a high-output rotating electrical machine with little loss, research and development thereof has been rapidly progressing in recent years.
しかし、この超電導線には、超電導線に流れる電流があ
る値■。以上になった時、又は超電導線の温度がある値
T。以上になった時、又は超電導線に印加される磁界が
ある値H6以上になった時、いずれの場合でも超電導状
態が抵抗の存在する常電導の状態に戻ってしまう特性が
あシ、その時のそれぞれの値を臨界電流■。、臨界温度
Tc、臨界磁界Hcと言っている。However, this superconducting wire has a certain value ■ of current flowing through the superconducting wire. or when the temperature of the superconducting wire exceeds a certain value T. or when the magnetic field applied to the superconducting wire exceeds a certain value H6, the superconducting state returns to the normal conducting state where resistance exists in either case. ■ Critical current for each value. , critical temperature Tc, and critical magnetic field Hc.
この■。、Tc、HoKはそれぞれ密接な関係が有夛、
たとえばTcをパラメータとしである温度T、 、 T
、、 T。This ■. , Tc, and HoK each have a close relationship,
For example, with Tc as a parameter, the temperatures T, , T
,,T.
に対してTI < T2 < T3とした時のICとH
6の特性線図を示すと第1図の様になる。この第1図か
ら明らかな様に温度が一定の場合Hcが大きくなれば工
。IC and H when TI < T2 < T3 for
The characteristic diagram of No. 6 is shown in FIG. 1. As is clear from Fig. 1, if the temperature is constant, the larger Hc is, the lower the temperature will be.
が小さくなり、HCが小さくなればICが大きくなって
いる。この第1図では温度の曲線の左下側で超電導状態
が成立し、右上部では常電導状態である。If HC becomes smaller and HC becomes smaller, IC becomes larger. In FIG. 1, a superconducting state is established on the lower left side of the temperature curve, and a normal conducting state is established on the upper right side.
超電導線で複数個のコイルを作シ、これらのコイルを同
心状に配置して直列に接続し、超電導界磁巻線を形成し
た場合、超電導回転電機内の磁気回路はほとんどが透磁
率μ二1の空気部なので、超電導界磁巻線に流れる電流
が決まればそのコイルによって生じるある場所の磁界は
決まってしまい、その電流と磁界の大きさは正比例の関
係となる。When multiple coils are made from superconducting wire and these coils are arranged concentrically and connected in series to form a superconducting field winding, most of the magnetic circuits in the superconducting rotating electric machine have a magnetic permeability of μ2. 1, so if the current flowing through the superconducting field winding is determined, the magnetic field generated by that coil at a certain location is determined, and the magnitude of the current and magnetic field are directly proportional.
次に第2図に示すような各コイル断面が円周方向に連続
した界磁巻線(1)をシャフト部(2)の磁極部(3)
の両側に2組対向して配設した場合を考察する。Next, the field winding (1) in which each coil cross section is continuous in the circumferential direction as shown in Fig. 2 is attached to the magnetic pole part (3) of the shaft part (2).
Consider the case where two sets are arranged facing each other on both sides.
この場合、例えばコイル内径部を円周方向に見たライン
ABCDにおける半径方向の磁束密度成分3図から明ら
かな様に、磁束密度成分が最も大きな所は磁極部(3)
近傍のコイルということが判る。In this case, for example, as is clear from Figure 3, the magnetic flux density component in the radial direction on line ABCD when the inner diameter part of the coil is viewed in the circumferential direction, the location where the magnetic flux density component is largest is the magnetic pole part (3).
It turns out that it is a nearby coil.
この様な関係はコイル内径部ラインよシ半径がもう少し
大きくなった所でも同様なことが言える。This relationship holds true even where the radius is a little larger than the inner diameter line of the coil.
よってコイルの磁極部(3)近傍の点(今回の説明では
コイル内径側)をQとし、磁極部(3)近傍からある程
度能れた点をPとすると、このQ点、P点の磁束密度は
界磁コイルの電流によって決まシ、この電流と磁界の関
係を第1図上に記入すると、それぞれ直線面と[相]で
表わされる。この第1図から界磁巻線(1)内の各コづ
ルに定格電流■。が流れている場合、P点、Q点にはそ
れぞれHPとHQの磁界が生じていることが判る。そし
てもし温度がT、で一定の場合、電流を増加させるとP
点よシ先KQ点がIQの電流でT、の特性曲線で示され
る境界に達してそれ以上流せない事が判る。要するにP
点ではIPまで流せられるが、Q点ではIQまでしか流
せられないので、この点で制限を受ける事が判る。又、
電流が一定で温度が変化した場合、P点は13度まで超
電導状態であるが、Q点はもつと温度の低い12度まで
で超電導は破壊してしまう。Therefore, if the point near the magnetic pole part (3) of the coil (in this explanation, on the inner diameter side of the coil) is Q, and the point that can be reached to some extent from the vicinity of the magnetic pole part (3) is P, then the magnetic flux density at points Q and P is is determined by the current in the field coil, and when the relationship between this current and the magnetic field is plotted on FIG. 1, it is represented by a straight line and a phase, respectively. From this Figure 1, the rated current ■ for each coil in the field winding (1). When is flowing, it can be seen that magnetic fields HP and HQ are generated at point P and point Q, respectively. And if the temperature is constant at T, then increasing the current causes P
It can be seen that from point KQ to point KQ, the current of IQ reaches the boundary shown by the characteristic curve of T, and cannot flow any further. In short, P
At the point, it is possible to flow up to IP, but at point Q, it is only possible to flow up to IQ, so it can be seen that there are restrictions at this point. or,
If the current is constant and the temperature changes, the P point remains superconducting up to 13 degrees, but the Q point will break down at a low temperature of 12 degrees.
温度がT1で電流が工、で一定の場合に本上記と同様で
、常電導化が生じる臨界磁界HRに対してQ点の方が余
裕がはるかに少ない状態になっている。Similar to the case described above, when the temperature is T1 and the current is constant, the Q point has much less margin for the critical magnetic field HR that causes normal conductivity.
さらに超電導回転電機の回転子の超電導界磁巻線を設計
する場合には、超電導線が回転電機運転中に電機子巻線
短絡による外部変動磁界の影響を受けて常電導化への転
位が生じないように、運転時の磁界、電流、温度に余裕
を持たせて設計しなければいけない。この場合、前述し
た様に、電流と温度は界磁巻線全体でほぼ均一なので、
界磁巻線のどの場所でも同程度の余裕を有する設計とな
るが、磁界に関しては界磁巻線中の各コイルの占める場
所によって余裕が異り、磁極部(3)の近傍の部分即ち
Q点の磁束が最大であって、余裕が最小となっている。Furthermore, when designing the superconducting field winding of the rotor of a superconducting rotating electrical machine, it is important to note that during the operation of the rotating electrical machine, the superconducting wire may undergo a transition to normal conductivity due to the influence of an external fluctuating magnetic field due to a short circuit in the armature winding. In order to prevent this, the design must allow sufficient margin for the magnetic field, current, and temperature during operation. In this case, as mentioned above, the current and temperature are almost uniform throughout the field winding, so
The design has the same amount of margin everywhere in the field winding, but the margin for the magnetic field varies depending on the location occupied by each coil in the field winding. The magnetic flux at the point is maximum and the margin is minimum.
よって界磁巻線設計上は、この磁極部(3)近傍の最大
磁束に対して適当な比率の余裕を考慮して設計しなけれ
ばいけないことになる。Therefore, when designing the field winding, it is necessary to take into consideration a margin of an appropriate ratio to the maximum magnetic flux near the magnetic pole portion (3).
ところが、この磁極部近傍の最大磁束は、第3図に示し
た様に嫌んの一部のみであシ、他の界磁巻線の大部分の
所はもっと磁束レベルが少なくなっておシ、余裕が多く
ある状態になっている。However, as shown in Figure 3, the maximum magnetic flux near the magnetic pole is only in a small part of the field, and in most other parts of the field winding, the magnetic flux level is even lower. , there is a lot of leeway.
言いかえれば、従来の超電導回転電機の回転子の界磁巻
線は磁極部近傍のほんの一部に生じる高い磁束によって
設計レベルが制限され、界磁巻線の他のほとんどの部分
に対しては非常に余裕の大きい、効率の悪いものになら
ざるを得ながった。In other words, the design level of the rotor field winding of a conventional superconducting rotating electrical machine is limited by the high magnetic flux generated in a small portion near the magnetic poles, and the design level is limited for most other parts of the field winding. It had to become inefficient with a very large amount of leeway.
本発明は磁界に対する界磁巻線の設計の余裕を平均化し
て、全体的により安全なよシ効率的な超電導回転電機の
回転子を提供することを目的とする。An object of the present invention is to provide a rotor for a superconducting rotating electrical machine that is safer and more efficient overall by equalizing the design margins of field windings with respect to the magnetic field.
本発明においては、超電導界磁巻線を有する回転子にお
いて、界磁巻線の磁極部近傍に位置するコイルの各ター
ンの導体のうち、少なくとも内径側のターンの導体の断
面積を他の部分のターンおよび他のコイルのターンの導
体の断面積よりも大にすることによって、磁界の強い部
分のコイルのターンの導体の電流密度を小にし、磁界に
対する安全率を均一化し、界磁巻肪の効率を高めるもの
である。In the present invention, in a rotor having a superconducting field winding, among the conductors of each turn of the coil located near the magnetic pole part of the field winding, at least the cross-sectional area of the conductor of the turn on the inner diameter side is By making the cross-sectional area of the conductor of the turn of the coil larger than that of the turn of the other coils, the current density of the conductor of the turns of the coil in the part where the magnetic field is strong is made smaller, the safety factor against the magnetic field is made uniform, and the field winding is made larger. It increases the efficiency of
以下、本発明の一実施例について、第4図ないし第6図
を参照して説明する。第4図は本実施例の超電導界磁巻
線を有する回転子の中心部横断面図を示す。但し、第5
図は本実施例で重要な界磁巻線近傍の構造物のみを示し
である。回転子シャフト(2)の内径側には液体ヘリウ
ム(4)を溜めておく中心室(5)が有る。シャフト(
2)の外周には1対の磁極部(3) 、 (3)が有シ
、スロット部(6) 、 (6)を形成している。スロ
ット部(6)内には磁極部近傍に位置するコイル(1a
)と他の中央部のコイル(1b)とを同心状に巻装した
界磁巻線(1)が配置されている。各コイル(la)、
、(lb)間および磁極部(3)とそれに隣接するコイ
ル(la?との周方向における間咳は、軸方向に伸びた
断面楔状の絶縁物から成るスペーサ(7)が配置されて
いる。このコイル(1,a)、(lb)スペーサ(7)
の外周には、それらの遠心力およびコイル(la) 。An embodiment of the present invention will be described below with reference to FIGS. 4 to 6. FIG. 4 shows a cross-sectional view of the center of a rotor having superconducting field windings according to this embodiment. However, the fifth
The figure shows only the structures near the field winding that are important in this embodiment. On the inner diameter side of the rotor shaft (2) there is a central chamber (5) in which liquid helium (4) is stored. shaft(
A pair of magnetic pole parts (3) and (3) are formed on the outer periphery of the magnetic pole part 2), and slot parts (6) and (6) are formed. Inside the slot portion (6) is a coil (1a) located near the magnetic pole portion.
) and another central coil (1b) are arranged concentrically. Each coil (la),
, (lb) and between the magnetic pole part (3) and the adjacent coil (la?) in the circumferential direction, a spacer (7) made of an insulator with a wedge-shaped cross section extending in the axial direction is arranged. This coil (1, a), (lb) spacer (7)
At the outer periphery of are their centrifugal forces and coils (la).
(lb)の電磁力に対して固定する為のノ(インドリン
グ(8)が有る。There is an ind ring (8) for fixing against the electromagnetic force of (lb).
第5図にコイル(1a)又は(1b)の断面図を示す。FIG. 5 shows a sectional view of the coil (1a) or (1b).
コイル(la)、(lb)は超電導の素線(9)を導体
として何回も巻回して出来上っている。その巻き方は磁
極部近傍のコイル(1a)では2本の素線(9)を並列
にして1本の導体として巻回してあり、その他のコイル
(1b)では前記コイル(1a)の素稼(9)と同一断
面積の1本の素線(9)を1本の導体として巻回しであ
る。The coils (la) and (lb) are made by winding a superconducting wire (9) as a conductor many times. In the coil (1a) near the magnetic pole, two wires (9) are wound in parallel to form a single conductor, and in the other coils (1b), the wires (9) are wound in parallel to form a single conductor. One wire (9) having the same cross-sectional area as (9) is wound as one conductor.
そして各コイル(la)、(lb)は直列に接続して界
磁巻線(1)を形成する。素a(9)1本の導体と素線
(9)2本の導体との接続部は第6図に示すように挟み
込み式によって接続する。この場合1個のコイル(1a
)又は(1b)の断面は素線(9)数を偶数個としてお
くので、磁極部近傍のコイル(1a)は他のコイル(1
b)に対してターン数が半分になるだけで、断面積は同
一である。The coils (la) and (lb) are connected in series to form a field winding (1). The connection portion between one conductor of element a (9) and two conductors of element wire (9) is connected by a pinching method as shown in FIG. In this case, one coil (1a
) or (1b), the number of strands (9) is an even number, so the coil (1a) near the magnetic pole part is similar to the other coil (1a).
The number of turns is only half that of b), but the cross-sectional area is the same.
次に作用について説明する。Next, the effect will be explained.
第1図で示したものと同様に本実施例の界磁巻線(1)
における超電導線の磁界、電流の関係を示す直線と温度
が変化した時の特性線図を第7図に示す。The field winding (1) of this embodiment is similar to that shown in FIG.
Figure 7 shows a straight line showing the relationship between the magnetic field and current of the superconducting wire in , and a characteristic diagram when the temperature changes.
第7図において、超電導線の゛温度’r、l ’r、、
’r、における特性は従来の第1図と同じであシ、中
央部のコイル(1b)の磁界、電流の関係OPは第1図
のOPとほとんど近い値を示す。しかし第1図で最も磁
界の高い磁極部近傍のコイル(1a)の内径側のQ点で
は、導体の断面積が2倍であるから電流値が第1図の面
に相当する匈の半分のQという関係になる。よって本実
施例の界磁巻線(1)を定格電流工□状態で運転してい
る時は、中央側のコイル(1b)は第7図のPR点と同
一温度T3の条件を維持する場合、磁極部近傍のコイル
(1a)は1/2の電流即ち工R/2に対するQR点の
磁界が許容されることになるう
よって本実施例の界磁巻線では、例えば温度T1で一定
の場合、従来の界磁巻線ではIQまでしか流せなかった
ものが、IQの2倍か、又はIPの値の何れか少ない方
の値まで流せることになシ、安全に流せる許容電流値が
非常に大きくなる。In Fig. 7, the temperatures of the superconducting wire 'r, l'r, .
The characteristics at 'r are the same as those in the conventional FIG. 1, and the relationship OP between the magnetic field and current of the central coil (1b) shows a value almost similar to OP in FIG. However, at point Q on the inner diameter side of the coil (1a) near the magnetic pole part where the magnetic field is highest in Figure 1, the cross-sectional area of the conductor is twice as large, so the current value is half of the force corresponding to the plane in Figure 1. The relationship is Q. Therefore, when the field winding (1) of this embodiment is operated at the rated current □, the center coil (1b) maintains the same temperature T3 as the PR point in Fig. 7. , the coil (1a) near the magnetic pole part is allowed to have a magnetic field at point QR with respect to 1/2 of the current, that is, R/2. In this case, the permissible current value that can be safely passed is very large, whereas the conventional field winding could only allow current up to IQ to flow up to twice IQ or the value of IP, whichever is smaller. becomes larger.
又、電流が一定で温度が変化した場合、従来の界磁巻線
では11度までしか許容出来なかったものが、本実施例
の界磁巻線では、より温度の高い13度まで安全に使用
出来る事が判る。温度と電流力!一定で磁界が変化した
時の余裕も従来のようにHR/HQの比でなく、HR/
HPか又は(HR以上の値)/HQの比となるので、安
全率が高くなる。In addition, when the current is constant and the temperature changes, conventional field windings could only tolerate temperatures up to 11 degrees, but with the field winding of this example, it can be safely used up to a higher temperature of 13 degrees. I see that it is possible. Temperature and current power! The margin when the magnetic field is constant and changes is not determined by the HR/HQ ratio as in the past, but by HR/HQ.
Since the ratio is HP or (a value greater than or equal to HR)/HQ, the safety factor becomes high.
もし本実施例の温度、電流、磁界に対する安全率を従来
程度になる様に電流値を上げれば、同一形状の界磁巻線
で出力磁界の大きい効率の良い回転子となる。If the current value is increased so that the safety factors for temperature, current, and magnetic field in this embodiment are at the conventional level, a highly efficient rotor with a large output magnetic field can be obtained with field windings having the same shape.
本発明は特に前記の一実施例の構造のみに限定されるも
のではなく、要するに界磁巻線(1)を構成するコイル
(la)、(lb)の全体の中で、特に磁界の高い所の
部分を局部的に超電導線の電流密度を下げることがポイ
ントである。よって例えば磁極部近傍のコイル(1a)
において、特にその中で磁界が高いのはコイル内周側な
ので、第5図に示したコイル内径側四のターンの導体の
みを2本の素線を並列にして、他は1本の素線を使用す
るというようにしてもよい。この場合は先に示した実施
例よりも界磁巻a(1)の全ターン数が多くなる利点が
ある。The present invention is not particularly limited to the structure of the above-mentioned embodiment, but in other words, the present invention is not limited to the structure of the above-mentioned embodiment, but in other words, among the entire coils (la) and (lb) constituting the field winding (1), the parts where the magnetic field is particularly high are The key point is to locally lower the current density of the superconducting wire. Therefore, for example, the coil (1a) near the magnetic pole part
In this case, the magnetic field is especially high on the inner side of the coil, so only the conductors of the four turns on the inner side of the coil shown in Figure 5 are made of two strands in parallel, and the rest are made of one strand of wire. You may also use In this case, there is an advantage that the total number of turns in the field winding a(1) is greater than in the previously shown embodiment.
或いは又、断面積の異なる素線を用い、太い素線でター
ンを形成したコイルを磁極部近傍のコイル(1a)とし
て使用してもよい。Alternatively, a coil in which turns are formed using thick wires using wires having different cross-sectional areas may be used as the coil (1a) near the magnetic pole portion.
以上説明したように、本発明によれば、超電導界磁巻線
の磁界の強い部分のコイルのターンを形成する導体断面
積を他のターンを形成する導体断面積よシ大にしたので
、その部分の電流密度が小さくなり、界磁巻線の各部分
の設計の余裕を平均化して、全体的によシ安全なよシ効
率的な超電導回転電機の回転子を提供することが出来る
。As explained above, according to the present invention, the cross-sectional area of the conductor forming the coil turn in the part of the superconducting field winding where the magnetic field is strong is made larger than the cross-sectional area of the conductor forming the other turns. The current density in the parts becomes smaller, and the margins in the design of each part of the field winding are averaged, making it possible to provide a rotor of a superconducting rotating electric machine that is safer and more efficient as a whole.
第1図は従来の超電導回転電機の回転子の界磁巻線の超
電導線における磁界、電流、温度の関係を示す特性線図
、第2図は第1図の回転子の横断概念図、第3図は第2
図の回転子の界磁巻線内径面における半径方向磁束密度
の分布図、第4図はす横断面図、第5図は第4図のコイ
ルを示す拡大横断面図、第6図は第5図の導体接続部を
示す縦断面図、第7図は第4図の回転子の界磁巻線の超
電導線における磁界、電流、温度の関係を示す特性線図
である。
■・・界磁巻線 1a ・・、磁極部近傍のコ
イル1b・・他のコイル 3・・磁極部9−・・導
体を形成する素線 10・・・内径側代理人 弁理士
井 上 −男
第1図
第 48
第 5 図Figure 1 is a characteristic diagram showing the relationship between magnetic field, current, and temperature in the superconducting wire of the field winding of the rotor of a conventional superconducting rotating electrical machine. Figure 2 is a cross-sectional conceptual diagram of the rotor in Figure 1. Figure 3 is the second
Figure 4 is a distribution diagram of radial magnetic flux density on the inner diameter surface of the field winding of the rotor, Figure 4 is a helical cross-sectional view, Figure 5 is an enlarged cross-sectional view showing the coil in Figure 4, and Figure 6 is a cross-sectional view of the coil in Figure 4. FIG. 5 is a longitudinal cross-sectional view showing the conductor connection portion, and FIG. 7 is a characteristic diagram showing the relationship between the magnetic field, current, and temperature in the superconducting wire of the field winding of the rotor shown in FIG. 4. ■... Field winding 1a... Coil 1b near the magnetic pole part... Other coils 3... Magnetic pole part 9... Element wire forming the conductor 10... Inner diameter side agent Patent attorney
Inoue - Male Figure 1 Figure 48 Figure 5
Claims (3)
線の磁極部近傍に位置するコイルの各ターンの導体のう
ち、少なくとも内径側のターンの導体の断面積を他の部
分のターンおよび他のコイルのターンの導体の断面積よ
りも大にしたことをfi:徴とする超電導回転電機の回
転子。(1) In a rotor having a superconducting field winding, among the conductors of each turn of the coil located near the magnetic pole part of the field winding, at least the cross-sectional area of the conductor of the turn on the inner diameter side is and a rotor for a superconducting rotating electric machine characterized by fi: having a cross-sectional area larger than the cross-sectional area of the conductor of the turns of the other coils.
する素線と同一断面積の素線を2本並列にして形成した
ことを特徴とする特許請求の範囲第1項記載の超電導回
転電機の回転子。(2) The conductor having a large cross-sectional area is formed by connecting two wires in parallel having the same cross-sectional area as the wire forming the conductor having a small cross-sectional area. Rotor of superconducting rotating electric machine.
する素線よυ大なる断面積の素線を用いたことを特徴と
する特許請求の範囲第1項記載の超電導回転電機の回転
子。(3) The superconducting rotating electrical machine according to claim 1, characterized in that the conductor with a large cross-sectional area uses a wire with a cross-sectional area υ larger than the wire forming the conductor with a small cross-sectional area. rotor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58069995A JPS59198868A (en) | 1983-04-22 | 1983-04-22 | Rotor of superconductive rotary electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58069995A JPS59198868A (en) | 1983-04-22 | 1983-04-22 | Rotor of superconductive rotary electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59198868A true JPS59198868A (en) | 1984-11-10 |
Family
ID=13418762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58069995A Pending JPS59198868A (en) | 1983-04-22 | 1983-04-22 | Rotor of superconductive rotary electric machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59198868A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481636A (en) * | 1987-09-18 | 1989-03-27 | Mitsubishi Electric Corp | Hermetic type motor-driven compressor |
US6710497B2 (en) * | 2001-10-16 | 2004-03-23 | General Electric Company | Apparatus and method for a field winding assembly mountable on a rotor in a synchronous machine |
-
1983
- 1983-04-22 JP JP58069995A patent/JPS59198868A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6481636A (en) * | 1987-09-18 | 1989-03-27 | Mitsubishi Electric Corp | Hermetic type motor-driven compressor |
US6710497B2 (en) * | 2001-10-16 | 2004-03-23 | General Electric Company | Apparatus and method for a field winding assembly mountable on a rotor in a synchronous machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3215697B2 (en) | Superconducting coil that limits fault current | |
KR20020077865A (en) | Superconducting magnetic coil | |
JP2003526304A (en) | Superconducting electric motor | |
US3983427A (en) | Superconducting winding with grooved spacing elements | |
JP2006166692A (en) | Superconducting coils with parallel winding for synchronous machines | |
US4352051A (en) | Single phase motor with reversible auxiliary windings | |
JPS59198868A (en) | Rotor of superconductive rotary electric machine | |
US20020163262A1 (en) | High performance stator device | |
US4339681A (en) | Superconducting field winding for the rotor of an electric machine | |
CA2403666A1 (en) | Superconductive armature winding for an electrical machine | |
US2864986A (en) | Electric motor | |
US3440456A (en) | Commutating arrangement for electric machines with superconducting armature coils | |
CN210629218U (en) | Cage type rotor topological structure with sectional type conducting bar end and motor | |
JP3248283B2 (en) | Transformer winding | |
JP2555132B2 (en) | Compound superconducting field winding | |
JPS5936123Y2 (en) | Lebel transition coil for rotating electrical machines | |
JPH06223641A (en) | Superconductor and superconducting current limiter trigger coil using same | |
JPS60177605A (en) | Superconductive coil | |
Yamada et al. | Nb 3 Sn/NbTi superconducting windings for 30 MVA synchronous rotary condenser | |
CN116865476A (en) | Gradient insulation litz wire, high-speed permanent magnet motor stator, motor and method | |
US7078991B1 (en) | Superconducting coil | |
US2773208A (en) | Ring winding for electrical machines | |
JP2001245430A (en) | Superconducting current-limiting device of magnetic- shielding type | |
JPS5923406B2 (en) | superconducting wire | |
JPH02142107A (en) | Coil for electromagnetic induction equipment |