JPH03292777A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPH03292777A
JPH03292777A JP2094512A JP9451290A JPH03292777A JP H03292777 A JPH03292777 A JP H03292777A JP 2094512 A JP2094512 A JP 2094512A JP 9451290 A JP9451290 A JP 9451290A JP H03292777 A JPH03292777 A JP H03292777A
Authority
JP
Japan
Prior art keywords
layer
diffraction grating
conductivity type
type
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094512A
Other languages
Japanese (ja)
Inventor
Yoshihiro Koizumi
善裕 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2094512A priority Critical patent/JPH03292777A/en
Publication of JPH03292777A publication Critical patent/JPH03292777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a two-way light communication optical integrated circuit at a low cost by a method wherein a distributed feedback type semiconductor laser composed of a first conductivity type optical waveguide layer, an active layer, and a clad layer is formed on a primary diffraction grating, a photodetector composed of a first conductivity type layer, a light absorbing layer, and a second conductivity type layer is provided onto a secondary diffraction grating, and they are electrically isolated from each other. CONSTITUTION:An n-type optical waveguide layer 13 (InGaAsP), an active layer 14 (InGaAsP), a P-type clad layer 15 (InP), and a P-type contact layer 15 (InGaAs) are successively and selectively grown on a primary diffraction grating 11 to constitute a distributed feedback semiconductor laser. Then, an N-type clad layer 19 (InP), a non-doped light absorbing layer 20 (InGaAs), and a P-type contact layer (InGaAs) are successively, selectively grown on a secondary diffraction grating 12 to form a photodetector. Furthermore, a region between the distributed feedback type semiconductor laser and the photodetector is etched so deep as to reach an N-type semiconductor substrate 10, and an iron doped InP 23, an iron doped InGaAsP layer 24 and an iron doped lnP layer 23 are selectively grown on the etched part concerned through a vapor growth method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信に利用される光集積回路に関し、特に双
方向光通信を目的とした半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical integrated circuit used for optical communication, and particularly to a semiconductor integrated circuit for bidirectional optical communication.

〔従来の技術〕[Conventional technology]

光通信システムは、長距離、大容量を特徴とした幹線系
光通信システムから、短・中距離、中容量の加入者網、
またはLANにまで浸透しはじめている。加入者系光通
信システムでは、コストを低減することが第1に求めら
れ、そのため、1本の光ファイバで双方向通信システム
を実現することが求められる。
Optical communication systems range from trunk optical communication systems characterized by long distance and large capacity to short/medium distance and medium capacity subscriber networks,
It is also beginning to penetrate into LANs. In subscriber optical communication systems, the first requirement is to reduce costs, and therefore it is required to realize a two-way communication system with a single optical fiber.

双方向光通信システムとして考えられる主な方式を第2
図(a)〜(d)に示す、2本の光ファィバを用いた双
方向伝送方式(第2図(a))では光ファイバのコスト
が高く、方向性結合器を用いた同一波長双方向伝送方式
(第2図(C))では、光の反射が特性を劣化させると
いう欠点がある。また、ピンポン伝送方式(第2図(d
〉)では、電気回路が複雑になるという欠点がある。し
たがって、波長多重(WDM)双方向伝送方式(第2図
(b))が双方向光通信システムとして有望である。
The main methods that can be considered as a two-way optical communication system are explained in the second section.
In the bidirectional transmission system using two optical fibers (Fig. 2 (a)) shown in Figures (a) to (d), the cost of the optical fiber is high, and a directional coupler is used to transmit the same wavelength in both directions. The transmission method (FIG. 2(C)) has the disadvantage that reflection of light deteriorates the characteristics. In addition, the ping-pong transmission method (Fig. 2 (d)
〉) has the disadvantage that the electric circuit becomes complicated. Therefore, the wavelength division multiplexing (WDM) bidirectional transmission system (FIG. 2(b)) is promising as a bidirectional optical communication system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のWDM双方向光通信システムの端末の構成を第3
図に示す。この場合、基本的に波長フィルタ(分配器)
31、半導体レーザ32、光検出器33が必要である。
The terminal configuration of the conventional WDM two-way optical communication system is
As shown in the figure. In this case, basically a wavelength filter (distributor)
31, a semiconductor laser 32, and a photodetector 33 are required.

現在、波長フィルタは非常に高価な部品であり、また、
3つの部品の光軸調整は非常に精密に調整されなければ
ならず、莫大な工数を組立に必要としていた。また、波
長フィルタの大きさを小さくすることは難しく、システ
ム全体として装置を小型化することが難しかった。
Currently, wavelength filters are very expensive components, and
The optical axes of the three parts had to be adjusted very precisely, requiring a huge amount of man-hours to assemble. Furthermore, it has been difficult to reduce the size of the wavelength filter, making it difficult to miniaturize the overall system.

そこで、本発明の目的は、低価格で、小型の双方向光通
信用デバイスを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a small-sized bidirectional optical communication device at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

前述の課題を解決するために、本発明では半導体製光集
積回路を提供する0本発明における第1の光集積回路は
、1次の回折格子及び2次の回折格子を周期的に形成し
た第1導電型半導体基板上に、1次の回折格子上には第
1導電型光導波層、活性層、第2導電型クラッド層より
なる分布帰還型半導体レーザが形成され、かつ、前記2
次の回折格子上には第1導電型層、光吸収層、第2導電
型層より成る光検出器が形成され、1次回折格子上の分
布帰還型半導体レーザと、2次回折格子上の光検出器は
電気的に分離されていることを特徴とする構成になって
いる。また、本発明における光集積回路は、前述の光集
積回路の2次回折格子近くの第1導電型半導体基板が回
折格子付近まで平坦にエツチングされて薄くなっており
、かつ、エツチングされて薄くなった第1導電型半導体
基板裏面にも電極が形成されていることを特徴としてい
る。
In order to solve the above-mentioned problems, the present invention provides a semiconductor optical integrated circuit. A first optical integrated circuit according to the present invention includes a semiconductor optical integrated circuit in which a first-order diffraction grating and a second-order diffraction grating are periodically formed. A distributed feedback semiconductor laser comprising a first conductivity type optical waveguide layer, an active layer, and a second conductivity type cladding layer is formed on a first conductivity type semiconductor substrate on a first order diffraction grating, and
A photodetector consisting of a first conductivity type layer, a light absorption layer, and a second conductivity type layer is formed on the next diffraction grating, and a distributed feedback semiconductor laser is formed on the first order diffraction grating, and a photodetector is formed on the second order diffraction grating. The photodetector is electrically isolated. Further, in the optical integrated circuit of the present invention, the first conductivity type semiconductor substrate near the second-order diffraction grating of the optical integrated circuit described above is etched flat to the vicinity of the diffraction grating, and is thinned by etching. The semiconductor device is characterized in that an electrode is also formed on the back surface of the first conductivity type semiconductor substrate.

〔作用〕[Effect]

次に、本発明の作用を第4図を参照にして説明する。2
次の回折格子に、回折格子に整合した光が回折格子に対
し平行に入射すると、光の入射方向に光が反射するばか
りではなく、2次の回折格子に対し、垂直方向に光は放
射する。一方、2次の回折格子に整合しない光は、反射
せずに若干減水して透過する。回折格子に垂直に放射す
る光の回折効率は、回折格子の形状、光導波層の組成等
により異なるが10%程度の回折効率は得られることが
知られている。
Next, the operation of the present invention will be explained with reference to FIG. 2
When light that matches the diffraction grating enters the next diffraction grating parallel to the diffraction grating, the light is not only reflected in the direction of incidence, but also radiates perpendicularly to the second-order diffraction grating. . On the other hand, light that does not match the second-order diffraction grating is not reflected but is transmitted after being slightly reduced in water. Although the diffraction efficiency of light emitted perpendicularly to the diffraction grating varies depending on the shape of the diffraction grating, the composition of the optical waveguide layer, etc., it is known that a diffraction efficiency of about 10% can be obtained.

いま、2次の回折格子41のピッチを波長1゜3μmの
光波に、1次の回折格子42のピッチを波長1.5μm
帯の光波に整合するよう設定すると、2次の回折格子に
入射した1 3μm帯の光の一部46は、回折格子に垂
直に放射し、光吸収層43にて光電変換され、光電流と
して検出される。また、2次の回折格子に入射した1、
3μm帯の光のほとんど47は、反射されるため、分布
帰還型半導体レーザの活性層4つまで至らず、従って、
半導体レーザの発振に悪影響を及ぼすことはない さら
に、2次の回折格子41の近くに、エツチングと電極形
成により、良好な反射鏡が存在する構造では、回折格子
と垂直方向の放射光の回折効率が高まり、光検出器の感
度を上げることが可能となる。
Now, the pitch of the second-order diffraction grating 41 is set to a light wave with a wavelength of 1°3 μm, and the pitch of the first-order diffraction grating 42 is set to a wavelength of 1.5 μm.
When set to match the light waves in the band, a part 46 of the 13 μm band light incident on the secondary diffraction grating is emitted perpendicularly to the diffraction grating, is photoelectrically converted in the light absorption layer 43, and is converted into photocurrent. Detected. In addition, 1, which is incident on the second-order diffraction grating,
Most of the light in the 3 μm band 47 is reflected, so it does not reach the four active layers of the distributed feedback semiconductor laser, and therefore,
There is no negative effect on the oscillation of the semiconductor laser.Furthermore, in a structure in which a good reflecting mirror is present near the secondary diffraction grating 41 by etching and electrode formation, the diffraction efficiency of the emitted light in the direction perpendicular to the diffraction grating is improved. This increases the sensitivity of the photodetector.

一方、分布帰還型半導体レーザ側の1次の回折格子42
は、1.5μm帯の光波に整合しているため、1.5μ
m帯の光波48が放出される。
On the other hand, the first-order diffraction grating 42 on the side of the distributed feedback semiconductor laser
is matched to light waves in the 1.5 μm band, so 1.5 μm
An m-band light wave 48 is emitted.

13μm帯2次の回折格子に到達した1、5μm帯の光
は、13μm帯2次の回折格子には回折せず、はとんど
透過する。さらに、受光側の光電流と分布帰還型半導体
レーザの変調電流とは半絶縁層44で分離されているた
め、光電流を良好に検出することができる。
The 1.5 μm band light that reaches the 13 μm band secondary diffraction grating is not diffracted by the 13 μm band secondary diffraction grating, but is mostly transmitted. Furthermore, since the photocurrent on the light receiving side and the modulation current of the distributed feedback semiconductor laser are separated by the semi-insulating layer 44, the photocurrent can be detected satisfactorily.

以上述べたように、本発明よるWDM双方向光通信用光
集積回路により、低価格で小型のWDM双方向光通信シ
ステムを実現できる。
As described above, by using the optical integrated circuit for WDM two-way optical communication according to the present invention, it is possible to realize a small-sized WDM two-way optical communication system at low cost.

〔実施例〕 次に本発明の実施例について図面を参照して説明する。〔Example〕 Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)は本発明の光集積回路の一実施例を示す断
面図である。硫黄(S)ドーピングN型(100)イン
ジウム燐(InP)基板10上に、1.55μm帯用回
折格子11(ピッチ2420人)を長さ300μm、1
.3μm帯2次回折格子12(ピッチ4060人)を長
さ100μm、電子線ビーム露光によりフォトレジスト
上に描画し、基板を化学エツチングして半導体基板表面
に回折格子11.12を形成する。次に、1.55μm
帯用回折格子12上に、長さ300μmにわたり、N型
光導波層13(組成:InGaAsP (人、=1.3
μm) 、厚み0.2μm)−活性層14(組成: I
 nGaAsP (λ、=1.55μm)、厚み0.1
5μm>、P型クラッド層15(組成:InP、厚み:
 2.czm)、P型コンタクト層16(組成: I 
nGaAs、厚み10.2μm)を順次、気相成長法(
VPE)法により選択成長して分布帰還半導体レーザを
形成する。次に、1.3μm帯2次回折格子12上に、
長さ100μmにわたりN型光導波層17(組成: I
 nGaAsP (λ、=1.2μm) 、厚み0.2
μm) 、N型光導波層18(組成:InGaAsP(
λ、=1.3μm)、厚み0.15μm)、N型クラッ
ド層19(組成:InP、厚み1μm)、ノンドープ光
吸収層20(組成:InGaAs、厚み0.5μm)、
P型コンタクト層21(組成:InGaAs、厚み10
.2μm)を順次VPEにより選択的に気相成長して光
検出器を形成する。さらに、分布帰還型半導体レーザと
、光検出器の間、50μmにわたり、N型半導体基板に
至る深さにまでエツチングした後、その部分に鉄(Fe
)ドープInP23(厚み0.5μm)、鉄ドープIn
GaAsP層24(厚み0.15μm) 、鉄ドープI
nP層23(厚み2.2μm)をVPHにより選択的に
気相成長する。さらに光の単一モード化を実現するため
に、幅約1,5μmのメサストライプを〈011〉方向
に化学エツチングにより形成し、エツチングを施した部
分を鉄ドープInPにより埋め込み成長する。埋め込み
成長後、N型InP基板を厚み約150μmにまで研磨
する。最後に、図示の如くP側電極26、N側電極27
、無反射コーティングM28を形成して光集積回路とす
る。
FIG. 1(a) is a sectional view showing an embodiment of the optical integrated circuit of the present invention. On a sulfur (S)-doped N-type (100) indium phosphide (InP) substrate 10, a 1.55 μm band diffraction grating 11 (pitch 2420) was formed with a length of 300 μm and 1
.. A 3 μm band secondary diffraction grating 12 (pitch 4060) with a length of 100 μm is drawn on a photoresist by electron beam exposure, and the substrate is chemically etched to form diffraction gratings 11 and 12 on the surface of the semiconductor substrate. Next, 1.55 μm
On the band diffraction grating 12, an N-type optical waveguide layer 13 (composition: InGaAsP (=1.3
μm), thickness 0.2 μm) - active layer 14 (composition: I
nGaAsP (λ, = 1.55 μm), thickness 0.1
5 μm>, P-type cladding layer 15 (composition: InP, thickness:
2. czm), P-type contact layer 16 (composition: I
nGaAs, thickness 10.2 μm) was sequentially grown by vapor phase growth method (
A distributed feedback semiconductor laser is formed by selective growth using the VPE method. Next, on the 1.3 μm band second-order diffraction grating 12,
N-type optical waveguide layer 17 (composition: I
nGaAsP (λ, = 1.2 μm), thickness 0.2
μm), N-type optical waveguide layer 18 (composition: InGaAsP (
λ, = 1.3 μm), thickness 0.15 μm), N-type cladding layer 19 (composition: InP, thickness 1 μm), non-doped light absorption layer 20 (composition: InGaAs, thickness 0.5 μm),
P-type contact layer 21 (composition: InGaAs, thickness 10
.. 2 μm) is sequentially selectively vapor-phase grown using VPE to form a photodetector. Furthermore, after etching the area between the distributed feedback semiconductor laser and the photodetector to a depth of 50 μm down to the N-type semiconductor substrate, the area was etched with iron (Fe).
) Doped InP23 (thickness 0.5 μm), iron-doped In
GaAsP layer 24 (thickness 0.15 μm), iron doped I
An nP layer 23 (thickness: 2.2 μm) is selectively grown in vapor phase using VPH. Furthermore, in order to realize a single mode of light, a mesa stripe with a width of about 1.5 μm is formed by chemical etching in the <011> direction, and the etched portion is buried and grown with iron-doped InP. After the buried growth, the N-type InP substrate is polished to a thickness of approximately 150 μm. Finally, as shown in the figure, the P side electrode 26 and the N side electrode 27
, a non-reflective coating M28 is formed to form an optical integrated circuit.

第1図(b)に示した光集積回路を実現する場合には、
2次の回折格子12の下の領域25のN型半導体基板を
化学エツチングにより、厚み10μm位になるまでエツ
チングする。光集積回路のプロセスは!&後にP側26
及びN側27のtf!を形成して終了する。
When realizing the optical integrated circuit shown in FIG. 1(b),
The N-type semiconductor substrate in the region 25 below the secondary diffraction grating 12 is etched by chemical etching until it has a thickness of about 10 μm. What is the process of optical integrated circuits? & later P side 26
and tf on N side 27! form and finish.

上記実施例では分布帰還型半導体レーザと光検出器の電
気的分離に、半絶縁性半導体を用いたが、この他の方法
、例えば溝分離(エアー分離)構造、pn接合分離構造
等でもよい。また、溝に半絶縁性半導体を埋め込む替り
に絶縁体(SiC2,Si3N4等)を埋め込んでよも
い。
In the above embodiment, a semi-insulating semiconductor was used for electrically separating the distributed feedback semiconductor laser and the photodetector, but other methods such as a trench isolation (air isolation) structure, a pn junction isolation structure, etc. may also be used. Also, instead of burying a semi-insulating semiconductor in the trench, an insulator (SiC2, Si3N4, etc.) may be buried.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、低価格で小型の
双方向光通信用光集積回路を実現することができる。
As described above, according to the present invention, it is possible to realize a small-sized optical integrated circuit for bidirectional optical communication at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)は本発明による光j[回路の一実
施例の構造を示す断面図である。第2図(a)〜(d)
は双方向光通信システムの伝送方式を示した概略図であ
る。(a>は2本の光ファイバを用いた双方向伝送方式
を示す図、(b)は波長多重双方向伝送方式を示す図、
(c)は方向性結合器を用いた同一波長双方向伝送方式
を示す図、(d)はビンボン伝送方式を示す図である。 第3図は従来、の波長多重双方向光通信システムにおけ
る端末の構成例を説明するための概略図である。第4図
は本発明による光集積回路の動作原理を説明するための
概略図である。 10・・・半導体基板、11・・1次の回折格子、12
・・・2次の回折格子、13・・・光導波層、14・・
・活性層、15・・・クラッド層、16・・・コンタク
ト層、17・・・光導波層、18・・・光導波層、19
・・・クラッド層、20・・・光吸収層、21・・・コ
ンタクト層、23・・・半絶縁性半導体層、24・・・
半絶縁性光導波層、25・・・半導体基板エツチング領
域、26・・・電極、27・・・電極、28・・・無反
射コーテイング膜、31・・・波長フィルタ、32・・
・半導体レーザ、33・・・光検出器、41・・・2次
の回折格子、42・・・1次の回折格子、43・・・光
吸収層、44・・・半絶縁性半導体層、46・・・2次
の回折格子による回折光、47・・・2次の回折格子に
よる回折光、48・・・半導体レーザからの出射光、4
9・・・活性層。
FIGS. 1(a) and 1(b) are cross-sectional views showing the structure of an embodiment of the optical circuit according to the present invention. Figure 2 (a) to (d)
1 is a schematic diagram showing a transmission method of a two-way optical communication system. (a> is a diagram showing a bidirectional transmission system using two optical fibers, (b) is a diagram showing a wavelength multiplexing bidirectional transmission system,
(c) is a diagram showing the same wavelength bidirectional transmission method using a directional coupler, and (d) is a diagram showing the Bing Bong transmission method. FIG. 3 is a schematic diagram for explaining an example of the configuration of a terminal in a conventional wavelength multiplexing bidirectional optical communication system. FIG. 4 is a schematic diagram for explaining the operating principle of the optical integrated circuit according to the present invention. 10... Semiconductor substrate, 11... First-order diffraction grating, 12
...second-order diffraction grating, 13...optical waveguide layer, 14...
- Active layer, 15... Cladding layer, 16... Contact layer, 17... Optical waveguide layer, 18... Optical waveguide layer, 19
... Cladding layer, 20 ... Light absorption layer, 21 ... Contact layer, 23 ... Semi-insulating semiconductor layer, 24 ...
Semi-insulating optical waveguide layer, 25... Semiconductor substrate etching region, 26... Electrode, 27... Electrode, 28... Anti-reflection coating film, 31... Wavelength filter, 32...
- Semiconductor laser, 33... Photodetector, 41... Second order diffraction grating, 42... First order diffraction grating, 43... Light absorption layer, 44... Semi-insulating semiconductor layer, 46... Diffracted light by the second-order diffraction grating, 47... Diffracted light by the second-order diffraction grating, 48... Light emitted from the semiconductor laser, 4
9...Active layer.

Claims (1)

【特許請求の範囲】 1、1次の回折格子と2次の回折格子が、互いの回折格
子の凹凸を平行にして前記凹凸が周期的に連なる方向に
連らなって第1導電型半導体基板表面に形成され、1次
の回折格子上に第1導電型光導波層、活性層、第2導電
型クラッド層が少くとも積層されて分布帰還型半導体レ
ーザが形成され、前記2次の回折格子上に第1導電型層
、光吸収層、第2導電型層が少くとも積層されて光検出
器が形成され、前記分布帰還型半導体レーザと光検出器
とが電気的に分離されていることを特徴とする光集積回
路。 2、請求項1記載の光集積回路において、2次の回折格
子が形成された領域の第1導電型半導体基板の厚さが1
次の回折格子が形成された領域の第1導電型半導体基板
の厚さよりも薄く、かつ、厚さの薄い領域の第1導電型
半導体基板裏面にも電極が形成されていることを特徴と
する光集積回路。
[Scope of Claims] 1. A first conductivity type semiconductor substrate in which a first-order diffraction grating and a second-order diffraction grating are connected in a direction in which the irregularities of the respective diffraction gratings are arranged in parallel with each other in a periodic manner. A distributed feedback semiconductor laser is formed by laminating at least a first conductivity type optical waveguide layer, an active layer, and a second conductivity type cladding layer on the first-order diffraction grating, and the second-order diffraction grating is formed on the surface. A photodetector is formed by laminating at least a first conductivity type layer, a light absorption layer, and a second conductivity type layer thereon, and the distributed feedback semiconductor laser and the photodetector are electrically separated. An optical integrated circuit featuring: 2. In the optical integrated circuit according to claim 1, the thickness of the first conductive type semiconductor substrate in the region where the second-order diffraction grating is formed is 1.
The electrode is thinner than the thickness of the first conductivity type semiconductor substrate in the region where the next diffraction grating is formed, and an electrode is also formed on the back surface of the first conductivity type semiconductor substrate in the thinner region. Optical integrated circuit.
JP2094512A 1990-04-10 1990-04-10 Optical integrated circuit Pending JPH03292777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094512A JPH03292777A (en) 1990-04-10 1990-04-10 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094512A JPH03292777A (en) 1990-04-10 1990-04-10 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPH03292777A true JPH03292777A (en) 1991-12-24

Family

ID=14112377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094512A Pending JPH03292777A (en) 1990-04-10 1990-04-10 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPH03292777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645654A1 (en) * 1993-09-24 1995-03-29 France Telecom Method of producing a monolitic integrated structure incorporating opto-electronical components and structure so produced

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645654A1 (en) * 1993-09-24 1995-03-29 France Telecom Method of producing a monolitic integrated structure incorporating opto-electronical components and structure so produced
FR2710455A1 (en) * 1993-09-24 1995-03-31 Ghirardi Frederic Method of producing a monolithic integrated structure incorporating optoelectronic components and structure thus produced.
EP0967503A1 (en) * 1993-09-24 1999-12-29 France Telecom Method of producing a monolitic integrated structure incorporating opto-electronical components and structure so produced

Similar Documents

Publication Publication Date Title
US5452118A (en) Optical heterodyne receiver for fiber optic communications system
Kishino et al. Resonant cavity-enhanced (RCE) photodetectors
EP0642236B1 (en) Free space optical transmission system
US5805755A (en) Self-aligned transition from ridge to buried heterostructure waveguide, especially for multi-wavelength laser array integration
JP2684605B2 (en) Integrated optical device for bidirectional optical communication or signal transmission
US5144637A (en) Inline diplex lightwave transceiver
JPH05507175A (en) Optical/electrical equipment
CN102694050A (en) Optical receiver
CN108767656A (en) Coherent source component
JPH08234033A (en) Integrated optical control element and its production as well as optical integrated circuit element and optical integrated circuit device having the same
CN109830891A (en) A kind of narrow linewidth semiconductor laser
CN117276365A (en) InP-based balance detector integrated chip and preparation method thereof
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
JPH03292777A (en) Optical integrated circuit
JPH06268196A (en) Optical integrated device
JP2865699B2 (en) Light receiving device
CN108808442B (en) Multi-wavelength distributed feedback semiconductor laser array and preparation method thereof
Wanlin et al. High responsivity side illuminated AlGaInAs PIN photodiode for 40 Gbit/s-40 GHz applications
JPH03292776A (en) Optical integrated circuit
JP2836050B2 (en) Optical wavelength filter and device using the same
JP3445226B2 (en) Directional coupler, optical modulator, and wavelength selector
KR100265858B1 (en) Wavelength division multiplexing device with monolithically integrated semiconductor laser and photodiode
JPH10223989A (en) Waveguide type optical element
JP2672141B2 (en) Photo detector
TWI646742B (en) Laser chip and laser diode for mobile fronthaul