JPH03292778A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH03292778A
JPH03292778A JP2094510A JP9451090A JPH03292778A JP H03292778 A JPH03292778 A JP H03292778A JP 2094510 A JP2094510 A JP 2094510A JP 9451090 A JP9451090 A JP 9451090A JP H03292778 A JPH03292778 A JP H03292778A
Authority
JP
Japan
Prior art keywords
layer
active layer
clad
thickness
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094510A
Other languages
Japanese (ja)
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2094510A priority Critical patent/JPH03292778A/en
Publication of JPH03292778A publication Critical patent/JPH03292778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To obtain an end face light emitting LED which does not start a laser oscillation in a practical range of temperature lower than 0 deg.C by a method wherein an active layer, a second clad layer, and a first clad layer are so set in refractive index as to satisfy a formula, an active layer > a second clad layer > a first clad layer, and the the active layer and the first clad layer are so set in thickness as to satisfy cutoff conditions under which an optical waveguide layer is not given the fixed value of guide type. CONSTITUTION:A double hetero structure where an active layer is sandwiched between first clad layers 20 and 30 is provided onto a semiconductor substrate 60, and the double hetero structure concerned is sandwiched between second clad layers 40 and 50. At this point, the refractive indexes, n1, n2, and n3, of the active layer 10, the first clad layers 20 and 30, and the second clad layers 40 and 50 are so set as to satisfy a formula, n1>n2>n3. As a current is required to be injected into an active layer as constricted, a current blocking layer 70, a cap layer 80, and an electrode 90 are provided. A semiconductor light emitting element of this design has almost the same structure with a semiconductor laser, so that it can be made to operate as a semiconductor laser under a certain condition.

Description

【発明の詳細な説明】 7産業上の利用分野〕 本発明は端面発光素子(端面発光LED)に関するもの
である。
[Detailed Description of the Invention] 7. Industrial Application Fields] The present invention relates to an edge-emitting device (edge-emitting LED).

口従来の技術〕 従来の端面発光LEDは半導体レーザと同様の層構造を
有し、端面での反射率を何んらかの方法により低減して
レーザ発振を抑制したもの、あるいは共振器方向に損失
の大きな領域を挿入してレーザ発振を抑制したものがほ
とんとである。
[Conventional technology] Conventional edge-emitting LEDs have a layer structure similar to that of semiconductor lasers, and the reflectance at the edge is reduced by some method to suppress laser oscillation, or the laser oscillation is suppressed by reducing the reflectance at the edge in some way. Most of them suppress laser oscillation by inserting a region with high loss.

ご発明が解決しようとする課題〕 しかしながら、従来の技術では0℃以下になると容易に
レーザ発振が生じてしまうことが多いとともに、端面反
射率の低減及び損失領域の形成に複雑な製作工程を必要
としている。
[Problems to be solved by the invention] However, with conventional technology, laser oscillation often occurs easily at temperatures below 0°C, and complicated manufacturing processes are required to reduce end face reflectance and form loss regions. It is said that

本発明9目的は端面反射率の低減あるいは損失領域の形
成等の新たな製作工程を付加することなく容易に製作で
き、0℃以下の実用的な温度範囲でレーザ発振の生じな
い端面発光LEDを提供することにある。
The ninth object of the present invention is to provide an edge-emitting LED that can be easily manufactured without adding new manufacturing steps such as reducing the reflectance of the end face or forming a loss region, and that does not cause laser oscillation in a practical temperature range of 0°C or less. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明の半導体発光素子は半
導体基板上に、厚さ11μmの活性層を前記活性層より
禁制帯幅が大きな半導体結晶でなる厚さ12μmの第1
のクラッド層で挟み込んだダブルヘテロ構造を有し、さ
らに前記ダブルヘテロ構造を第2のクラッド層により上
下に挟み込んだ光導波路構造をもち、前記活性層の屈折
率n1と前記第1のクラッド層の屈折率n2と前記第2
のクラッド層の屈折率n3の関係が活性層、第2のクラ
ッド層、第1のクラッド層の順(nl>13〉n2)に
大きく、前記活性層の厚さtlと前記第1のクラッド層
の厚さt2が前記光導波路に導波姿態の固有値を与えな
いカットオフ条件下の厚さに設定されていることを特徴
としている。
In order to achieve the above object, the semiconductor light emitting device of the present invention has an active layer with a thickness of 11 μm on a semiconductor substrate, and a first layer with a thickness of 12 μm made of a semiconductor crystal whose forbidden band width is larger than that of the active layer.
It has a double heterostructure sandwiched between two cladding layers, and further has an optical waveguide structure in which the double heterostructure is sandwiched vertically between second cladding layers, and the refractive index n1 of the active layer and the first cladding layer are refractive index n2 and the second
The relationship between the refractive index n3 of the cladding layer is larger in the order of active layer, second cladding layer, and first cladding layer (nl>13>n2), and the relationship between the thickness tl of the active layer and the first cladding layer is The thickness t2 of the optical waveguide is set to a thickness under a cutoff condition that does not give an eigenvalue of the waveguide configuration to the optical waveguide.

具体的な材料について、上記条件を満す各層の厚さは、
マスクウェルの方程式により、各層内での電磁界分布を
計算して求める。具体的には、電子通信学会論文誌(T
rans 、 IEcE’ 7315vo l 、 5
6−CNα5 、 p277)に記載の解析方法に従っ
て計算する。
For specific materials, the thickness of each layer that satisfies the above conditions is:
The electromagnetic field distribution within each layer is calculated using Maskwell's equation. Specifically, the journal of the Institute of Electronics and Communication Engineers (T
rans, IEcE' 7315vol, 5
Calculated according to the analysis method described in 6-CNα5, p277).

例えば、TEモードのみを考えた場合、各層内での電界
分布は、第1図(b)に示すように座標を定めると、 ここで、γ’、 ” k ?−β2 に1:各層における波数 となる。このマトリクスを各層の境界で連結し、秋 最外層での指数関係的減衰を考慮すると、γN γ0 γN γO ここで、 サフィックスO及びNは最外層(屈折率n3の層に相当
)を示す。
For example, when only the TE mode is considered, the electric field distribution in each layer is determined by setting the coordinates as shown in Figure 1(b). Here, γ', ``k?-β2 1: wave number in each layer If we connect this matrix at the boundaries of each layer and consider the exponential attenuation in the outermost layer, we get γN γ0 γN γO where the suffixes O and N refer to the outermost layer (corresponding to the layer with refractive index n3). show.

d、(i=1.2.・・・、N):各層の層厚となる。d, (i=1.2..., N): The layer thickness of each layer.

伝搬定数βが(1)式の解となるとき導波姿態が存在す
るので、βが(1)式を満さないような各層厚tt2か
本発明の条件を満す層厚となる。
Since a waveguiding state exists when the propagation constant β is a solution to equation (1), each layer thickness tt2 such that β does not satisfy equation (1) is a layer thickness that satisfies the conditions of the present invention.

〔作用〕[Effect]

本発明の作用について、図面を用いて説明する。 The operation of the present invention will be explained using the drawings.

第1図(a) 、 (b)に本発明の端面発光LEDの
出射方向に対し垂直な断面模式図(第1図(a))と屈
折率分布(第1図(b))を示す。半導体基板60上に
活性層10を第1のクラッド層20.30により挟み込
んだタプルヘテロ構造を含み、さらにソノダブルヘテロ
構造を第2のクラッド層40゜50により挟み込む構造
を有する。このとき活性層10の屈折率n、と第1のク
ラッド層20.30の屈折率n2及び第2のクラッド層
40.50の屈折率n3の間にはnt>n3>n2の関
係をもっている。活性層に電流を狭さくしながら注入す
るため電流フロソキンク層70.及びキャップ層80と
電極90を備えている。この構造は半導体レサの構造と
ほとんど同じである。当然半導体レーザとして動作させ
ることができる条件がある。
FIGS. 1(a) and 1(b) show a schematic cross-sectional view (FIG. 1(a)) and a refractive index distribution (FIG. 1(b)) perpendicular to the emission direction of the edge-emitting LED of the present invention. It includes a tuple heterostructure in which the active layer 10 is sandwiched between first cladding layers 20 and 30 on a semiconductor substrate 60, and further has a structure in which a sonodouble heterostructure is sandwiched between second cladding layers 40.50. At this time, there is a relationship of nt>n3>n2 between the refractive index n of the active layer 10, the refractive index n2 of the first cladding layer 20.30, and the refractive index n3 of the second cladding layer 40.50. A current flow kink layer 70 is used to narrowly inject current into the active layer. and a cap layer 80 and an electrode 90. This structure is almost the same as that of a semiconductor laser. Naturally, there are conditions under which it can be operated as a semiconductor laser.

第2区に半導体レーザとして動作させたときの活性層の
厚さtlと出射ビームの垂直放射角の関係を示す。この
計算においては第1のクラッド層厚t2は03μmηと
している。n 2 = n h = 3.26とした場
合は最も一般的にタプルヘテロ構造半導体レーザてあり
、活性層厚を0から増加するにつれ、垂直放射角が徐々
に増大するよく知られている傾向を示す。一方、rz=
3.31とすると活性層か0.06μm以上ではしめて
垂直放射角が計算される。これは006μm以下ではこ
の導波路に導波モートが存在しないことを示している。
The second section shows the relationship between the thickness tl of the active layer and the vertical radiation angle of the emitted beam when operating as a semiconductor laser. In this calculation, the first cladding layer thickness t2 is 03 μmη. The case where n 2 = n h = 3.26 is the most commonly used tuple heterostructure semiconductor laser, which exhibits the well-known tendency that the vertical emission angle gradually increases as the active layer thickness increases from 0. . On the other hand, rz=
If the value is 3.31, the vertical radiation angle is calculated by closing the active layer at 0.06 μm or more. This indicates that no waveguide moat exists in this waveguide below 0.06 μm.

すなわちレーザ発振が極度に押えられるということにな
る。実際には、活性層は利得媒体のため、その利得によ
り導波されることになるが、放射モードとの共存下にお
かれるため、レーザ発振したとしても発振しきい値は非
常に高くなる。すなわち、発振しきい値以下においては
端面発光LEDとして動作することになり、端面反射率
を低下させたリ、あるいは損失を導入した従来の端面発
光L EDと等価な動作をする。製作上においては多層
半導体積層構造たけで構成されるため、発振抑制のため
の特別な製作工程を必要としないので、従来と比較して
容易に製作可能である。
In other words, laser oscillation is extremely suppressed. Actually, since the active layer is a gain medium, the wave is guided by its gain, but since it coexists with the radiation mode, even if laser oscillation occurs, the oscillation threshold becomes extremely high. That is, below the oscillation threshold, it operates as an edge-emitting LED, and operates equivalent to a conventional edge-emitting LED with reduced edge reflectance or loss. In terms of manufacturing, since it is composed of a multilayer semiconductor laminated structure, no special manufacturing process for suppressing oscillation is required, so it can be manufactured more easily than in the past.

〔実施例〕〔Example〕

以下、第1図に示した実施例を用いて本発明の詳細な説
明する。GaAs基板上にGaAsバッファー層を積層
後、Siドープ(A Il o、s G a o、s 
) o5I n o、s Pよりなる厚さ1.0μmの
第2のクラッド層40.Siドープ(A n o、s 
G a 0.4)0.5 I n o、s Pでなる厚
さ0.3μmの第1のクラッド層20.ノンドープGa
o、5Ino5Fでなる厚さ0.04μmの活性層10
.Znドープ(A n O,8G a o、< ) o
、s I n o、sPでなる厚さ0.3μmの第1の
クラッド層30゜Znドープ(Aρo、s G a 0
.5) 0.5 I n 0.5 Pでなる厚さ1.0
μmの第2のクラッド層50をこの順に有機金属気相成
長法により成長し、さらにその上に、薄膜GaI nP
層を介して、SiドープG a A sでなる厚さ0.
7μmの電流ブロッキング層70を積層した。次にフォ
トリソグラフィーの技術とエツチングにより電流ブロッ
キング層70を部分的に除去した後、再び有機金属気相
成長法によりZnドープGaAsでなる厚さ2μmのキ
ャップ層を積層し端面発光LEDウェハを作製した。そ
の後、G a A s基板側を研磨して100μm厚の
ウェハにし、電極90を形成し、個々のチップに分割し
て端面発光LEDとした。試作した端面発光LEDは一
30℃の温度においても発振することなくLED動作を
維持した。
Hereinafter, the present invention will be explained in detail using the embodiment shown in FIG. After stacking a GaAs buffer layer on a GaAs substrate, Si-doped (A Ilo, s Ga o, s
) A 1.0 μm thick second cladding layer 40 made of o5Ino,sP. Si-doped (A no,s
A first cladding layer 20 with a thickness of 0.3 μm made of Ga 0.4) 0.5 Ino, s P. Non-doped Ga
Active layer 10 with a thickness of 0.04 μm made of 5Ino5F
.. Zn doped (A n O, 8G ao, < ) o
, s I n o, sP with a thickness of 0.3 μm.
.. 5) Thickness 1.0 consisting of 0.5 I n 0.5 P
A second cladding layer 50 with a thickness of μm is grown in this order by metal organic vapor phase epitaxy, and a thin film of GaI nP
Through the layer, a layer of Si-doped GaAs with a thickness of 0.
A current blocking layer 70 of 7 μm was laminated. Next, the current blocking layer 70 was partially removed by photolithography and etching, and then a 2 μm thick cap layer made of Zn-doped GaAs was deposited again by metal organic vapor phase epitaxy to produce an edge-emitting LED wafer. . Thereafter, the GaAs substrate side was polished to form a 100 μm thick wafer, electrodes 90 were formed, and the wafer was divided into individual chips to form edge-emitting LEDs. The prototype edge-emitting LED maintained its LED operation without oscillation even at temperatures of -30°C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、容易に作製可能であり、0℃以下の実
用的な温度でもレーザ発振が生じない端面発光LEDが
得られる。
According to the present invention, it is possible to obtain an edge-emitting LED that can be easily manufactured and does not cause laser oscillation even at a practical temperature of 0° C. or lower.

実施例ではプラスチックファイバ伝送を考え可視域での
発光波長を有するAj7Ga I nP系の材料による
ものを示したが、−船釣なガラス光ファイバ通信用のI
nGaAsP系の材料においても実施することができる
In the example, we considered plastic fiber transmission and showed a system using Aj7Ga I nP material that has an emission wavelength in the visible range.
It can also be implemented in nGaAsP based materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は本発明の半導体発光素子の
断面模式図及び屈折率分布を示す図、第2図は本発明の
素子が半導体レーザとして動作する場合の垂直放射角の
活性層厚の依存性を示す図でかつ導波路がカットオフに
なる活性層厚を示す図である。 図中 lO・・・・活性層、20.30・・・第1のクラッド
層、40.50・・・・第2のクラッド層、60・・・
・半導体基板、70・・・・・・電流フロ、キンク層、
80・・ キャップ層、90 ・・・電極。
Figures 1 (a) and (b) are schematic cross-sectional views and diagrams showing the refractive index distribution of the semiconductor light emitting device of the present invention, and Figure 2 shows the activity of the vertical radiation angle when the device of the present invention operates as a semiconductor laser. FIG. 3 is a diagram showing the dependence on layer thickness and also shows the active layer thickness at which the waveguide becomes cutoff. In the figure, lO... active layer, 20.30... first cladding layer, 40.50... second cladding layer, 60...
・Semiconductor substrate, 70...Current flow, kink layer,
80... Cap layer, 90... Electrode.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に、厚さt_1μmの活性層を前記活性
層より禁制帯幅が大きな半導体結晶でなる厚さt_2μ
mの第1のクラッド層で挟み込んだダブルヘテロ構造を
有し、さらに前記ダブルヘテロ構造を第2のクラッド層
により上下に挟み込んだ光導波路構造をもち、前記活性
層の屈折率n_1と前記第1のクラッド層の屈折率n_
2と前記第2のクラッド層の屈折率n_3の関係が、活
性層、第2のクラッド層、第1のクラッド層の順(n_
1>n_3>n_2)に大きく、前記活性層の厚さt_
1と前記第1のクラッド層の厚さt_2が前記光導波路
に導波姿態の固有値を与えないカットオフ条件下の厚さ
に設定されていることを特徴とする半導体発光素子。
An active layer with a thickness of t_1 μm is formed on a semiconductor substrate by a semiconductor crystal with a thickness of t_2 μm and a forbidden band width larger than that of the active layer.
m has a double heterostructure sandwiched between first cladding layers, and further has an optical waveguide structure in which the double heterostructure is sandwiched vertically between second cladding layers, and the refractive index n_1 of the active layer and the first The refractive index n_ of the cladding layer of
2 and the refractive index n_3 of the second cladding layer is the order of the active layer, the second cladding layer, and the first cladding layer (n_3).
1>n_3>n_2), and the thickness t_ of the active layer
1 and the thickness t_2 of the first cladding layer are set to thicknesses under a cutoff condition that does not give an eigenvalue of a waveguide configuration to the optical waveguide.
JP2094510A 1990-04-10 1990-04-10 Semiconductor light emitting element Pending JPH03292778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094510A JPH03292778A (en) 1990-04-10 1990-04-10 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094510A JPH03292778A (en) 1990-04-10 1990-04-10 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH03292778A true JPH03292778A (en) 1991-12-24

Family

ID=14112320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094510A Pending JPH03292778A (en) 1990-04-10 1990-04-10 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH03292778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477063A (en) * 1993-06-17 1995-12-19 Rohm Co., Ltd. Semiconductor light emitting device with Group II-IV and III-V semiconductors
EP2823515A4 (en) * 2012-03-06 2015-08-19 Soraa Inc Light emitting diodes with low refractive index material layers to reduce light guiding effects

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477063A (en) * 1993-06-17 1995-12-19 Rohm Co., Ltd. Semiconductor light emitting device with Group II-IV and III-V semiconductors
EP2823515A4 (en) * 2012-03-06 2015-08-19 Soraa Inc Light emitting diodes with low refractive index material layers to reduce light guiding effects
US9269876B2 (en) 2012-03-06 2016-02-23 Soraa, Inc. Light emitting diodes with low refractive index material layers to reduce light guiding effects

Similar Documents

Publication Publication Date Title
JP4027392B2 (en) Vertical cavity surface emitting laser device
JPH0212885A (en) Semiconductor laser and method of controlling vertical radiating angle of laser beam
JPS6352792B2 (en)
JP2746326B2 (en) Semiconductor optical device
JPH0720506A (en) Optical switch and its production
JP2008098379A (en) Two dimensional photonic crystalline surface emission laser and its manufacturing method
KR0153125B1 (en) Semiconductor laser element and laser manufactured using the same
US9929532B1 (en) Broad area semiconductor laser device
JP2000228558A (en) Light modulator integrated semiconductor laser and its manufacture
JPH03292778A (en) Semiconductor light emitting element
JPH11238940A (en) Manufacture of semiconductor laser and semiconductor laser manufactured by the method
JPS6114787A (en) Distributed feedback type semiconductor laser
KR100576299B1 (en) Semiconductor laser and element for optical communication
JP2002014247A (en) Distributed reflection optical waveguide and optical device containing the same
JP5163355B2 (en) Semiconductor laser device
JPS5832794B2 (en) semiconductor laser
JPS6184891A (en) Semiconductor laser element
JPH1027935A (en) Semiconductor light emitting device and method of fabricating the same
JPS5911690A (en) Semiconductor laser device
JP2755357B2 (en) Semiconductor laser device
JP2003152279A (en) Semiconductor laser device
JPH07162085A (en) Semiconductor light emitting device
JPH0992921A (en) Integrated light source of semiconductor laser and optical modulator, and its manufacture
JPS6237833B2 (en)
JPS59218786A (en) Single axial mode semiconductor laser