TWI646742B - Laser chip and laser diode for mobile fronthaul - Google Patents

Laser chip and laser diode for mobile fronthaul Download PDF

Info

Publication number
TWI646742B
TWI646742B TW107104215A TW107104215A TWI646742B TW I646742 B TWI646742 B TW I646742B TW 107104215 A TW107104215 A TW 107104215A TW 107104215 A TW107104215 A TW 107104215A TW I646742 B TWI646742 B TW I646742B
Authority
TW
Taiwan
Prior art keywords
layer
wafer
disposed
modulator
laser
Prior art date
Application number
TW107104215A
Other languages
Chinese (zh)
Other versions
TW201935791A (en
Inventor
黃英勳
王海琳
許俸鳴
塗晟達
陳聰謀
史泰爵
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW107104215A priority Critical patent/TWI646742B/en
Application granted granted Critical
Publication of TWI646742B publication Critical patent/TWI646742B/en
Publication of TW201935791A publication Critical patent/TW201935791A/en

Links

Abstract

一種可應用於移動前端的雷射晶片及雷射二極體,採脊型波導結構,分為放大區及工作區,放大區之端面反射率降至0.1%以下,工作區之端面反射率提升至99%以上。入射光注入到放大區,提高光功率,以利在工作區鎖模。工作區被鎖模後產生與入射光相同的波長,在工作區加上調變訊號,達到傳送訊號之目的。A laser chip and a laser diode which can be applied to a mobile front end, and a ridge-type waveguide structure, which is divided into an amplification area and a work area, the reflectance of the end face of the amplification area is reduced to less than 0.1%, and the reflectance of the end face of the work area is improved. To over 99%. The incident light is injected into the amplification region to increase the optical power to facilitate mode locking in the work area. After the working area is clamped, the same wavelength as the incident light is generated, and a modulation signal is added to the working area to achieve the purpose of transmitting the signal.

Description

可應用於移動前端的雷射晶片及雷射二極體Laser chip and laser diode for mobile front end

本發明是有關於一種製程技術,且特別是關於一種可應用於移動前端 (Mobile Fronthaul,MFH)的雷射晶片及雷射二極體。The present invention relates to a process technology, and more particularly to a laser chip and a laser diode that can be applied to a Mobile Fronthaul (MFH).

隨著資訊及通訊科技的演進,智慧型手機或其他行動裝置大量推出,行動上網的需求與日俱增,為維持行動上網速率及服務品質,必須佈建綿密的基地台,方能滿足日以倍數成長的行動寬頻需求。在行動網路的建置中,將基地台中的基頻單元 (Baseband Unit,BBU)與無線電遠端單元(Radio Remote Unit,RRU)分離,其中BBU集中部署以滿足低成本、高容量、低能耗、易運營的要求,並使用光纖網路將BBU與RRU連結,目前為有效使用光纖而使用粗波長分波多工(Coarse Wavelength Division Multiplexing,CWDM) 技術連結BBU與RRU,如圖1所示。With the evolution of information and communication technology, smart phones or other mobile devices have been launched in large numbers, and the demand for mobile Internet access is increasing day by day. In order to maintain the mobile Internet speed and service quality, it is necessary to build a dense base station to meet the daily growth. Mobile broadband demand. In the establishment of the mobile network, the baseband unit (BBU) in the base station is separated from the radio remote unit (RRU), and the BBU is deployed centrally to meet low cost, high capacity, and low power consumption. The BBU and the RRU are connected by using a fiber-optic network. Currently, the BBU and the RRU are connected by using Coarse Wavelength Division Multiplexing (CWDM) technology to effectively use the optical fiber, as shown in FIG. 1 .

一般CWDM的多工/解多工器101、102通道相鄰間格為20奈米(nm),每個通道要使用不同波長的光模組,增加營運備料成本。若使用注入鎖模之點對點波分多工(Point to Point Wavelength Division Multiplexing,PtP WDM),如圖2所示,BBU 206使用L-band的雷射二極體,RRU 207使用C-band的雷射二極體,多工/解多工器201、202具週期性,C-Band放大自發輻射 (Amplified Spontaneous Emission,ASE) 204經過光纖203、多工/解多工器201切割後注入到RRU 207之雷射二極體中,經鎖模後產生與注入光相同的波長。L-Band ASE 205經多工/解多工器202切割後注入到BBU 206之雷射二極體中,經鎖模後產生與注入光相同的波長。透過ASE經過多工/解多工器切割後注入到雷射二極體中,鎖模後產生與注入光相同的波長,而達到無色光源。Generally, the CWDM multiplexer/demultiplexer 101 and 102 channels are adjacent to each other at 20 nm (nm), and each channel uses optical modules of different wavelengths to increase the operation and preparation cost. If Point to Point Wavelength Division Multiplexing (PtP WDM) is used, as shown in FIG. 2, the BBU 206 uses an L-band laser diode, and the RRU 207 uses a C-band Ray. The emitter diode, the multiplexer/demultiplexer 201, 202 has periodicity, and the C-Band Amplified Spontaneous Emission (ASE) 204 is cut by the optical fiber 203, the multiplexer/demultiplexer 201, and injected into the RRU. In the laser diode of 207, after the mode-locking, the same wavelength as that of the injected light is generated. The L-Band ASE 205 is diced by the multiplexer/demultiplexer 202 and injected into the laser diode of the BBU 206, and is clamped to produce the same wavelength as the injected light. After being cut by the multiplex through the multiplexer/demultiplexer, it is injected into the laser diode, and after the mode-locking, the same wavelength as the injected light is generated, and the colorless light source is achieved.

然而,習知用於注入鎖模的雷射二極體為達到良好的鎖模效果,採用埋層(Buried)結構,這需要二次磊晶,增加元件成本及複雜度,降低良率。However, it is known that a laser diode for injection molding has a good clamping effect, and a Buried structure is required, which requires secondary epitaxy, which increases component cost and complexity and reduces yield.

有鑒於此,本案發明人乃亟思加以改良創新,提出一種雷射晶片及二極體之設計,採用脊型(ridge)波導結構的雷射晶片製作,不需二次磊晶,以降低元件成本、增加良率,在雷射晶片中增加放大區以降低注入光功率。In view of this, the inventor of the present invention has improved and innovated, and proposed a laser chip and a diode design, which is fabricated by using a ridge waveguide structure laser wafer without secondary epitaxy to reduce components. Cost, increase yield, increase the amplification area in the laser wafer to reduce the injected light power.

本發明之目的即在於提供一種雷射二極體,使用脊型波導結構,具放大功率功能,在注入鎖模的使用上,以降低注入光功率,達到無色光源。The object of the present invention is to provide a laser diode, which uses a ridge waveguide structure and has an amplification power function, and reduces the intensity of the injected light to achieve a colorless light source in the use of the injection mold.

可達成上述發明目的之雷射晶片設計,係在市售雷射二極體磊晶全結構上製作脊型波導結構,本發明的可應用於MFH的雷射晶片,其包括基板、N型披覆層、主動層、P型披覆層、第一歐姆接觸電層、第二歐姆接觸電層、圖案化絕緣層、第一P型接觸金屬層、第二P型接觸金屬層、N型接觸金屬層、低反射層、及高反射層。N型披覆層係設置於基板之一面。主動層係設置於N型披覆層上。P型披覆層係設置於主動層上, P型披覆層呈脊狀平台(ridge mesa)狀,其係作為光波導之用,使得訊號光沿P型披覆層延伸方向的光路徑傳播。第一歐姆接觸電層係設置於P型披覆層上。第二歐姆接觸電層係設置於P型披覆層上,並於第一歐姆接觸電層之後。圖案化絕緣層係覆蓋於第一歐姆接觸電層、第二歐姆接觸電層、及P型披覆層,且露出部分的第一歐姆接觸電層與第二歐姆接觸電層。第一P型接觸金屬層係設置於第一歐姆接觸電層上未被圖案化絕緣層覆蓋的區域。第二P型接觸金屬層係設置於第二歐姆接觸電層上未被圖案化絕緣層覆蓋的區域。N型接觸金屬層係設置於基板之另一面。低反射層設置於與光路徑垂直的P型披覆層之一側。高反射層設置於與光路徑垂直的P型披覆層之一側。A laser wafer design capable of achieving the above object of the invention is to fabricate a ridge waveguide structure on a commercially available laser diode epitaxial structure. The laser wafer of the present invention applicable to MFH includes a substrate and an N-type embossed wafer. Coating, active layer, P-type cladding layer, first ohmic contact layer, second ohmic contact layer, patterned insulating layer, first P-type contact metal layer, second P-type contact metal layer, N-type contact a metal layer, a low reflection layer, and a highly reflective layer. The N-type cladding layer is disposed on one side of the substrate. The active layer is disposed on the N-type cladding layer. The P-type cladding layer is disposed on the active layer, and the P-type cladding layer is in the shape of a ridge mesa, which is used as an optical waveguide to spread the signal light along the optical path extending in the direction of the P-type cladding layer. . The first ohmic contact layer is disposed on the P-type cladding layer. The second ohmic contact layer is disposed on the P-type cladding layer and after the first ohmic contact layer. The patterned insulating layer covers the first ohmic contact layer, the second ohmic contact layer, and the P-type cladding layer, and exposes a portion of the first ohmic contact layer and the second ohmic contact layer. The first P-type contact metal layer is disposed on a region of the first ohmic contact layer that is not covered by the patterned insulating layer. The second P-type contact metal layer is disposed on a region of the second ohmic contact layer that is not covered by the patterned insulating layer. The N-type contact metal layer is disposed on the other side of the substrate. The low reflection layer is disposed on one side of the P-type cladding layer perpendicular to the light path. The highly reflective layer is disposed on one side of the P-type cladding layer perpendicular to the light path.

本發明的可應用於MFH的雷射二極體,其包括矽晶片、光纖、第一波導區、調變器晶片、第二波導區、FP雷射晶片、及第三波導區。光纖被玻璃固定於矽晶片上之一端,光纖之一端係接收外部之光信號。第一波導區之一端連接光纖相對接收光信號之另一端。調變器晶片設置於第一波導區相對光纖之另一端。第二波導區設置於調變器晶片相對第一波導區之另一端。FP雷射晶片設置於第二波導區相對調變器晶片之另一端。第三波導區設置於FP雷射晶片相對第二波導區之另一端。The laser diode of the present invention applicable to MFH includes a germanium wafer, an optical fiber, a first waveguide region, a modulator wafer, a second waveguide region, a FP laser wafer, and a third waveguide region. The optical fiber is fixed to one end of the germanium wafer by glass, and one end of the optical fiber receives an external optical signal. One end of the first waveguide region is connected to the other end of the optical fiber relative to the received optical signal. The modulator wafer is disposed at the other end of the first waveguide region relative to the optical fiber. The second waveguide region is disposed at the other end of the modulator wafer relative to the first waveguide region. The FP laser wafer is disposed at the other end of the second waveguide region opposite the modulator wafer. The third waveguide region is disposed at the other end of the FP laser wafer relative to the second waveguide region.

而本發明的可用於MFH的雷射二極體,其包括矽晶片、光纖、第一球型透鏡、調變器晶片、第二球型透鏡、及FP雷射晶片。光纖係被玻璃固定於矽晶片上之一端,光纖之一端係接收外部之光信號。第一球型透鏡係設置於光纖接收光信號之另一端。調變器晶片係設置於第一球型透鏡相對光纖之另一端。第二球型透鏡係設置於調變器晶片相對第一球型透鏡之另一端。FP雷射晶片係設置於第二球型透鏡相對調變器晶片之另一端。The laser diode of the present invention, which can be used for MFH, includes a germanium wafer, an optical fiber, a first spherical lens, a modulator wafer, a second spherical lens, and an FP laser wafer. The optical fiber is fixed to one end of the germanium wafer by a glass, and one end of the optical fiber receives an external optical signal. The first spherical lens is disposed at the other end of the optical fiber receiving optical signal. The modulator wafer is disposed at the other end of the first spherical lens relative to the optical fiber. The second spherical lens is disposed at the other end of the modulator wafer relative to the first spherical lens. The FP laser chip is disposed at the other end of the second spherical lens relative to the modulator wafer.

藉此,雷射晶片及雷射二極體可分為兩區域,一為放大區域、另一為工作區域。放大區域提高注入光之功率,增加鎖模效果。工作區域提供操作偏壓及上載調變訊號。ASE經過多工/解多工器切割後注入到放大區域放大,再由脊型波導傳送到工作區域操作在想要的工作點、上載調變訊號。Thereby, the laser chip and the laser diode can be divided into two regions, one being an enlarged area and the other being a working area. The magnified area increases the power of the injected light and increases the clamping effect. The working area provides operating bias and upload modulation signals. After being cut by the multiplexer/demultiplexer, the ASE is injected into the amplification area to be amplified, and then transmitted to the work area by the ridge waveguide to operate at the desired working point and upload the modulation signal.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

以下將描述具體之實施例以說明本發明之實施態樣,惟其並非用以限制本發明所欲保護之範疇。The specific embodiments are described below to illustrate the embodiments of the invention, but are not intended to limit the scope of the invention.

第一實施例First embodiment

雷射二極體磊晶片300全結構如圖3所示,在磷化銦(InP)基板301之上面由下而上分別磊晶成長由N型磷化銦(InP)所組成N型披覆層(N type cladding layer)302、由磷由磷砷化鎵銦(InGaAsP)之量子井所組成主動層(active layer)303、由P型磷化銦所組成P型披覆層(P type cladding layer)304、及由磷砷化銦(InGaAs)所組成歐姆接觸電層305。The full structure of the laser diode epitaxial wafer 300 is as shown in FIG. 3, and the upper surface of the indium phosphide (InP) substrate 301 is epitaxially grown from bottom to top, and N-type cladding is composed of N-type indium phosphide (InP). N type cladding layer 302, an active layer 303 composed of a quantum well of phosphorus indium gallium arsenide (InGaAsP), and a P-type cladding layer composed of P-type indium phosphide (P type cladding) A layer 304 and an ohmic contact layer 305 composed of indium arsenide (InGaAs).

在圖3的結構上,製作出呈脊狀平台(ridge mesa)狀的脊型波導結構,其是作為光波導之用,使得訊號光能被侷限在此脊狀的區域,並沿P型披覆層304所形成脊型波導延伸方向的光路徑傳播。其製作步驟如下:使用光學微影技術沿圖3的磊晶片之方向定義出條狀之波導,然後使用化學蝕刻,蝕刻P型披覆層304及歐姆接觸電層305,即完成脊型波導結構。而脊型波導的正面圖可參閱圖4,其為相對於圖3轉90度角看入之視圖。In the structure of Fig. 3, a ridge-shaped waveguide structure in the form of a ridge mesa is formed, which is used as an optical waveguide, so that the signal light can be confined to the ridge-like region and is diced along the P-type. The light path of the ridge waveguide extending direction formed by the cladding layer 304 propagates. The fabrication steps are as follows: a strip-shaped waveguide is defined along the direction of the epitaxial wafer of FIG. 3 using optical lithography, and then the P-type cladding layer 304 and the ohmic contact layer 305 are etched using chemical etching, that is, the ridge waveguide structure is completed. . The front view of the ridge waveguide can be seen in Fig. 4, which is a view taken at a 90 degree angle with respect to Fig. 3.

接著,是在完成脊型波導結構的磊晶片300上長成一圖案化絕緣層406,其是作為絕緣之用,透過此步驟,磊晶片300將露出頂端的半導體,使用者可透過此露出之區域輸入電流。而行程圖案化絕緣層406的步驟如下:利用電漿輔助化學氣相沈積(Plasma Enhanced Chemical Vapor Deposition,PECVD),在已完成脊型波導的整個磊晶片300上成長氮化矽(SiNx),然後,在氮化矽上鋪上光阻,並使用氧離子體(Oxygen plasma) 蝕刻光阻,直到露出脊型波導頂部的氮化矽,再用氟化碳離子體(CF4 plasma)蝕刻露出脊型波導頂部的氮化矽,直到半導體層露出後,接著去除光阻,即完成圖案化絕緣層406。Next, a patterned insulating layer 406 is formed on the epitaxial wafer 300 completing the ridge waveguide structure for insulation. Through this step, the epitaxial wafer 300 will expose the top semiconductor, and the user can pass through the exposed region. Input Current. The step of patterning the insulating layer 406 is as follows: using a Plasma Enhanced Chemical Vapor Deposition (PECVD), a tantalum nitride (SiNx) is grown on the entire epitaxial wafer 300 of the completed ridge waveguide, and then a photoresist is deposited on the tantalum nitride, and the photoresist is etched using an Oxygen plasma until the tantalum nitride at the top of the ridge waveguide is exposed, and then etched with a carbon fluoride ion (CF4 plasma) to expose the ridge. The tantalum nitride on top of the waveguide is removed until the semiconductor layer is exposed, and then the photoresist is removed, that is, the patterned insulating layer 406 is completed.

接著,要在磊晶片300上定義出元件之電極,以供電流輸入。首先,運用具有影像反轉(image reversal)特性的光阻,配合光學微影技術,將電極分離的圖案定義在脊型波導的區域上,再經紫外線曝光、顯影,露出歐姆接觸電層305,接著使用真空電子束蒸鍍系統在歐姆接觸電層305上長成P型接觸金屬層407,蒸鍍結束後,將磊晶片300泡在丙酮中以掀離不要的金屬,便形成第一P型接觸金屬層507及第二P型接觸金屬層508。再以化學蝕刻歐姆接觸電層305,形成第一歐姆接觸電層505、第二歐姆接觸電層506分別設置於P型披覆層304上,如圖5中所示。第一歐姆接觸電層505是放大區處,第二歐姆接觸電層506是工作區處。Next, an electrode of the component is defined on the epitaxial wafer 300 for current input. First, a photoresist having image reversal characteristics is used, and an optical lithography technique is used to define an electrode separation pattern on a region of the ridge waveguide, and then exposed to ultraviolet light and developed to expose the ohmic contact layer 305. Then, a P-type contact metal layer 407 is grown on the ohmic contact layer 305 by using a vacuum electron beam evaporation system. After the evaporation is completed, the epitaxial wafer 300 is bubbled in acetone to remove the unnecessary metal, thereby forming the first P-type. The metal layer 507 and the second P-type contact metal layer 508 are contacted. The ohmic contact layer 305 is chemically etched to form a first ohmic contact layer 505 and a second ohmic contact layer 506 are respectively disposed on the P-type cladding layer 304, as shown in FIG. The first ohmic contact layer 505 is at the amplification region and the second ohmic contact layer 506 is at the work region.

其中,前述的圖案化絕緣層406將覆蓋於第一歐姆接觸電層505、第二歐姆接觸電層506、P型披覆層304、第一P型接觸金屬層507與第二P型接觸金屬層508,且露出部分的第一歐姆接觸電層505與第二歐姆接觸電層506。第一P型接觸金屬層507是設置於第一歐姆接觸電層505上未被圖案化絕緣層406覆蓋的區域,第二P型接觸金屬層508是設置於第二歐姆接觸電層506上未被圖案化絕緣層406覆蓋的區域。Wherein, the foregoing patterned insulating layer 406 will cover the first ohmic contact layer 505, the second ohmic contact layer 506, the P-type cladding layer 304, the first P-type contact metal layer 507 and the second P-type contact metal. Layer 508 and a portion of the first ohmic contact layer 505 and the second ohmic contact layer 506 are exposed. The first P-type contact metal layer 507 is disposed on the first ohmic contact layer 505 and is not covered by the patterned insulating layer 406. The second P-type contact metal layer 508 is disposed on the second ohmic contact layer 506. The area covered by the patterned insulating layer 406.

接著,將完成上述步驟的磷化銦(InP)基板磨薄,並於磊晶片300之磷化銦基板301的另一面,即磷化銦基板301相對於長成脊型波導的另一面上,蒸鍍上N型接觸金屬層408,經退火、切割得到費布立-佩若(Fabry-Perot,FP)雷射晶片。然後,在磊晶片300的兩側邊,即與訊號光的光路徑(脊型波導延伸方向)垂直的磊晶片300之兩側,使用真空電子束蒸鍍系統蒸鍍上低反射層509、高反射層510,如圖5所示,其中低、高反射層509、510至少須覆蓋P型披覆層304,即設置於與光路徑垂直的P型披覆層304之一側。低反射層509是用於降低注入光的反射率,提高注入射訊號光的比例,高反射層510是讓光由低反射層輸出。低反射層509的反射率小於0.1%,高反射層510的反射率大於99%。Next, the indium phosphide (InP) substrate which has completed the above steps is thinned, and is on the other side of the indium phosphide substrate 301 of the epitaxial wafer 300, that is, the indium phosphide substrate 301 is opposite to the other side of the elongated ridge waveguide. The N-type contact metal layer 408 is vapor-deposited, and an Fabry-Perot (FP) laser wafer is obtained by annealing and cutting. Then, on both sides of the epitaxial wafer 300, that is, on both sides of the epitaxial wafer 300 perpendicular to the optical path of the signal light (the ridge waveguide extending direction), the low-reflection layer 509 is vapor-deposited using a vacuum electron beam evaporation system. The reflective layer 510, as shown in FIG. 5, wherein the low and high reflective layers 509, 510 are at least covered by the P-type cladding layer 304, that is, disposed on one side of the P-type cladding layer 304 perpendicular to the optical path. The low reflection layer 509 is for reducing the reflectance of the injected light, and increasing the ratio of the injected signal light. The high reflection layer 510 allows the light to be output by the low reflection layer. The reflectance of the low reflection layer 509 is less than 0.1%, and the reflectance of the high reflection layer 510 is greater than 99%.

最終,由磷化銦基板301、N型披覆層302、主動層303、P型披覆層304、第一歐姆接觸電層505、第二歐姆接觸電層506、圖案化絕緣層407、第一P型接觸金屬層507、第二P型接觸金屬層508、N型接觸金屬層408、低反射層509與高反射層510結合即形成FP雷射晶片500。Finally, the indium phosphide substrate 301, the N-type cladding layer 302, the active layer 303, the P-type cladding layer 304, the first ohmic contact layer 505, the second ohmic contact layer 506, the patterned insulating layer 407, A P-type contact metal layer 507, a second P-type contact metal layer 508, an N-type contact metal layer 408, and a low-reflection layer 509 are combined with the high-reflection layer 510 to form the FP laser wafer 500.

第二實施例Second embodiment

為了提升在注入鎖模機制的傳輸速率,本發明另提出一種可應用於MFH的雷射二極體的第二實施例,請參閱圖6。本實施例係使用平面光波導(Planar Lightwave Circuit)技術在矽晶片609上製成第一波導區604、第二波導區606、及第三波導區608,使用微顯影技術及化學蝕刻或是使用電子迴旋加速共振活性離子蝕刻(electron cyclotron resonance reactive ion etch,簡稱ECR-RIE)的方法蝕刻光波導及半導體以形成金屬導電層區域,使用微顯影技術及薄膜技術形成第一金屬導電層610及第二金屬導電層611,以及使用導電黏著劑分別將調變器晶片605及FP雷射晶片607分別黏著於第一金屬導電層610及第二金屬導電層611上,且FP雷射晶片607為第一實施例之結構最終所形成的FP雷射晶片或一般用於注入鎖模之FP雷射晶片。In order to increase the transmission rate in the injection mode-locking mechanism, the present invention further proposes a second embodiment of a laser diode applicable to the MFH, see FIG. In this embodiment, a first waveguide region 604, a second waveguide region 606, and a third waveguide region 608 are formed on the germanium wafer 609 using a Planar Lightwave Circuit technique, using micro-developing techniques and chemical etching or using An electron cyclotron resonance reactive ion etching (ECR-RIE) method etches an optical waveguide and a semiconductor to form a metal conductive layer region, and forms a first metal conductive layer 610 using a micro-developing technique and a thin film technique. The second metal conductive layer 611 and the conductive varnish 607 and the FP laser 607 are respectively adhered to the first metal conductive layer 610 and the second metal conductive layer 611, and the FP laser wafer 607 is The FP laser wafer that is ultimately formed by the structure of an embodiment or FP laser wafer that is typically used for injection molding.

光纖601係被玻璃602固定於矽晶片609上之一端,光纖601之一端係接收外部之光信號(圖中未示),第一波導區604之一端連接光纖601接收光信號之另一端,調變器晶片605係設置於第一波導區604相對光纖601之另一端,第二波導區606係設置於調變器晶片605相對第一波導區604之另一端, FP雷射晶片607係設置於第二波導區606相對調變器晶片605之另一端,第三波導區608係設置於FP雷射晶片607相對第二波導區606之另一端。The optical fiber 601 is fixed on one end of the silicon wafer 609 by the glass 602. One end of the optical fiber 601 receives an external optical signal (not shown), and one end of the first waveguide region 604 is connected to the optical fiber 601 to receive the other end of the optical signal. The transformer chip 605 is disposed at the other end of the first waveguide region 604 opposite to the optical fiber 601, and the second waveguide region 606 is disposed at the other end of the modulator wafer 605 with respect to the first waveguide region 604, and the FP laser wafer 607 is disposed at The second waveguide region 606 is opposite the other end of the modulator wafer 605, and the third waveguide region 608 is disposed at the other end of the FP laser wafer 607 opposite the second waveguide region 606.

光纖601係將光信號引入到第一波導區604,再由第一波導區604引導經調變器晶片605、第二波導區606後注入到FP雷射晶片607,經FP雷射晶片607鎖模後再輸出光,經第二波導區606引導至調變器晶片605,此時調變器晶片605加上調變信號,再由第一波導區604引導至光纖輸出。調變器晶片605可為電子吸收式調變器、馬赫任德調變器(Mach Zender modulator)。The optical fiber 601 introduces an optical signal into the first waveguide region 604, and is guided by the first waveguide region 604 through the modulator wafer 605 and the second waveguide region 606, and then injected into the FP laser wafer 607, and locked by the FP laser wafer 607. The light is then output and directed through the second waveguide region 606 to the modulator wafer 605, at which time the modulator wafer 605 is modulated with a modulated signal and directed by the first waveguide region 604 to the fiber output. The modulator wafer 605 can be an electronic absorption modulator, a Mach Zender modulator.

最終,由矽晶片609、光纖601、第一波導區604、調變器晶片605、第二波導區606、FP雷射晶片607、及第三波導區608結合即形成雷射二極體600。Finally, the laser diode 600 is formed by the combination of the germanium wafer 609, the optical fiber 601, the first waveguide region 604, the modulator wafer 605, the second waveguide region 606, the FP laser wafer 607, and the third waveguide region 608.

第三實施例Third embodiment

為了提升在注入鎖模機制的傳輸速率,本發明再提出一種可應用於MFH的雷射二極體第三實施例,請參閱圖7。本實施例係使用微顯影技術及化學蝕刻或是使用電子迴旋加速共振活性離子蝕刻(electron cyclotron resonance reactive ion etch,簡稱ECR-RIE)的方法蝕刻半導體以形成V型溝槽,使用黏著劑分別將第一球型透鏡704、第二球型透鏡706黏著於V型溝槽中。使用微顯影技術及薄膜技術形成第一金屬導電層709及第二金屬導電層710,使用導電黏著劑分別將調變器晶片705及FP雷射晶片707黏著於第一金屬導電層709及第二金屬導電層710上,且FP雷射晶片707為第一實施例之結構最終形成FP雷射晶片或一般用於注入鎖模之FP雷射晶片。In order to increase the transmission rate in the injection mode-locking mechanism, the present invention further proposes a third embodiment of a laser diode applicable to the MFH, see FIG. In this embodiment, the semiconductor is etched using a micro-developing technique and a chemical etching or an electron cyclotron resonance reactive ion etching (ECR-RIE) method to form a V-shaped trench, and an adhesive is used separately. The first spherical lens 704 and the second spherical lens 706 are adhered to the V-shaped groove. The first metal conductive layer 709 and the second metal conductive layer 710 are formed by using a micro-developing technique and a thin film technique, and the modulator wafer 705 and the FP laser wafer 707 are respectively adhered to the first metal conductive layer 709 and the second using a conductive adhesive. The metal conductive layer 710, and the FP laser wafer 707 is the structure of the first embodiment, ultimately forming a FP laser wafer or a FP laser wafer typically used for injection molding.

光纖701係被玻璃702固定於矽晶片708上之一端,光纖701之一端係接收外部之光信號,第一球型透鏡704係設置於光纖701接收光信號之另一端,調變器晶片705係設置於第一球型透鏡704相對光纖701之另一端,第二球型透鏡706係設置於調變器晶片705相對第一球型透鏡704之另一端,FP雷射晶片707係設置於第二球型透鏡706相對調變器晶片705之另一端。The optical fiber 701 is fixed to one end of the germanium wafer 708 by the glass 702. One end of the optical fiber 701 receives an external optical signal, and the first spherical lens 704 is disposed at the other end of the optical fiber 701 for receiving the optical signal, and the modulator chip 705 is The first spherical lens 704 is disposed at the other end of the optical fiber 701, the second spherical lens 706 is disposed at the other end of the modulator wafer 705 with respect to the first spherical lens 704, and the FP laser wafer 707 is disposed at the second end. The spherical lens 706 is opposite the other end of the modulator wafer 705.

光纖701將光信號引入第一球型透鏡704聚焦、注入調變器晶片705後,再由第二球型透鏡706聚焦注入FP雷射晶片707中,經FP雷射晶片707鎖模後再輸出光,經由第二球型透鏡706聚焦、注入調變器晶片705中,此時調變器晶片705加上調變信號,再由第一球型透鏡704聚焦至光纖701輸出。調變器晶片705可為電子吸收式調變器、馬赫任德調變器。The optical fiber 701 introduces the optical signal into the first spherical lens 704 to focus and inject into the modulator wafer 705, and then is focused and injected into the FP laser wafer 707 by the second spherical lens 706, and is clamped by the FP laser wafer 707 before being output. The light is focused and injected into the modulator wafer 705 via the second spherical lens 706. At this time, the modulator wafer 705 is added with a modulation signal, and then focused by the first spherical lens 704 to the output of the optical fiber 701. The modulator wafer 705 can be an electronic absorption modulator, a Mach Rende modulator.

最終,由矽晶片708、光纖701、第一球型透鏡704、調變器晶片705、第二球型透鏡706、及FP雷射晶片707結合即形成雷射二極體700。Finally, the laser diode 700 is formed by the combination of the germanium wafer 708, the optical fiber 701, the first spherical lens 704, the modulator wafer 705, the second spherical lens 706, and the FP laser wafer 707.

特點及功效Features and effects

本發明實施例所提供一種可應用於MFH的雷射晶片及雷射二極體,具有下列之優點:(1)使用注入鎖模,達到無色光源,降低營運備料成本,並提高通道數。(2)採用脊型波導結構製作,不需二次磊晶,增加良率,降低製作成本。(3)增加放大區以降低注入光功率。(4)提高傳輸速率。The embodiment of the invention provides a laser wafer and a laser diode applicable to the MFH, and has the following advantages: (1) using the injection mode-locking to achieve a colorless light source, reducing the operation and preparation cost, and increasing the number of channels. (2) It is made of ridge-shaped waveguide structure, which does not require secondary epitaxy, increases yield and reduces production cost. (3) Increase the amplification area to reduce the injected light power. (4) Increase the transmission rate.

上述詳細說明係針對本發明之一可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。The detailed description of the present invention is intended to be illustrative of the preferred embodiments of the present invention, and is not intended to limit the scope of the present invention. In the scope of patents.

綜上所述,本案不僅於技術思想上確屬創新,並具備習用之傳統方法所不及之上述多項功效,已充分符合新穎性及進步性之法定發明專利要件,爰依法提出申請。To sum up, this case is not only innovative in terms of technical thinking, but also has many of the above-mentioned functions that are not in the traditional methods of the past. It has fully complied with the statutory invention patent requirements of novelty and progressiveness, and has applied for it according to law.

101‧‧‧多工/解多工器101‧‧‧Multiplex/Demultiplexer

102‧‧‧多工/解多工器102‧‧‧Multiplex/Demultiplexer

103‧‧‧光纖103‧‧‧Fiber

104‧‧‧BBU104‧‧‧BBU

105‧‧‧RRU105‧‧‧RRU

201‧‧‧多工/解多工器201‧‧‧Multiplex/Demultiplexer

202‧‧‧多工/解多工器202‧‧‧Multiplex/demultiplexer

203‧‧‧光纖203‧‧‧Fiber

204‧‧‧C-Band ASE204‧‧‧C-Band ASE

205‧‧‧L-Band ASE205‧‧‧L-Band ASE

206‧‧‧BBU206‧‧‧BBU

207‧‧‧RRU207‧‧‧RRU

301‧‧‧基板301‧‧‧Substrate

302‧‧‧N型披覆層302‧‧‧N type coating

303‧‧‧主動層303‧‧‧ active layer

304‧‧‧P型披覆層304‧‧‧P type coating

305‧‧‧歐姆接觸電層305‧‧‧ Ohmic contact layer

406‧‧‧氮化矽406‧‧‧ nitride

407‧‧‧P型接觸金屬層407‧‧‧P type contact metal layer

408‧‧‧N型接觸金屬層408‧‧‧N type contact metal layer

500‧‧‧雷射晶片500‧‧‧Laser Wafer

505‧‧‧第一歐姆接觸電層505‧‧‧First ohmic contact layer

506‧‧‧第二歐姆接觸電層506‧‧‧second ohmic contact layer

507‧‧‧第一P型接觸金屬層507‧‧‧First P-type contact metal layer

508‧‧‧第二P型接觸金屬層508‧‧‧Second P-type contact metal layer

509‧‧‧低反射層509‧‧‧Low reflective layer

510‧‧‧高反射層510‧‧‧High reflection layer

600‧‧‧雷射二極體600‧‧‧Laser diode

601‧‧‧光纖601‧‧‧ fiber

602‧‧‧玻璃602‧‧‧ glass

603‧‧‧光纖603‧‧‧ fiber optic

604‧‧‧第一波導區604‧‧‧First waveguide area

605‧‧‧調變器晶片605‧‧‧Transformer chip

606‧‧‧第二波導區606‧‧‧Second waveguide area

607‧‧‧FP雷射晶片607‧‧‧FP laser wafer

608‧‧‧第三波導區608‧‧‧ Third waveguide area

609‧‧‧矽晶片609‧‧‧矽 wafer

610‧‧‧第一金屬導電層610‧‧‧First metal conductive layer

611‧‧‧第二金屬導電層611‧‧‧Second metal conductive layer

700‧‧‧雷射二極體700‧‧‧Laser diode

701‧‧‧光纖701‧‧‧ fiber

702‧‧‧玻璃702‧‧‧ glass

703‧‧‧光纖703‧‧‧Fiber

704‧‧‧第一球型透鏡704‧‧‧First spherical lens

705‧‧‧調變器晶片705‧‧‧Transformer chip

706‧‧‧第二球型透鏡706‧‧‧Second spherical lens

707‧‧‧FP雷射晶片707‧‧‧FP laser wafer

708‧‧‧矽晶片708‧‧‧矽 wafer

709‧‧‧第一金屬導電層709‧‧‧First metal conductive layer

710‧‧‧第二金屬導電層710‧‧‧Second metal conductive layer

圖1為習知MFH網路圖。 圖2為習知注入鎖模之PtP WDM網路圖。 圖3為依據本發明第一實施例之應用於MFH的雷射晶片構造圖。 圖4為依據本發明第一實施例之應用於MFH的雷射晶片之第一製作流程圖。 圖5為依據本發明第一實施例之應用於MFH的雷射晶片之第二製作流程圖。 圖6為依據本發明第二實施例之應用於MFH的雷射二極體構造圖。 圖7為依據本發明第三實施例之應用於MFH的雷射二極體構造圖。Figure 1 is a conventional MFH network diagram. 2 is a conventional PtP WDM network diagram of injection mode locking. 3 is a structural view of a laser wafer applied to an MFH according to a first embodiment of the present invention. 4 is a first process flow diagram of a laser wafer applied to an MFH in accordance with a first embodiment of the present invention. Figure 5 is a flow chart showing the second fabrication of a laser wafer applied to the MFH in accordance with the first embodiment of the present invention. Figure 6 is a structural view of a laser diode applied to an MFH according to a second embodiment of the present invention. Fig. 7 is a view showing the configuration of a laser diode applied to an MFH according to a third embodiment of the present invention.

Claims (9)

一種可應用於移動前端(Mobile Fronthaul,MFH)的費布立-佩若(Fabry-Perot,FP)雷射晶片,包括:一基板;一N型披覆層,其係設置於該基板之一面;一主動層,其係設置於該N型披覆層上;一P型披覆層,其係設置於該主動層上,該P型披覆層呈脊狀平台(ridge mesa)狀,其係作為光波導之用,使得訊號光沿該P型披覆層延伸方向的光路徑傳播;一第一歐姆接觸電層,其係設置於該P型披覆層上;一第二歐姆接觸電層,其係設置於該P型披覆層上,並依據一間距鄰設於該第一歐姆接觸電層;一圖案化絕緣層,其係覆蓋於該第一歐姆接觸電層、該第二歐姆接觸電層、及該P型披覆層,且露出部分的該第一歐姆接觸電層與該第二歐姆接觸電層;一第一P型接觸金屬層,其係設置於該第一歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一第二P型接觸金屬層,其係設置於該第二歐姆接觸電層上未被該圖案化絕緣層覆蓋的區域;一N型接觸金屬層,其係設置於該基板之另一面;一低反射層,設置於與該光路徑垂直的該P型披覆層之一側;以及 一高反射層,設置於與該光路徑垂直的該P型披覆層之一側,其中該第一歐姆接觸電層為放大區處,且該第二歐姆接觸電層為工作區處。 A Fabry-Perot (FP) laser wafer applicable to a Mobile Fronthaul (MFH), comprising: a substrate; an N-type cladding layer disposed on one side of the substrate An active layer disposed on the N-type cladding layer; a P-type cladding layer disposed on the active layer, the P-type cladding layer having a ridge mesa shape, For use as an optical waveguide, the signal light propagates along the optical path of the P-type cladding layer; a first ohmic contact layer is disposed on the P-type cladding layer; and a second ohmic contact current a layer disposed on the P-type cladding layer and adjacent to the first ohmic contact layer according to a spacing; a patterned insulating layer covering the first ohmic contact layer, the second An ohmic contact layer, and the P-type cladding layer, and exposing a portion of the first ohmic contact layer and the second ohmic contact layer; a first P-type contact metal layer disposed on the first ohmic layer a region of the contact layer that is not covered by the patterned insulating layer; a second P-type contact metal layer disposed on the second a region of the contact layer that is not covered by the patterned insulating layer; an N-type contact metal layer disposed on the other side of the substrate; and a low-reflection layer disposed on the P-type film perpendicular to the light path One side of the cladding; a highly reflective layer disposed on one side of the P-type cladding layer perpendicular to the optical path, wherein the first ohmic contact layer is an amplification region, and the second ohmic contact layer is a working region. 如申請專利範圍第1項所述的可應用於MFH的FP雷射晶片,其中該低反射層的反射率小於0.1%。 The FP laser wafer applicable to MFH according to claim 1, wherein the low reflection layer has a reflectance of less than 0.1%. 如申請專利範圍第1項所述的可應用於MFH的FP雷射晶片,其中該高反射層的反射率大於99%。 The FP laser wafer applicable to MFH according to claim 1, wherein the high reflection layer has a reflectance greater than 99%. 一種可應用於MFH的雷射二極體,包含:一矽晶片;一光纖,被玻璃固定於該矽晶片上之一端,該光纖之一端係接收外部之光信號;一第一波導區,該第一波導區之一端連接該光纖相對接收光信號之另一端;一調變器晶片,設置於該第一波導區相對該光纖之另一端;一第二波導區,設置於該調變器晶片相對該第一波導區之另一端;如申請專利範圍第1項所述的FP雷射晶片,設置於該第二波導區相對該調變器晶片之另一端;以及一第三波導區,設置於該FP雷射晶片相對該第二波導區之另一端。 A laser diode applicable to an MFH, comprising: a germanium wafer; an optical fiber fixed to one end of the germanium wafer by a glass, one end of the optical fiber receiving an external optical signal; and a first waveguide region, the first waveguide region One end of the first waveguide region is connected to the other end of the optical fiber opposite to the received optical signal; a modulator wafer is disposed on the other end of the first waveguide region opposite to the optical fiber; and a second waveguide region is disposed on the modulator chip The other end of the first waveguide region; the FP laser wafer according to claim 1 is disposed at the other end of the second waveguide region opposite to the modulator wafer; and a third waveguide region is disposed The FP laser wafer is opposite the other end of the second waveguide region. 如申請專利範圍第4項所述的可應用於MFH的雷射二極體,其中該調變器晶片為電子吸收式調變器。 A laser diode applicable to MFH as described in claim 4, wherein the modulator wafer is an electronic absorption modulator. 如申請專利範圍第4項所述的可應用於MFH的雷射二極體,其中該調變器晶片為馬赫任德調變器。 A laser diode applicable to an MFH as described in claim 4, wherein the modulator wafer is a Mach Rende modulator. 一種可應用於MFH的雷射二極體,包含:一矽晶片;一光纖,係被玻璃固定於該矽晶片上之一端,該光纖之一端係接收外部之光信號;一第一球型透鏡,該第一球型透鏡係設置於該光纖接收光信號之另一端;一調變器晶片,係設置於該第一球型透鏡相對該光纖之另一端;一第二球型透鏡,係設置於該調變器晶片相對該第一球型透鏡之另一端;以及如申請專利範圍第1項所述的FP雷射晶片,係設置於該第二球型透鏡相對該調變器晶片之另一端。 A laser diode applicable to an MFH, comprising: a germanium wafer; an optical fiber fixed to one end of the germanium wafer by a glass, one end of the optical fiber receiving an external optical signal; and a first spherical lens The first spherical lens is disposed at the other end of the optical fiber receiving optical signal; a modulator chip is disposed at the other end of the first spherical lens relative to the optical fiber; and a second spherical lens is disposed The FP laser wafer of the first spherical lens is opposite to the first spherical lens; and the FP laser wafer according to claim 1 is disposed on the second spherical lens opposite to the modulator wafer. One end. 如申請專利範圍第7項所述的可應用於MFH的雷射二極體,其中該調變器晶片為電子吸收式調變器。 A laser diode applicable to an MFH as described in claim 7 wherein the modulator wafer is an electronic absorption modulator. 如申請專利範圍第7項所述的可應用於MFH的雷射二極體,其中該調變器晶片為馬赫任德調變器。 The laser diode applicable to the MFH according to claim 7, wherein the modulator chip is a Mach Rende modulator.
TW107104215A 2018-02-06 2018-02-06 Laser chip and laser diode for mobile fronthaul TWI646742B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107104215A TWI646742B (en) 2018-02-06 2018-02-06 Laser chip and laser diode for mobile fronthaul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107104215A TWI646742B (en) 2018-02-06 2018-02-06 Laser chip and laser diode for mobile fronthaul

Publications (2)

Publication Number Publication Date
TWI646742B true TWI646742B (en) 2019-01-01
TW201935791A TW201935791A (en) 2019-09-01

Family

ID=65804042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107104215A TWI646742B (en) 2018-02-06 2018-02-06 Laser chip and laser diode for mobile fronthaul

Country Status (1)

Country Link
TW (1) TWI646742B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200616298A (en) * 2004-11-01 2006-05-16 Chunghwa Telecom Co Ltd Method for producing ridge waveguide laser diode
TW201547002A (en) * 2014-06-09 2015-12-16 Chunghwa Telecom Co Ltd Reflective semiconductor optical amplifier
TW201640765A (en) * 2015-05-04 2016-11-16 中華電信股份有限公司 A novel optical amplifier for optical networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200616298A (en) * 2004-11-01 2006-05-16 Chunghwa Telecom Co Ltd Method for producing ridge waveguide laser diode
TW201547002A (en) * 2014-06-09 2015-12-16 Chunghwa Telecom Co Ltd Reflective semiconductor optical amplifier
TW201640765A (en) * 2015-05-04 2016-11-16 中華電信股份有限公司 A novel optical amplifier for optical networks

Also Published As

Publication number Publication date
TW201935791A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
US7583869B2 (en) Electroabsorption duplexer
US8767792B2 (en) Method for electrically pumped semiconductor evanescent laser
US8213751B1 (en) Electronic-integration compatible photonic integrated circuit and method for fabricating electronic-integration compatible photonic integrated circuit
Kurczveil et al. An integrated hybrid silicon multiwavelength AWG laser
US9874709B2 (en) Optical functional device, optical receiving apparatus and optical transmission apparatus
US9052449B2 (en) Light emitting device, manufacturing method thereof, and optical transceiver
CN104638514A (en) Method and device for realizing low-cost tunable semiconductor laser based on reconstruction-equivalent chirp and series technologies
CN111129944B (en) Electro-absorption light emission chip based on quantum communication application and manufacturing method thereof
EP2463694A1 (en) A distributed feedback laser structure for a photonic integrated circuit and method of manufacturing such structure
JP2008064915A (en) Optical integrated circuit
Suzuki et al. Tunable DFB Laser array combined by monolithically integrated AWG coupler
US9742152B2 (en) Tunable semiconductor laser based on reconstruction-equivalent chirp and series mode or series and parallel hybrid integration, and preparation thereof
CN210744448U (en) Novel narrow linewidth DFB laser
CN112290385A (en) Multi-wavelength silicon-based III-V group hybrid integrated laser array unit and manufacturing method thereof
EP3382433A1 (en) Full wafer integration of iii-v devices
US11769988B2 (en) Vertical-cavity surface-emitting laser (VCSEL) tuned through application of mechanical stress via a piezoelectric material
US11695254B2 (en) Quantum dot slab-coupled optical waveguide emitters
TWI646742B (en) Laser chip and laser diode for mobile fronthaul
US20050185689A1 (en) Optoelectronic device having a Discrete Bragg Reflector and an electro-absorption modulator
CN110299589B (en) Frequency division and frequency multiplication generation method and device
JPH07142699A (en) Semiconductor optical integrated device and manufacture thereof
KR100243659B1 (en) Multi-functional optical device and method for forming the same
TWI629523B (en) Adjustable wavelength receiver
JPH10223989A (en) Waveguide type optical element
Fan et al. Monolithically Integrated 8× 8 Transmitter-Router Based on Tunable V-Cavity Laser Array and Cyclic Arrayed Waveguide Grating Router