JPH032935B2 - - Google Patents

Info

Publication number
JPH032935B2
JPH032935B2 JP8124682A JP8124682A JPH032935B2 JP H032935 B2 JPH032935 B2 JP H032935B2 JP 8124682 A JP8124682 A JP 8124682A JP 8124682 A JP8124682 A JP 8124682A JP H032935 B2 JPH032935 B2 JP H032935B2
Authority
JP
Japan
Prior art keywords
tank
printed wiring
copper
waste printed
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8124682A
Other languages
Japanese (ja)
Other versions
JPS58199866A (en
Inventor
Shigeru Sato
Shiro Ogawa
Kunihiko Nozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP57081246A priority Critical patent/JPS58199866A/en
Publication of JPS58199866A publication Critical patent/JPS58199866A/en
Publication of JPH032935B2 publication Critical patent/JPH032935B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】 本発明は廃プリント配線基板より銅を回収する
方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for recovering copper from waste printed wiring boards.

近年の電子産業の発展に伴つて、プリント配線
基板の生産量が急増しているが、それと共に、基
板の生産工程より発生する不良品および切断くず
などの廃棄物の量も比例的に増加している。しか
るに、この廃プリント配線基板は、銅含有量が低
く、かつ形状が不特定であるための取扱いが困難
で、経済的に有効利用することが極めて困難であ
り、大部分が埋立てなどに廃棄処分され、貴重な
資源である銅が徒らに浪費されているのが実情で
ある。
With the development of the electronics industry in recent years, the production of printed wiring boards has rapidly increased, but at the same time, the amount of waste such as defective products and cutting chips generated from the board production process has also increased proportionally. ing. However, this waste printed wiring board is difficult to handle due to its low copper content and unspecified shape, making it extremely difficult to use it economically and effectively, and most of it is disposed of in landfills etc. The reality is that copper, a valuable resource, is being wasted.

廃プリント配線基板の処理方法として、該基板
を微粉砕したのち、硫酸と酸化剤によつて銅を溶
解別し、硫酸銅結晶として回収すると共に、
滓は成形材料用フイラーとして回収する方法が、
特開昭51−11060号公報に記載されている。しか
しながら、廃プリント配線基板は、その形状およ
び大きさが不特定であり、かつ靫性の高い金属銅
が付着しているため、微粉砕することは極めて困
難である。さらに銅の溶解に多量の酸化剤を必要
とするなど、工業的に採用できる方法ではない。
又、回転網状容器を用いて、廃プリント配線基板
から銅を溶解する方法が、特開昭51−18211号公
報に記載されているが、単一槽によるバツチ式溶
解法のため、溶解滅耗による銅の表面積低下によ
り反応速度が著しく低下し、銅を完全に溶解する
ことは困難であり、かつ溶解装置が複雑になるこ
とから、工業的に採用できる方法ではない。
As a method for processing waste printed wiring boards, the board is finely pulverized, the copper is dissolved and separated using sulfuric acid and an oxidizing agent, and the copper sulfate crystals are recovered.
The slag is recovered as a filler for molding materials.
It is described in Japanese Patent Application Laid-open No. 11060/1983. However, it is extremely difficult to pulverize waste printed wiring boards because the shape and size of the waste printed wiring boards are unspecified, and metal copper, which has high stickiness, is attached. Furthermore, it is not an industrially applicable method as it requires a large amount of oxidizing agent to dissolve the copper.
In addition, a method for melting copper from waste printed wiring boards using a rotating net-like container is described in Japanese Patent Application Laid-open No. 18211/1983, but because it is a batch melting method using a single tank, it is difficult to dissolve copper. This is not an industrially applicable method because the reaction rate decreases significantly due to the reduction in the surface area of the copper, making it difficult to completely dissolve the copper, and requiring a complicated melting device.

本発明者等は、容易な銅の回収を行うべく鋭意
研究の結果、廃プリント配線基板を食塩を含有す
る塩化第二銅溶液で処理することにより、基板に
付着した銅が容易に、さらに驚ろくべきことに
は、電気銅地金の溶解速度よりはるかに速い溶解
速度で剥離溶解することを見出し、本発明を完成
した。
As a result of intensive research in order to easily recover copper, the present inventors discovered that by treating waste printed wiring boards with a cupric chloride solution containing salt, the copper adhering to the board can be easily removed. Fortunately, the present invention was completed by discovering that the electrolytic copper metal can be peeled off and dissolved at a much faster dissolution rate than that of electrolytic copper metal.

本発明は、銅の付着した廃プリント配線基板を
食塩を含有する塩化第二銅溶液で処理することを
特徴とする廃プリント配線基板の処理方法であ
る。
The present invention is a method for treating waste printed wiring boards, which comprises treating the waste printed wiring boards to which copper has adhered with a cupric chloride solution containing common salt.

本発明において、塩化第二銅溶液は、新しく塩
化第二銅を水に溶解したものを用いることができ
るが、さらには好ましくは、プリント配線基板の
エツチング処理に用いた廃エツチング液を用いる
ことができる。該廃エツチング液は塩化第二銅を
主成分とし、他の重金属イオンを含まないため、
金属銅回収あるいは銅化合物の製造に利用できる
が、その代表的な組成を下記に示す。
In the present invention, the cupric chloride solution can be freshly dissolved cupric chloride in water, but more preferably, a waste etching solution used for etching printed wiring boards can be used. can. The waste etching solution mainly contains cupric chloride and does not contain other heavy metal ions.
It can be used to recover metallic copper or produce copper compounds, and its typical composition is shown below.

全Cu 130g/ Cu+ 5g/ 遊離塩酸 100g/ 新たに調製された食塩を含有する塩化第二銅溶
液、あるいは廃エツチング液は、廃プリント配線
基板の処理によつて得られる塩化第一銅溶液中の
銅イオン濃度が、該塩化第一銅溶液の使用目的に
応じた所望のものになるように、あらかじめ第二
銅イオン濃度の調整を行うと共に、塩化第一銅の
溶解度を高めるために、所要量の食塩を加え、PH
調整を行つて、塩化第二銅食塩溶液とする。この
濃度調整には、水と食塩を用いてもよいが、塩化
第一銅溶液より誘導される銅化合物の製造時に生
成する食塩濃度の高い母液を用いる方が、食塩の
添加量を少くできるため、より好ましい。生成す
る塩化第一銅溶液中の銅および食塩濃度は、該溶
液の使用目的に応じたものとする必要があるが、
Cu+20〜130g/、NaCl100〜300g/の範囲
のものが用いられる。第二銅イオンは当量の金属
銅と反応して、2倍量の第一銅イオンが生成する
ため、調製する塩化第二銅溶液は、Cu2+10〜65
g/、NaCl100〜300g/の範囲に濃度調整
される。
Total Cu 130 g / Cu + 5 g / Free hydrochloric acid 100 g / Freshly prepared cupric chloride solution containing common salt or waste etching solution in cuprous chloride solution obtained by processing waste printed wiring boards. The cupric ion concentration is adjusted in advance so that the copper ion concentration becomes the desired value according to the purpose of use of the cuprous chloride solution, and the necessary Add a certain amount of salt and adjust the pH
Adjust to obtain a cupric chloride salt solution. Although water and salt may be used to adjust the concentration, it is better to use a mother liquor with a high salt concentration, which is produced during the production of copper compounds derived from cuprous chloride solution, because the amount of salt added can be reduced. , more preferred. The copper and salt concentrations in the cuprous chloride solution to be produced must be determined according to the intended use of the solution, but
A range of Cu + 20 to 130 g/ and NaCl 100 to 300 g/ is used. Cupric ions react with an equivalent amount of metallic copper to produce twice the amount of cuprous ions, so the cupric chloride solution to be prepared must contain Cu 2+ 10 ~65
g/, the concentration is adjusted to a range of 100 to 300 g/NaCl.

前記のごとく調製した塩化第二銅溶液をもつて
廃プリント配線基板を処理すると、該基板に付着
した銅は容易に剥離溶解すると共に、塩化第二銅
は還元されて、塩化第一銅溶液が得られる。塩化
第一銅は、水に対する溶解度が極めて低く、食塩
を添加しない塩化第二銅溶液で廃プリント配線基
板を処理すると、金属銅表面に塩化第一銅の結晶
が生成して、反応が停止してしまうが、食塩溶液
中では、Cu+が過剰のCl-と結合して、CuCl- 2
CuCl2- 3などのクロロ錯体を形成するため、塩化
第一銅の溶解度が著しく増大し、塩化第二銅と金
属銅の反応が容易に進行するようになるものであ
る。反応式は次式で示される。
When a waste printed wiring board is treated with the cupric chloride solution prepared as described above, the copper adhering to the board is easily peeled off and dissolved, and the cupric chloride is reduced and the cuprous chloride solution is dissolved. can get. Cuprous chloride has extremely low solubility in water, and when waste printed wiring boards are treated with a cupric chloride solution that does not contain salt, cuprous chloride crystals form on the surface of the metal copper and the reaction stops. However, in a saline solution, Cu + combines with excess Cl - to form CuCl - 2 ,
Since a chloro complex such as CuCl 2- 3 is formed, the solubility of cuprous chloride increases significantly, and the reaction between cupric chloride and metallic copper easily proceeds. The reaction formula is shown by the following formula.

CuCl2+Cu→2CuCl (1) 2CuCl+2Cl-→2CuCl- 2 (2) 2CuCl- 2+2Cl-2CuCl2- 3 (3) さらに、本発明においては、廃プリント配線基
板に付着した銅の比表面積(該基板の容積1m2
りの銅の表面積)が、1200〜4000m2/m2と、電気
銅地金の比表面積(銅1m2当りの表面積)100〜
400m2/m2と比較して大きいため、塩化第二銅と
の反応が極めて速く、かつ低温でも進行し、該基
板より極めて容易に銅を剥離溶解することができ
る。
CuCl 2 +Cu→2CuCl (1) 2CuCl+2Cl - →2CuCl - 2 (2) 2CuCl - 2 +2Cl - 2CuCl 2- 3 (3) Furthermore, in the present invention, the specific surface area of copper attached to a waste printed wiring board (the The surface area of copper per m2 of volume is 1200 to 4000 m2 / m2 , and the specific surface area of electrolytic copper metal (surface area per m2 of copper) is 100 to 4000 m2/m2.
Since it is larger than 400 m 2 /m 2 , the reaction with cupric chloride is extremely fast and proceeds even at low temperatures, making it possible to peel off and dissolve copper from the substrate extremely easily.

かくして得られた塩化第一銅溶液は、廃プリン
ト配線基板に付着した銅の純度が高いために、極
めて純粋なものであり、該溶液を用いて結晶塩化
第一銅、青化第一銅、亜鉛化銅などの銅化合物を
製造すると、極めて純度の高い、優れた品質の製
品を得ることができる。
The thus obtained cuprous chloride solution is extremely pure due to the high purity of the copper attached to the waste printed wiring board, and is used to produce crystalline cuprous chloride, cuprous cyanide, Copper compounds such as copper zincide can be produced to produce products of extremely high purity and excellent quality.

本発明を実施するには、次に述べる装置を用い
るのが好ましい。
In carrying out the invention, the following apparatus is preferably used.

この装置は、塩化第二銅溶液の還元効率を低下
させることなく、廃プリント配線基板に付着して
銅を完全に剥離溶解するための装置を提供するも
のである。
This apparatus provides an apparatus for completely peeling off and dissolving copper attached to waste printed wiring boards without reducing the reduction efficiency of the cupric chloride solution.

以下、この装置を、本発明の一実施態様を示す
フローシート、添付第1図に基き説明する。
This apparatus will be explained below based on a flow sheet and attached FIG. 1 showing one embodiment of the present invention.

適当な大きさに切断した廃プリント配線基板
を、篭又は網もしくは、多数の孔を設けて通液容
易にした容器(以下溶解用容器という)に詰めた
ものを、処理槽1および2の上部充填口14,1
5より装入する。バルブ6,9,10,13を開
に、バルブ7,8,11,12を閉にして、予め
調製した塩化第二銅食塩溶液20を給液すると、
該溶液は、処理槽1上部の液入口16より該処理
槽に入り、下部液出口17より中継槽3に入る。
さらにポンプ5によつて処理槽2上部の液入口1
8に送られ、該処理槽2を通過して、貯槽4に貯
液される。この間に塩化第二銅は、処理槽1およ
び処理槽2に充填された廃プリント配線基板の金
属銅で還元されて、貯槽4に貯液されるのは塩化
第一銅溶液である。かくして通液を続けると、廃
プリント配線基板に付着した金属銅は次第に溶解
滅耗してくるが、第二銅イオンの高い初期の反応
速度が速いために、溶解滅耗は、処理槽1の上部
より始まり、通液を続けるに従つて次第に下部に
移行し、ついには処理槽1中の廃プリント配線基
板の金属銅分は完全に溶解し終り、第二銅の還元
を目的とした処理槽としての機能は全く無くな
る。かかる状態になると、処理槽1より流出液中
の第二銅は全く還元されておらず、処理槽2のみ
で還元反応が起ることになるので、処理槽1より
の流出液中の第一銅を分析すれば判別できる。処
理槽1の機能が無くなつたことが確認されたなら
ば、一旦通液を中断し、処理槽1の残基板を溶解
用容器ごと上部取出し口14より取り出し新しい
ものと入れ替える。次いで、バルブ7,8,1
1,12を開に、バルブ6,9,10,13を閉
にして、再び塩化第二銅食塩溶液20の通液を開
始すると、該溶液は、処理槽2、中継槽3、ポン
プ5、処理槽1の順に通過して、貯槽4に塩化第
一銅溶液が貯液されるようになる。かく通液し
て、処理槽2中の廃プリント配線基板に付着した
金属銅が完全に溶解し終つたならば、該還元槽の
廃プリント配線基板を新しいものと入れ替える
が、還元槽の通液順を再び還元槽1→2になるよ
うに通液する。以上の操作をくり返えすことによ
つて、廃プリント配線基板に付着した金属銅を完
全に剥離溶解できると共に、連続的に、かつ反応
速度を低下させることなく、塩化第一銅溶液を得
ることができる。
Waste printed wiring boards cut to an appropriate size are packed in a basket, a net, or a container with many holes for easy passage of liquid (hereinafter referred to as a dissolution container), and then placed in the upper part of processing tanks 1 and 2. Filling port 14,1
Charge from step 5. When the valves 6, 9, 10, and 13 are opened and the valves 7, 8, 11, and 12 are closed and the cupric chloride salt solution 20 prepared in advance is supplied,
The solution enters the processing tank 1 through the liquid inlet 16 at the upper part of the processing tank 1, and enters the relay tank 3 through the lower liquid outlet 17.
Furthermore, the liquid inlet 1 at the upper part of the processing tank 2 is pumped by the pump 5.
8, passes through the processing tank 2, and is stored in the storage tank 4. During this time, the cupric chloride is reduced by the metal copper of the waste printed wiring boards filled in the processing tanks 1 and 2, and the cuprous chloride solution is stored in the storage tank 4. As the liquid continues to flow in this way, the metallic copper adhering to the waste printed wiring board gradually dissolves and is consumed.However, due to the high initial reaction rate of cupric ions, the dissolution and consumption of the waste printed wiring board is delayed. Starting from the top, as the liquid continues to flow, it gradually moves to the bottom, and finally the metal copper content of the waste printed wiring board in treatment tank 1 is completely dissolved, and the treatment tank for the purpose of reducing cupric It will no longer function as such. In such a state, the cupric liquid in the effluent from the treatment tank 1 is not reduced at all, and the reduction reaction occurs only in the treatment tank 2. It can be determined by analyzing copper. When it is confirmed that the processing tank 1 has lost its function, the flow of liquid is temporarily interrupted, and the remaining substrates in the processing tank 1 are taken out from the upper outlet 14 along with the dissolution container and replaced with a new one. Then valves 7, 8, 1
1 and 12 are opened and valves 6, 9, 10, and 13 are closed to start flowing the cupric chloride salt solution 20 again, the solution flows into the processing tank 2, the relay tank 3, the pump 5, The solution passes through the processing tank 1 in order, and the cuprous chloride solution is stored in the storage tank 4. When the metal copper adhering to the waste printed wiring board in treatment tank 2 has been completely dissolved by passing the liquid in this way, the waste printed wiring board in the reduction tank is replaced with a new one, but the process of passing the liquid through the reduction tank The liquid is passed through the tank again in the order of reduction tank 1 → 2. By repeating the above operations, it is possible to completely peel off and dissolve the metallic copper attached to the waste printed wiring board, and to obtain a cuprous chloride solution continuously and without reducing the reaction rate. Can be done.

金属銅の溶解速度は、塩化第二銅および第一銅
の混合液中の第二銅イオン濃度に依存するところ
が大きく、第二銅イオン濃度が高い反応初期にお
いては、その反応速度は極めて速く、反応の進行
に伴う第二銅イオン濃度の低下と共に漸次低下
し、反応末期における反応速度は著しく低下す
る。
The dissolution rate of metallic copper largely depends on the cupric ion concentration in the mixture of cupric chloride and cuprous chloride, and at the early stage of the reaction when the cupric ion concentration is high, the reaction rate is extremely fast. It gradually decreases as the cupric ion concentration decreases as the reaction progresses, and the reaction rate at the end of the reaction significantly decreases.

本フローシートの特徴は、前記の第二銅イオン
濃度と反応速度の関係を勘案して、処理槽の液入
口を上部に、液出口を下部に設け、通液を一過性
とすることによつて処理槽内上部から下部に至る
までの第二銅イオンと第一銅イオン濃度が相対的
かつ滑らかな濃度勾配になるようにすると共に、
処理槽を2槽以上直列に接続するようにしたこと
である。このような構成にすることによつて、廃
プリント配線基板の金属銅の溶解減耗は、第二銅
イオン濃度の高い還元槽上部より始まり、順次下
部に移行するため、廃プリント配線基板に付着し
た金属銅を完全に剥離溶解することができ、か
つ、処理槽を2基以上直列に接続して、必要に応
じて通液順の変更を行うことにより塩化第二銅の
第一銅への還元効率の低下を来たすことがない。
The feature of this flow sheet is that, taking into consideration the relationship between cupric ion concentration and reaction rate mentioned above, the liquid inlet of the treatment tank is located at the top and the liquid outlet is located at the bottom, making the liquid flow temporary. Therefore, the cupric ion and cuprous ion concentrations from the upper part to the lower part of the treatment tank are made to have a relative and smooth concentration gradient,
Two or more processing tanks are connected in series. With this configuration, the dissolution and depletion of the metal copper on the waste printed wiring board starts from the upper part of the reduction tank where the concentration of cupric ions is high and gradually moves to the lower part. Metallic copper can be completely peeled off and dissolved, and cupric chloride can be reduced to cuprous by connecting two or more treatment tanks in series and changing the order of liquid flow as necessary. There is no reduction in efficiency.

処理槽が1槽しかない場合、もしくは2槽以上
あつても直列に接続しない場合あるいは通液順の
変更を行わない場合には、廃プリント配線基板に
付着した金属銅が溶解減耗するに従つて、還元効
率が著しく低下し、金属銅を完全に剥離溶解する
ことができなくなる。また、処理槽の液入口を下
部に、液出口を上部に設けた場合には、塩化第二
銅の第一銅への還元により液比重が大きくなるた
め、槽内上下の液拡散が起り、第二銅イオンと第
一銅イオン濃度の相対的かつ滑らかな濃度勾配が
得られず、還元効率が低下し、廃プリント配線基
板の金属銅を完全に剥離溶解することができなく
なる。
If there is only one treatment tank, or if there are two or more tanks but they are not connected in series or the order of liquid flow is not changed, the metal copper attached to the waste printed wiring board will dissolve and wear out. , the reduction efficiency decreases significantly, and metallic copper cannot be completely exfoliated and dissolved. In addition, if the liquid inlet of the treatment tank is provided at the bottom and the liquid outlet at the top, the specific gravity of the liquid increases due to the reduction of cupric chloride to cuprous, which causes liquid diffusion in the upper and lower parts of the tank. A relative and smooth concentration gradient of the cupric ion and cuprous ion concentrations cannot be obtained, reducing the reduction efficiency and making it impossible to completely exfoliate and dissolve the metallic copper of the waste printed wiring board.

又、この装置と同様の構成にしても、通液を一
過性としない場合にも同様の理由により、所期の
目的を達することができない。
Further, even if the device has a configuration similar to this device, the intended purpose cannot be achieved for the same reason even if the liquid passage is not temporary.

塩化第二銅の還元は、廃プリント配線基板の処
理のみによつても完全に行われ得るが、必要に応
じて、亜硫酸ソーダなどの他の還元剤を併用する
こともできる。反応末期における反応速度が著し
く低下することを考慮して、還元が効率よく行わ
れる範囲で廃プリント配線基板による還元を止め
ることが、処理能力をより大きくできるなど、よ
り合理的であると判断される場合には、亜硫酸ソ
ーダなどの他の適当な還元剤を併用して、塩化第
二銅を完全に還元すればよい。
Although the reduction of cupric chloride can be carried out completely by treating waste printed wiring boards alone, other reducing agents such as sodium sulfite can also be used in combination, if necessary. Considering that the reaction rate at the final stage of the reaction decreases significantly, it is judged to be more rational to stop the reduction using waste printed wiring boards within the range where the reduction can be carried out efficiently, as this can increase processing capacity. In this case, other suitable reducing agents such as sodium sulfite may be used in combination to completely reduce the cupric chloride.

この装置における処理槽は、2槽以上であれば
必要に応じた数にすればよく、又、処理槽の形状
および構造は特に限定されない。
The number of processing tanks in this apparatus may be two or more as required, and the shape and structure of the processing tanks are not particularly limited.

この装置においては、複雑な構造物は必要とせ
ず、全て、樹脂製あるいは樹脂ライニング製で容
易に製作でき、腐食の心配なく、工業化をなし得
る。
This device does not require any complicated structure, can be easily manufactured entirely from resin or resin lining, and can be industrialized without fear of corrosion.

本発明は、廃プリント配線基板を処理する方法
を提供するのみならず、廃エツチング液を含め
て、重要な金属資源である銅を、簡単な方法、装
置により回収するものであり、その産業的意義は
極めて大きい。
The present invention not only provides a method for processing waste printed wiring boards, but also recovers copper, an important metal resource, including waste etching liquid, using a simple method and device, and is useful for industrial purposes. The significance is extremely large.

以下、実施例によりさらに詳細に説明する。た
だし、本発明は、下記実施例に限定されるもので
はない。
Hereinafter, it will be explained in more detail with reference to Examples. However, the present invention is not limited to the following examples.

実施例 1 塩化第二銅溶液として、次の組成を有する廃エ
ツチング液を用いた。
Example 1 A waste etching solution having the following composition was used as the cupric chloride solution.

全Cu 127g/ Cu+ 9g/ 遊離塩酸 105g/ 先ず、20%苛性ソーダ溶液で遊離塩酸を中和、
水で稀釈し、食塩を加えて、全Cu25.0g/、
Cu+1.6g/、NaCl180g/、PH3なる塩化第
二銅溶液(以下還元原液という)を調製した。
Total Cu 127g / Cu + 9g / Free hydrochloric acid 105g / First, neutralize the free hydrochloric acid with 20% caustic soda solution,
Dilute with water, add salt, total Cu25.0g/,
A cupric chloride solution (hereinafter referred to as reduced stock solution) of Cu + 1.6 g/, NaCl 180 g/PH3, was prepared.

次いで、上部に液入口、下部に液出口を設けた
内径50mm、高さ600mmのガラス製の処理槽に適当
な大きさに切断した廃プリント配線基板を1槽当
り600g充填したものを2槽直列に接続し、60℃
に加温した還元原液を1/Hrの流量で通液し
た。使用した廃プリント配線基板の銅含有量は平
均19%、処理槽における還元原液の滞溜時間は1
槽当り36分である。4.8時間(4.8)通液後、第
1槽目の流出液中のCu2+の濃度が還元原液と全
く同じとなり、該処理槽の能力が無くなつたこと
が分つたため、通液を中断し、第1槽目の廃プリ
ント配線基板を取り出して新しいものと入れ替
え、通液順を第2槽→第1槽に変更して通液を再
開した。第1槽より取り出した廃プリント配線基
板には金属銅が全く残つておらず、完全に処理さ
れたことを示していた。しかも、かかる状態でも
第2槽よりの流出液中にはCu2+が検出されず、
1槽のみ、即ち滞溜時間が36分で、充分還元が行
われたことを示している。上記の操作をくり返え
すことによつて、合計1800gの廃プリント配線基
板を処理し、14.3の塩化第一銅溶液が得られ
た。塩化第一銅溶液の組成はCu+48.3g/、
Cu2+非検出、NaCl183g/であつた。
Next, two glass processing tanks with an inner diameter of 50 mm and a height of 600 mm, each with a liquid inlet at the top and a liquid outlet at the bottom, were filled with 600 g of waste printed wiring boards cut into appropriate sizes per tank and placed in series. Connect to 60℃
A reduced stock solution heated to 1/2 was passed through the tube at a flow rate of 1/Hr. The copper content of the waste printed wiring boards used was 19% on average, and the residence time of the reduced stock solution in the treatment tank was 1.
36 minutes per tank. After passing the solution for 4.8 hours (4.8), the concentration of Cu 2+ in the effluent of the first tank became exactly the same as the reduced stock solution, and it was found that the capacity of the treatment tank had been exhausted, so the passing of the solution was stopped. Then, the waste printed wiring board in the first tank was removed and replaced with a new one, and the order of liquid flow was changed from the second tank to the first tank, and the flow of liquid was restarted. There was no metallic copper left in the waste printed wiring board taken out from the first tank, indicating that it had been completely treated. Moreover, even under such conditions, Cu 2+ was not detected in the effluent from the second tank.
Only one tank was used, that is, the residence time was 36 minutes, indicating that sufficient reduction was achieved. By repeating the above operations, a total of 1800 g of waste printed wiring boards were treated, and a cuprous chloride solution of 14.3 was obtained. The composition of cuprous chloride solution is Cu + 48.3g/,
Cu 2+ was not detected, and NaCl was 183 g/.

実施例 2 実施例1と同じ廃エツチング液を用いて、20%
苛性ソーダ溶液で遊離塩酸を中和、水で稀釈し、
食塩を加えて、全Cu65.0g/、Cu+4.3g/、
NaCl250g/、PH3なる塩化第二銅溶液(以下
還元原液という)を調製した。
Example 2 Using the same waste etching solution as in Example 1, 20%
Neutralize free hydrochloric acid with caustic soda solution, dilute with water,
Adding salt, total Cu 65.0g/, Cu + 4.3g/,
A cupric chloride solution (hereinafter referred to as reduced stock solution) containing 250 g of NaCl/PH3 was prepared.

次いで、実施例1と同じ装置を用いて、76℃に
加温した還元原液を0.5/Hrの流量で通液し
た。使用した廃プリント配線基板は、処理槽1槽
当り600g、銅含有量は平均19%、還元原液の滞
溜時間は72分である。3.8時間(1.9)通液後、
第1槽目の流出液中のCu2+の分析結果から、該
処理槽の能力が無くなつたことが分り、通液を中
断し、第1槽目の廃プリント配線基板を取り出し
て新しいものと入れ替え、通液順を第2槽→第1
槽に変更して通液を再開した。
Next, using the same apparatus as in Example 1, a reduced stock solution heated to 76°C was passed through at a flow rate of 0.5/Hr. The waste printed wiring boards used were 600 g per treatment tank, the average copper content was 19%, and the residence time of the reduced stock solution was 72 minutes. After 3.8 hours (1.9) of infusion,
Based on the analysis results of Cu 2+ in the effluent from the first tank, it was found that the processing tank had lost its capacity, so the flow of liquid was interrupted, and the waste printed wiring boards from the first tank were taken out and replaced with new ones. and change the order of liquid flow from 2nd tank to 1st tank.
Changed to the tank and restarted fluid flow.

第1槽より取り出した廃プリント配線基板には
金属銅が全く残つておらず、完全に処理されたこ
とを示していた。しかも、かかる状態でも第2槽
よりの流出液中にはCu2+が検出されず、1槽の
み、即ち滞溜時間が72分で充分に還元が行われた
ことを示している。上記の操作をくり返えすこと
によつて、合計3000gの廃プリント配線基板を処
理して、Cu+125.7g/、Cu2+非検出、
NaCl248g/なる組成の塩化第一銅溶液9.5
が得られた。
There was no metallic copper left in the waste printed wiring board taken out from the first tank, indicating that it had been completely treated. Furthermore, even under such conditions, Cu 2+ was not detected in the effluent from the second tank, indicating that sufficient reduction was achieved in only one tank, that is, with a residence time of 72 minutes. By repeating the above operations, a total of 3000g of waste printed wiring boards was processed, resulting in Cu + 125.7g/, Cu 2+ not detected,
Cuprous chloride solution with a composition of NaCl248g/9.5g
was gotten.

実施例 3 廃プリント配線基板の処理装置として、添付第
1図の構成をもつ装置を製作した。処理槽1およ
び2は内径1000mm、高さ2000mmのFRP製で、上
部に液入口16,18を、下部に液出口17,1
9を設けた。中継槽3は200ポリエチレン製、
貯槽4は20m2ポリエチレン製、ポンプ5は定量ポ
ンプである。
Example 3 A device having the configuration shown in the attached Figure 1 was manufactured as a waste printed wiring board processing device. Processing tanks 1 and 2 are made of FRP with an inner diameter of 1000 mm and a height of 2000 mm, with liquid inlets 16 and 18 at the top and liquid outlets 17 and 1 at the bottom.
9 was set. Relay tank 3 is made of 200 polyethylene.
Storage tank 4 is made of 20 m 2 polyethylene, and pump 5 is a metering pump.

外径950mm、高さ800mmで底部に径30mmの多数の
孔を有するFRP製の溶解用容器に、巾20〜50mm、
長さ800mmに切断した廃プリント配線基板を充填
したものを、処理槽1および2に各2個ずつ装入
した。使用した廃プリント配線基板の銅含有量は
17%で、処理槽へ充填された量は、1槽当り約
550Kgである。
A melting container made of FRP with an outer diameter of 950 mm, a height of 800 mm, and numerous holes of 30 mm in diameter at the bottom, with a width of 20 to 50 mm,
Two waste printed wiring boards cut into lengths of 800 mm were filled into treatment tanks 1 and 2, two each. The copper content of the waste printed wiring board used is
17%, and the amount filled into the treatment tank is approximately
It is 550Kg.

全Cu118g/、Cu+3g/、遊離塩酸87g/
なる組成の廃エツチング液を用い、20%の苛性
ソーダ溶液で遊離塩酸を中和、水で稀釈し、食塩
を加えて、全Cu30g/、Cu+0.8g/、
NaCl200g/、PH3なる塩化第二銅溶液(以下
還元原液という)を調製した。
Total Cu 118g/, Cu + 3g/, free hydrochloric acid 87g/
Using waste etching solution with the following composition, neutralize free hydrochloric acid with 20% caustic soda solution, dilute with water, add salt, and obtain a total Cu of 30 g/, Cu + 0.8 g/,
A cupric chloride solution (hereinafter referred to as reduced stock solution) containing 200 g of NaCl/PH3 was prepared.

バルブ6,9,10,13を開に、バルブ7,
8,11,12を閉にして、60℃に加温した還元
原液を760/Hrの流量で給液開始した。還元原
液は、処理槽1上部の液入口16より入り、該処
理槽下部の液出口17より中継槽3に入る。さら
に、定量ポンプ5で、処理槽2の上部液入口18
に送られ、該処理槽2を通過して、貯槽4に貯液
される。還元原液の処理槽中における滞溜時間は
60分である。4.2時間(3200)通液後、処理槽
1よりの流出液の分析の結果、Cu2+30g/と
なり、該処理槽の能力が無くなつたため、通液を
中断した。
Open valves 6, 9, 10, 13, valve 7,
8, 11, and 12 were closed, and the supply of the reduced stock solution heated to 60°C was started at a flow rate of 760/Hr. The reduced stock solution enters through the liquid inlet 16 at the top of the processing tank 1, and enters the relay tank 3 through the liquid outlet 17 at the bottom of the processing tank. Furthermore, the upper liquid inlet 18 of the processing tank 2 is operated by the metering pump 5.
The liquid is sent to the storage tank 4, passes through the processing tank 2, and is stored in the storage tank 4. The residence time of the reduced stock solution in the treatment tank is
It is 60 minutes. After passing the liquid for 4.2 hours (3200 ml), analysis of the effluent from the treatment tank 1 revealed that it contained 30 g/Cu 2+ , and as the capacity of the processing tank was exhausted, the passing of the liquid was interrupted.

処理槽1の廃プリント基板を溶解用容器ごと取
り出し、新しいものと入れ替え、バルブ6,9,
10,13を閉に、バルブ7,8,11,12を
開にして、再び還元原液の通液を開始した。今度
は、還元原液は、処理槽2上部の液入口18よ
り、該処理槽2、中継槽3、ポンプ5、処理槽1
の順に通過して、貯槽4に貯液される。処理槽1
より取り出した廃プリント配線基板を詳細に調べ
たが、未溶解の金属銅は認められず、完全に処理
できたことを示していた。又、処理槽1の能力が
無くなつた時点でも、処理槽2よりの流出液中の
Cu2+は検出されず、1槽のみでも充分還元が行
われていた。
Take out the waste printed circuit board from processing tank 1 along with the dissolution container, replace it with a new one, and replace the valves 6, 9,
10 and 13 were closed, valves 7, 8, 11, and 12 were opened, and the flow of the reducing stock solution was started again. This time, the reduced stock solution is supplied from the liquid inlet 18 at the top of the processing tank 2 to the processing tank 2, the relay tank 3, the pump 5, and the processing tank 1.
The liquid passes through this order and is stored in the storage tank 4. Processing tank 1
A detailed examination of the waste printed wiring board removed from the site revealed no undissolved metallic copper, indicating that the treatment had been completed. In addition, even when the capacity of treatment tank 1 is exhausted, the effluent from treatment tank 2
No Cu 2+ was detected, and sufficient reduction was achieved even with only one tank.

上記の操作をくり返えすことによつて、合計
3300Kgの廃プリント配線基板を処理し、16000
の塩化第一銅溶液が得られた。塩化第一銅溶液の
組成は、Cu+59.0g/、Cu2+非検出、NaCl200
g/、PH3.5であつた。
By repeating the above operations, the total
Processed 3300Kg of waste printed wiring boards and produced 16000
A cuprous chloride solution was obtained. The composition of cuprous chloride solution is Cu + 59.0g/, Cu 2+ not detected, NaCl200
g/, pH 3.5.

比較例 実施例1において、処理槽として、下部に液入
口、上部に液出口を設けたものを2槽直列に接続
したものを用いた。他の条件は実施例1と同じと
した。
Comparative Example In Example 1, two treatment tanks were used in which two tanks were connected in series, each having a liquid inlet at the bottom and a liquid outlet at the top. Other conditions were the same as in Example 1.

第2槽目の流出液中には、初めからCu2+が4.3
g/残存し、完全に還元が行われていなかつ
た。4.8時間(4.8)通液後も第1槽の流出液中
のCu2+は18.6g/と、還元能力が残つていた
が、第2槽の流出液はCu2+6.1g/と次第に還
元効率が低下して行つた。8.6時間(8.6)通液
後、ついに第1槽の還元能力が無くなつたが、こ
の時点で第2槽の残存Cu2+や9.8g/に達した。
第1槽より取り出した廃プリント配線基板の金属
銅は完全に溶解していたが得られた8.6の還元
液の組成は、全Cu41.4g/、Cu2+6.8g/、
NaCl180g/で、平均還元率は71%であつた。
The effluent from the second tank contains 4.3% Cu 2+ from the beginning.
g/remained, and the reduction had not been completed completely. Even after passing the solution for 4.8 hours (4.8), the Cu 2+ in the effluent from the first tank remained at 18.6 g/reducing ability, but the effluent from the second tank gradually decreased to 6.1 g/Cu 2+ The reduction efficiency decreased. After 8.6 hours (8.6) of flowing liquid, the reducing ability of the first tank was finally exhausted, but at this point the residual Cu 2+ in the second tank reached 9.8 g/.
Although the metallic copper of the waste printed wiring board taken out from the first tank was completely dissolved, the composition of the 8.6 reducing solution obtained was: total Cu 41.4 g/, Cu 2+ 6.8 g/, Cu 2+ 6.8 g/,
At 180 g/NaCl, the average reduction rate was 71%.

以上のように、液入口を下部に、液出口を上部
にすると、廃プリント配線基板を完全に処理する
ことが極めて困難になる。
As described above, if the liquid inlet is placed at the bottom and the liquid outlet is placed at the top, it becomes extremely difficult to completely process waste printed wiring boards.

応用例 1 実施例1で得られた塩化第一銅溶液2を温度
60℃に保持しながら、31%青化ソーダ溶液を加え
て、生成した青化第一銅を別、精製、乾燥し、
純度99.3%の青化第一銅137.2gを得た。
Application example 1 Cuprous chloride solution 2 obtained in Example 1 was heated to
While maintaining the temperature at 60°C, add 31% sodium cyanide solution to separate the cuprous cyanide produced, purify it, and dry it.
137.2 g of cuprous cyanide with a purity of 99.3% was obtained.

応用例 2 実施例2で得られた塩化第一銅溶液2を30℃
まで冷却し、晶析した塩化第一銅を窒素ガス気流
中で別、洗浄、乾燥し、純度99.0%の結晶塩化
第一銅95.5gを得た。
Application example 2 Cuprous chloride solution 2 obtained in Example 2 was heated to 30°C.
The crystallized cuprous chloride was separated in a nitrogen gas stream, washed and dried to obtain 95.5 g of crystalline cuprous chloride with a purity of 99.0%.

応用例 3 実施例3で得られた塩化第一銅溶液2を温度
60℃窒素ガス気流中で、20%苛性ソーダ溶液で反
応させて、得られた結晶を窒素ガス気流中で
過、洗浄、乾燥して、純度99%の亜酸化銅132.1
gを得た。
Application example 3 The cuprous chloride solution 2 obtained in Example 3 was heated to
React with 20% caustic soda solution in a nitrogen gas stream at 60°C, filter, wash, and dry the obtained crystals in a nitrogen gas stream to obtain cuprous oxide 132.1 with a purity of 99%.
I got g.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による廃プリント配線基板の
処理のフローシートの1例である。 1,2……処理槽、3……中継槽、4……貯
槽、5……ポンプ、6〜13……バルブ、14,
15……充填および取出口、16,18……液入
口、17,19……液出口。
FIG. 1 is an example of a flow sheet for processing waste printed wiring boards according to the present invention. 1, 2...Treatment tank, 3...Relay tank, 4...Storage tank, 5...Pump, 6-13...Valve, 14,
15... Filling and unloading port, 16, 18... Liquid inlet, 17, 19... Liquid outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 銅の付着した廃プリント配線基板を食塩を含
有する塩化第二銅溶液で処理することを特徴とす
る廃プリント配線基板の処理方法。
1. A method for treating waste printed wiring boards, which comprises treating the waste printed wiring boards to which copper has adhered with a cupric chloride solution containing salt.
JP57081246A 1982-05-14 1982-05-14 Method and device for treating waste printed wiring board Granted JPS58199866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081246A JPS58199866A (en) 1982-05-14 1982-05-14 Method and device for treating waste printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081246A JPS58199866A (en) 1982-05-14 1982-05-14 Method and device for treating waste printed wiring board

Publications (2)

Publication Number Publication Date
JPS58199866A JPS58199866A (en) 1983-11-21
JPH032935B2 true JPH032935B2 (en) 1991-01-17

Family

ID=13741039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081246A Granted JPS58199866A (en) 1982-05-14 1982-05-14 Method and device for treating waste printed wiring board

Country Status (1)

Country Link
JP (1) JPS58199866A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513799B2 (en) * 2008-08-05 2014-06-04 株式会社アステック入江 Recycling method of waste plastic and etching waste liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780020A (en) * 1980-11-07 1982-05-19 Toshiyuki Nakajima Reclamation of copper laminate board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780020A (en) * 1980-11-07 1982-05-19 Toshiyuki Nakajima Reclamation of copper laminate board

Also Published As

Publication number Publication date
JPS58199866A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
CN111032917B (en) Ammonia distillation recycling process and system for alkaline etching waste liquid of circuit board
US4127989A (en) Method for separating metal values from brine
EP0117068B1 (en) Method and apparatus for etching copper
KR101247941B1 (en) Refining Method of Copper Chloride Etching Waste Fluid And Refined Copper Chloride Solution
US3130016A (en) Process for brine manufacture
JP3867871B2 (en) Nickel sulfate solvent extraction method
CN108726756B (en) Method for treating ammonium salt-containing wastewater
EP3950084A1 (en) Method for crystallizing carbonate and method for purifying carbonate
JPH032935B2 (en)
JPH11309464A (en) Crystallization dephosphorization method and its device
JPS5932542B2 (en) Method for controlling copper ion concentration and salt-forming anion concentration in electroless copper deposition bath
JP2001335320A (en) Basic copper carbonate and its preparing method
JPH05279875A (en) Etching with alkaline ammonical etchant solution and device and method for reproducing the same etchant solution
CN112642295B (en) Electrodialysis purification system and purification method of solid phase system
BRPI0712845A2 (en) process for improving phase separations in solvent extraction circuits.
JP2016510256A (en) Multi-stage crystallization method and apparatus for purifying compounds
FR2594107A1 (en) PROCESS FOR THE PREPARATION OF ALKALINE METAL CHLORATE
JP2700982B2 (en) Etching equipment
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
JP3220564B2 (en) Etching equipment
GB2104053A (en) Production of nickel and cobalt sulphates and chlorides
TW201237185A (en) Metal separation process
JP7296048B1 (en) Scaling prevention method
JPH0251541B2 (en)
JPH02152592A (en) Treatment of metal-contaminated solution